repo_name
stringlengths
6
100
path
stringlengths
4
294
copies
stringlengths
1
5
size
stringlengths
4
6
content
stringlengths
606
896k
license
stringclasses
15 values
PrismTech/opensplice
build/scripts/overnight/python/DBMSConnect.py
2
12435
import sys import os import json import shutil import subprocess import fileinput import platform import time from shutil import copy import example_logparser from example_exceptions import LogCheckFail from Example import Example from Example import ExeThread import pdb """ Class specific to the DBMSConnect example as it is very different to all other examples having a different directory structure and also runs more than a simple publisher/subscriber """ class dbmsconnect (Example): def __init__(self, host, logger): super(dbmsconnect, self).__init__(host, logger, "dbmsconnect", "services") with open ('examples.json') as data_file: data = json.load(data_file) self.odbcMsgBoard_params = data["services"]["dbmsconnect"]["params"]["odbcMsgBoard_params"] self.odbcChatter1_params = data["services"]["dbmsconnect"]["params"]["odbcChatter1_params"] self.odbcChatter2_params = data["services"]["dbmsconnect"]["params"]["odbcChatter2_params"] self.cppChatter1_params = data["services"]["dbmsconnect"]["params"]["cppChatter1_params"] self.cppChatter2_params = data["services"]["dbmsconnect"]["params"]["cppChatter2_params"] self.odbcChatterQuit_params = data["services"]["dbmsconnect"]["params"]["odbcChatterQuit_params"] self.cppChatterQuit_params = data["services"]["dbmsconnect"]["params"]["cppChatterQuit_params"] super(dbmsconnect, self).setPath(os.path.join(os.environ['OSPL_HOME'], 'examples', 'services', 'dbmsconnect', 'SQL', 'C++', 'ODBC')) if os.environ['EXRUNTYPE'] == "shm": self.uri = "file://" + os.path.join(os.environ['OSPL_HOME'], 'examples', 'services', 'dbmsconnect', self.shm_uri) else: self.uri = "file://" + os.path.join(os.environ['OSPL_HOME'], 'examples', 'services', 'dbmsconnect', self.sp_uri) self.runDBMSConnect = self.host.runExample(self.expath, self.name, "") def runExample(self): print "In runExample for " + self.expath + ": " + self.name currPath = os.getcwd() try: self.exdir = "servicesdbmsconnectSQLCPPODBC" exSfx = "" if self.host.isWindows(): exSfx = ".exe" os.putenv("ODBC_LIB_NAME", "odbc32") else: os.putenv("ODBC_LIB_NAME", "odbc") msg = "NONE" result = "PASS" dsn = self.odbcMsgBoard_params[0] os.putenv("MY_DSN", dsn); os.environ["MY_DSN"]= dsn; os.putenv("OSPL_URI", self.uri) os.environ["OSPL_URI"] = self.uri try: self.convertConfig() self.setLogPathAndLogs("", "") odbcMsgBoardLog = os.path.join(self.pPath, 'odbcMsgBoard.log') odbcChatter1Log = os.path.join(self.pPath, 'odbcChatter1.log') odbcChatter2Log = os.path.join(self.pPath, 'odbcChatter2.log') odbcChatterQuitLog = os.path.join(self.pPath, 'odbcChatterQuit.log') cppMsgBoardLog = os.path.join(self.pPath, 'cppMsgBoard.log') cppChatter1Log = os.path.join(self.pPath, 'cppChatter1.log') cppChatter2Log = os.path.join(self.pPath, 'cppChatter2.log') cppChatterQuitLog = os.path.join(self.pPath, 'cppChatterQuit.log') with open ('examples.json') as data_file: data = json.load(data_file) odbcMsgBoardName = data[self.expath][self.name]["executables"]["odbc"]["msgBoardName"] odbcChatterName = data[self.expath][self.name]["executables"]["odbc"]["chatterName"] cppMsgBoardName = data[self.expath][self.name]["executables"]["cpp"]["msgBoardName"] cppChatterName = data[self.expath][self.name]["executables"]["cpp"]["chatterName"] odbcmsgboard_conds_file = data[self.expath][self.name]["log_conditions_file"]["odbcmsgboard_conds"] cppmsgboard_conds_file = data[self.expath][self.name]["log_conditions_file"]["msgboard_conds"] odbcchatter_conds_file = data[self.expath][self.name]["log_conditions_file"]["odbcchatter_conds"] chatter_conds_file = data[self.expath][self.name]["log_conditions_file"]["chatter_conds"] odbcmsgboard_conds = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'yaml', odbcmsgboard_conds_file) odbcchatter_conds = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'yaml', odbcchatter_conds_file) cppmsgboard_conds = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'yaml', cppmsgboard_conds_file) cppchatter_conds = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'yaml', chatter_conds_file) if odbcMsgBoardName != "": if self.classpath == "": odbcMsgBoardExe = os.path.join(self.pPath, odbcMsgBoardName) + exSfx if not os.path.isfile (odbcMsgBoardExe): msg = "MissingExecutable: " + odbcMsgBoardExe else: odbcMsgBoardExe = odbcMsgBoardName if odbcChatterName != "": if self.classpath == "": odbcChatterNameExe = os.path.join(self.pPath, odbcChatterName) + exSfx if not os.path.isfile (odbcChatterNameExe): msg = "MissingExecutable: " + odbcChatterNameExe else: odbcChatterNameExe = odbcChatterName cppPath = os.path.join(os.environ['OSPL_HOME'], 'examples', "dcps", "Tutorial", "cpp", "standalone") if cppMsgBoardName != "": if self.classpath == "": cppMsgBoardExe = os.path.join(cppPath, cppMsgBoardName) + exSfx if not os.path.isfile (cppMsgBoardExe): msg = "MissingExecutable: " + cppMsgBoardExe else: cppMsgBoardExe = cppMsgBoardName if cppChatterName != "": if self.classpath == "": cppChatterNameExe = os.path.join(cppPath, cppChatterName) + exSfx if not os.path.isfile (cppChatterNameExe): msg = "MissingExecutable: " + cppChatterNameExe else: cppChatterNameExe = cppChatterName if msg == "NONE": odbcMsgBoard_Thread = ExeThread(self.classpath, odbcMsgBoardLog, "", odbcMsgBoardExe, self.odbcMsgBoard_params, self.example_timeout * 2) odbcChatter1_Thread = ExeThread(self.classpath, odbcChatter1Log, "", odbcChatterNameExe, self.odbcChatter1_params, self.example_timeout) odbcChatter2_Thread = ExeThread(self.classpath, odbcChatter2Log, "", odbcChatterNameExe, self.odbcChatter2_params, self.example_timeout) cppMsgBoard_Thread = ExeThread(self.classpath, cppMsgBoardLog, "", cppMsgBoardExe, "", self.example_timeout * 2) cppChatter1_Thread = ExeThread(self.classpath, cppChatter1Log, "", cppChatterNameExe, self.cppChatter1_params, self.example_timeout) cppChatter2_Thread = ExeThread(self.classpath, cppChatter2Log, "", cppChatterNameExe, self.cppChatter2_params, self.example_timeout) odbcChatterQuit_Thread = ExeThread(self.classpath, odbcChatterQuitLog, "", odbcChatterNameExe, self.odbcChatterQuit_params, self.example_timeout) cppChatterQuit_Thread = ExeThread(self.classpath, cppChatterQuitLog, "", cppChatterNameExe, self.cppChatterQuit_params, self.example_timeout) os.chdir(self.pPath) self.startOSPL() cppMsgBoard_Thread.start() odbcMsgBoard_Thread.start() time.sleep(5) odbcChatter1_Thread.start() odbcChatter2_Thread.start() cppChatter1_Thread.start() cppChatter2_Thread.start() odbcChatter1_Thread.join(self.example_timeout) odbcChatter2_Thread.join(self.example_timeout) cppChatter1_Thread.join(self.example_timeout) cppChatter2_Thread.join(self.example_timeout) time.sleep(10) odbcChatterQuit_Thread.start() cppChatterQuit_Thread.start() odbcChatterQuit_Thread.join(self.example_timeout) cppChatterQuit_Thread.join(self.example_timeout) cppMsgBoard_Thread.join(self.example_timeout) odbcMsgBoard_Thread.join(self.example_timeout) except Exception as ex: msg = "Exception running ", str(ex) try: self.stopOSPL() except Exception as ex: print "Exception stopping OpenSplice ", str(ex) if msg == "NONE": try: #Allow time for all messages to be written to log time.sleep (15) super(dbmsconnect, self).copyLogs() if os.path.isfile (self.ospl_error_log): msg = "ospl-error.log found" print "checking odbcMsgBoardLog with odbcmsgboard_conds", odbcMsgBoardLog, odbcmsgboard_conds self.checkResults(odbcMsgBoardLog, odbcmsgboard_conds) print "checking odbcChatter1Log with odbcchatter_conds", odbcChatter1Log, odbcchatter_conds self.checkResults(odbcChatter1Log, odbcchatter_conds) print "checking odbcChatter2Log with odbcchatter_conds", odbcChatter2Log, odbcchatter_conds self.checkResults(odbcChatter2Log, odbcchatter_conds) self.checkResults(cppMsgBoardLog, cppmsgboard_conds) self.checkResults(cppChatter1Log, cppchatter_conds) self.checkResults(cppChatter2Log, cppchatter_conds) self.checkOSPLInfoLog(self.ospl_info_log) except LogCheckFail as lf: reason = str(lf) if "OpenSpliceDDS Warnings" in reason: msg = "LogCheckFail: OpenSpliceDDS Warnings in ospl-info.log" else: msg = "LogCheckFail: " + str(lf) except Exception: msg = "Exception checking logs " + str(sys.exc_info()[0]) logdir = os.path.join(os.environ['LOGDIR'], "examples", "run_" + os.environ['EXRUNTYPE'], self.exdir) dbmsconnLog = os.path.join(self.pPath, 'dbmsconnect.log') print "dbmsconnect.log is ", dbmsconnLog copy(dbmsconnLog, logdir) if msg != "NONE": result = "FAIL" try: self.writeResult (result, self.exdir, "", msg) except Exception as ex: print "Exception writing result", str(ex) try: self.cleanUp() except Exception as ex: print "Exception cleaning up", str(ex) except Exception as ex: print "Unexpected exception ", str(ex) finally: os.chdir(currPath) def convertConfig(self): if os.environ['EXRUNTYPE'] == "shm": uri = self.shm_uri else: uri = self.sp_uri fcfg = os.path.join(os.environ['OSPL_HOME'], 'examples', 'services', 'dbmsconnect', uri) forig = os.path.join(os.environ['OSPL_HOME'], 'examples', 'services', 'dbmsconnect', uri+'.orig') os.rename(fcfg, forig) if self.host.name != "default": hn = self.host.name else: hn = platform.uname()[1] prefix = hn[:16].replace('-', '_') + '_' fout = open(fcfg, "w") for line in fileinput.input(forig): fout.write(line.replace("Sql", prefix)) fout.close()
gpl-3.0
MakeHer/edx-platform
cms/djangoapps/contentstore/views/tests/test_course_index.py
25
36973
""" Unit tests for getting the list of courses and the course outline. """ import ddt import json import lxml import datetime import mock import pytz from django.conf import settings from django.core.exceptions import PermissionDenied from django.test.utils import override_settings from django.utils.translation import ugettext as _ from contentstore.courseware_index import CoursewareSearchIndexer, SearchIndexingError from contentstore.tests.utils import CourseTestCase from contentstore.utils import reverse_course_url, reverse_library_url, add_instructor, reverse_usage_url from contentstore.views.course import ( course_outline_initial_state, reindex_course_and_check_access, _deprecated_blocks_info ) from contentstore.views.item import create_xblock_info, VisibilityState from course_action_state.managers import CourseRerunUIStateManager from course_action_state.models import CourseRerunState from opaque_keys.edx.locator import CourseLocator from search.api import perform_search from student.auth import has_course_author_access from student.tests.factories import UserFactory from util.date_utils import get_default_time_display from xmodule.modulestore import ModuleStoreEnum from xmodule.modulestore.exceptions import ItemNotFoundError from xmodule.modulestore.django import modulestore from xmodule.modulestore.tests.factories import CourseFactory, ItemFactory, LibraryFactory class TestCourseIndex(CourseTestCase): """ Unit tests for getting the list of courses and the course outline. """ def setUp(self): """ Add a course with odd characters in the fields """ super(TestCourseIndex, self).setUp() # had a problem where index showed course but has_access failed to retrieve it for non-staff self.odd_course = CourseFactory.create( org='test.org_1-2', number='test-2.3_course', display_name='dotted.course.name-2', ) def check_index_and_outline(self, authed_client): """ Test getting the list of courses and then pulling up their outlines """ index_url = '/home/' index_response = authed_client.get(index_url, {}, HTTP_ACCEPT='text/html') parsed_html = lxml.html.fromstring(index_response.content) course_link_eles = parsed_html.find_class('course-link') self.assertGreaterEqual(len(course_link_eles), 2) for link in course_link_eles: self.assertRegexpMatches( link.get("href"), 'course/{}'.format(settings.COURSE_KEY_PATTERN) ) # now test that url outline_response = authed_client.get(link.get("href"), {}, HTTP_ACCEPT='text/html') # ensure it has the expected 2 self referential links outline_parsed = lxml.html.fromstring(outline_response.content) outline_link = outline_parsed.find_class('course-link')[0] self.assertEqual(outline_link.get("href"), link.get("href")) course_menu_link = outline_parsed.find_class('nav-course-courseware-outline')[0] self.assertEqual(course_menu_link.find("a").get("href"), link.get("href")) def test_libraries_on_course_index(self): """ Test getting the list of libraries from the course listing page """ # Add a library: lib1 = LibraryFactory.create() index_url = '/home/' index_response = self.client.get(index_url, {}, HTTP_ACCEPT='text/html') parsed_html = lxml.html.fromstring(index_response.content) library_link_elements = parsed_html.find_class('library-link') self.assertEqual(len(library_link_elements), 1) link = library_link_elements[0] self.assertEqual( link.get("href"), reverse_library_url('library_handler', lib1.location.library_key), ) # now test that url outline_response = self.client.get(link.get("href"), {}, HTTP_ACCEPT='text/html') self.assertEqual(outline_response.status_code, 200) def test_is_staff_access(self): """ Test that people with is_staff see the courses and can navigate into them """ self.check_index_and_outline(self.client) def test_negative_conditions(self): """ Test the error conditions for the access """ outline_url = reverse_course_url('course_handler', self.course.id) # register a non-staff member and try to delete the course branch non_staff_client, _ = self.create_non_staff_authed_user_client() response = non_staff_client.delete(outline_url, {}, HTTP_ACCEPT='application/json') self.assertEqual(response.status_code, 403) def test_course_staff_access(self): """ Make and register course_staff and ensure they can access the courses """ course_staff_client, course_staff = self.create_non_staff_authed_user_client() for course in [self.course, self.odd_course]: permission_url = reverse_course_url('course_team_handler', course.id, kwargs={'email': course_staff.email}) self.client.post( permission_url, data=json.dumps({"role": "staff"}), content_type="application/json", HTTP_ACCEPT="application/json", ) # test access self.check_index_and_outline(course_staff_client) def test_json_responses(self): outline_url = reverse_course_url('course_handler', self.course.id) chapter = ItemFactory.create(parent_location=self.course.location, category='chapter', display_name="Week 1") lesson = ItemFactory.create(parent_location=chapter.location, category='sequential', display_name="Lesson 1") subsection = ItemFactory.create( parent_location=lesson.location, category='vertical', display_name='Subsection 1' ) ItemFactory.create(parent_location=subsection.location, category="video", display_name="My Video") resp = self.client.get(outline_url, HTTP_ACCEPT='application/json') json_response = json.loads(resp.content) # First spot check some values in the root response self.assertEqual(json_response['category'], 'course') self.assertEqual(json_response['id'], unicode(self.course.location)) self.assertEqual(json_response['display_name'], self.course.display_name) self.assertTrue(json_response['published']) self.assertIsNone(json_response['visibility_state']) # Now verify the first child children = json_response['child_info']['children'] self.assertTrue(len(children) > 0) first_child_response = children[0] self.assertEqual(first_child_response['category'], 'chapter') self.assertEqual(first_child_response['id'], unicode(chapter.location)) self.assertEqual(first_child_response['display_name'], 'Week 1') self.assertTrue(json_response['published']) self.assertEqual(first_child_response['visibility_state'], VisibilityState.unscheduled) self.assertTrue(len(first_child_response['child_info']['children']) > 0) # Finally, validate the entire response for consistency self.assert_correct_json_response(json_response) def test_notifications_handler_get(self): state = CourseRerunUIStateManager.State.FAILED action = CourseRerunUIStateManager.ACTION should_display = True # try when no notification exists notification_url = reverse_course_url('course_notifications_handler', self.course.id, kwargs={ 'action_state_id': 1, }) resp = self.client.get(notification_url, HTTP_ACCEPT='application/json') # verify that we get an empty dict out self.assertEquals(resp.status_code, 400) # create a test notification rerun_state = CourseRerunState.objects.update_state( course_key=self.course.id, new_state=state, allow_not_found=True ) CourseRerunState.objects.update_should_display( entry_id=rerun_state.id, user=UserFactory(), should_display=should_display ) # try to get information on this notification notification_url = reverse_course_url('course_notifications_handler', self.course.id, kwargs={ 'action_state_id': rerun_state.id, }) resp = self.client.get(notification_url, HTTP_ACCEPT='application/json') json_response = json.loads(resp.content) self.assertEquals(json_response['state'], state) self.assertEquals(json_response['action'], action) self.assertEquals(json_response['should_display'], should_display) def test_notifications_handler_dismiss(self): state = CourseRerunUIStateManager.State.FAILED should_display = True rerun_course_key = CourseLocator(org='testx', course='test_course', run='test_run') # add an instructor to this course user2 = UserFactory() add_instructor(rerun_course_key, self.user, user2) # create a test notification rerun_state = CourseRerunState.objects.update_state( course_key=rerun_course_key, new_state=state, allow_not_found=True ) CourseRerunState.objects.update_should_display( entry_id=rerun_state.id, user=user2, should_display=should_display ) # try to get information on this notification notification_dismiss_url = reverse_course_url('course_notifications_handler', self.course.id, kwargs={ 'action_state_id': rerun_state.id, }) resp = self.client.delete(notification_dismiss_url) self.assertEquals(resp.status_code, 200) with self.assertRaises(CourseRerunState.DoesNotExist): # delete nofications that are dismissed CourseRerunState.objects.get(id=rerun_state.id) self.assertFalse(has_course_author_access(user2, rerun_course_key)) def assert_correct_json_response(self, json_response): """ Asserts that the JSON response is syntactically consistent """ self.assertIsNotNone(json_response['display_name']) self.assertIsNotNone(json_response['id']) self.assertIsNotNone(json_response['category']) self.assertTrue(json_response['published']) if json_response.get('child_info', None): for child_response in json_response['child_info']['children']: self.assert_correct_json_response(child_response) def test_course_updates_invalid_url(self): """ Tests the error conditions for the invalid course updates URL. """ # Testing the response code by passing slash separated course id whose format is valid but no course # having this id exists. invalid_course_key = '{}_blah_blah_blah'.format(self.course.id) course_updates_url = reverse_course_url('course_info_handler', invalid_course_key) response = self.client.get(course_updates_url) self.assertEqual(response.status_code, 404) # Testing the response code by passing split course id whose format is valid but no course # having this id exists. split_course_key = CourseLocator(org='orgASD', course='course_01213', run='Run_0_hhh_hhh_hhh') course_updates_url_split = reverse_course_url('course_info_handler', split_course_key) response = self.client.get(course_updates_url_split) self.assertEqual(response.status_code, 404) # Testing the response by passing split course id whose format is invalid. invalid_course_id = 'invalid.course.key/{}'.format(split_course_key) course_updates_url_split = reverse_course_url('course_info_handler', invalid_course_id) response = self.client.get(course_updates_url_split) self.assertEqual(response.status_code, 404) def test_course_index_invalid_url(self): """ Tests the error conditions for the invalid course index URL. """ # Testing the response code by passing slash separated course key, no course # having this key exists. invalid_course_key = '{}_some_invalid_run'.format(self.course.id) course_outline_url = reverse_course_url('course_handler', invalid_course_key) response = self.client.get_html(course_outline_url) self.assertEqual(response.status_code, 404) # Testing the response code by passing split course key, no course # having this key exists. split_course_key = CourseLocator(org='invalid_org', course='course_01111', run='Run_0_invalid') course_outline_url_split = reverse_course_url('course_handler', split_course_key) response = self.client.get_html(course_outline_url_split) self.assertEqual(response.status_code, 404) def test_course_outline_with_display_course_number_as_none(self): """ Tests course outline when 'display_coursenumber' field is none. """ # Change 'display_coursenumber' field to None and update the course. self.course.display_coursenumber = None updated_course = self.update_course(self.course, self.user.id) # Assert that 'display_coursenumber' field has been changed successfully. self.assertEqual(updated_course.display_coursenumber, None) # Perform GET request on course outline url with the course id. course_outline_url = reverse_course_url('course_handler', updated_course.id) response = self.client.get_html(course_outline_url) # Assert that response code is 200. self.assertEqual(response.status_code, 200) # Assert that 'display_course_number' is being set to "" (as display_coursenumber was None). self.assertIn('display_course_number: ""', response.content) @ddt.ddt class TestCourseOutline(CourseTestCase): """ Unit tests for the course outline. """ def setUp(self): """ Set up the for the course outline tests. """ super(TestCourseOutline, self).setUp() self.chapter = ItemFactory.create( parent_location=self.course.location, category='chapter', display_name="Week 1" ) self.sequential = ItemFactory.create( parent_location=self.chapter.location, category='sequential', display_name="Lesson 1" ) self.vertical = ItemFactory.create( parent_location=self.sequential.location, category='vertical', display_name='Subsection 1' ) self.video = ItemFactory.create( parent_location=self.vertical.location, category="video", display_name="My Video" ) def test_json_responses(self): """ Verify the JSON responses returned for the course. """ outline_url = reverse_course_url('course_handler', self.course.id) resp = self.client.get(outline_url, HTTP_ACCEPT='application/json') json_response = json.loads(resp.content) # First spot check some values in the root response self.assertEqual(json_response['category'], 'course') self.assertEqual(json_response['id'], unicode(self.course.location)) self.assertEqual(json_response['display_name'], self.course.display_name) self.assertTrue(json_response['published']) self.assertIsNone(json_response['visibility_state']) # Now verify the first child children = json_response['child_info']['children'] self.assertTrue(len(children) > 0) first_child_response = children[0] self.assertEqual(first_child_response['category'], 'chapter') self.assertEqual(first_child_response['id'], unicode(self.chapter.location)) self.assertEqual(first_child_response['display_name'], 'Week 1') self.assertTrue(json_response['published']) self.assertEqual(first_child_response['visibility_state'], VisibilityState.unscheduled) self.assertTrue(len(first_child_response['child_info']['children']) > 0) # Finally, validate the entire response for consistency self.assert_correct_json_response(json_response) def assert_correct_json_response(self, json_response): """ Asserts that the JSON response is syntactically consistent """ self.assertIsNotNone(json_response['display_name']) self.assertIsNotNone(json_response['id']) self.assertIsNotNone(json_response['category']) self.assertTrue(json_response['published']) if json_response.get('child_info', None): for child_response in json_response['child_info']['children']: self.assert_correct_json_response(child_response) def test_course_outline_initial_state(self): course_module = modulestore().get_item(self.course.location) course_structure = create_xblock_info( course_module, include_child_info=True, include_children_predicate=lambda xblock: not xblock.category == 'vertical' ) # Verify that None is returned for a non-existent locator self.assertIsNone(course_outline_initial_state('no-such-locator', course_structure)) # Verify that the correct initial state is returned for the test chapter chapter_locator = unicode(self.chapter.location) initial_state = course_outline_initial_state(chapter_locator, course_structure) self.assertEqual(initial_state['locator_to_show'], chapter_locator) expanded_locators = initial_state['expanded_locators'] self.assertIn(unicode(self.sequential.location), expanded_locators) self.assertIn(unicode(self.vertical.location), expanded_locators) def test_start_date_on_page(self): """ Verify that the course start date is included on the course outline page. """ def _get_release_date(response): """Return the release date from the course page""" parsed_html = lxml.html.fromstring(response.content) return parsed_html.find_class('course-status')[0].find_class('status-release-value')[0].text_content() def _assert_settings_link_present(response): """ Asserts there's a course settings link on the course page by the course release date. """ parsed_html = lxml.html.fromstring(response.content) settings_link = parsed_html.find_class('course-status')[0].find_class('action-edit')[0].find('a') self.assertIsNotNone(settings_link) self.assertEqual(settings_link.get('href'), reverse_course_url('settings_handler', self.course.id)) outline_url = reverse_course_url('course_handler', self.course.id) response = self.client.get(outline_url, {}, HTTP_ACCEPT='text/html') # A course with the default release date should display as "Unscheduled" self.assertEqual(_get_release_date(response), 'Unscheduled') _assert_settings_link_present(response) self.course.start = datetime.datetime(2014, 1, 1, tzinfo=pytz.utc) modulestore().update_item(self.course, ModuleStoreEnum.UserID.test) response = self.client.get(outline_url, {}, HTTP_ACCEPT='text/html') self.assertEqual(_get_release_date(response), get_default_time_display(self.course.start)) _assert_settings_link_present(response) def _create_test_data(self, course_module, create_blocks=False, publish=True, block_types=None): """ Create data for test. """ if create_blocks: for block_type in block_types: ItemFactory.create( parent_location=self.vertical.location, category=block_type, display_name='{} Problem'.format(block_type) ) if not publish: self.store.unpublish(self.vertical.location, self.user.id) course_module.advanced_modules.extend(block_types) def _verify_deprecated_info(self, course_id, advanced_modules, info, deprecated_block_types): """ Verify deprecated info. """ expected_blocks = [] for block_type in deprecated_block_types: expected_blocks.append( [ reverse_usage_url('container_handler', self.vertical.location), '{} Problem'.format(block_type) ] ) self.assertEqual(info['block_types'], deprecated_block_types) self.assertEqual( info['block_types_enabled'], any(component in advanced_modules for component in deprecated_block_types) ) self.assertItemsEqual(info['blocks'], expected_blocks) self.assertEqual( info['advance_settings_url'], reverse_course_url('advanced_settings_handler', course_id) ) @ddt.data( {'publish': True}, {'publish': False}, ) @ddt.unpack def test_verify_deprecated_warning_message_with_single_feature(self, publish): """ Verify deprecated warning info for single deprecated feature. """ block_types = ['notes'] with override_settings(DEPRECATED_BLOCK_TYPES=block_types): course_module = modulestore().get_item(self.course.location) self._create_test_data(course_module, create_blocks=True, block_types=block_types, publish=publish) info = _deprecated_blocks_info(course_module, block_types) self._verify_deprecated_info( course_module.id, course_module.advanced_modules, info, block_types ) def test_verify_deprecated_warning_message_with_multiple_features(self): """ Verify deprecated warning info for multiple deprecated features. """ block_types = ['notes', 'lti'] with override_settings(DEPRECATED_BLOCK_TYPES=block_types): course_module = modulestore().get_item(self.course.location) self._create_test_data(course_module, create_blocks=True, block_types=block_types) info = _deprecated_blocks_info(course_module, block_types) self._verify_deprecated_info(course_module.id, course_module.advanced_modules, info, block_types) @ddt.data( {'delete_vertical': True}, {'delete_vertical': False}, ) @ddt.unpack def test_deprecated_blocks_list_updated_correctly(self, delete_vertical): """ Verify that deprecated blocks list shown on banner is updated correctly. Here is the scenario: This list of deprecated blocks shown on banner contains published and un-published blocks. That list should be updated when we delete un-published block(s). This behavior should be same if we delete unpublished vertical or problem. """ block_types = ['notes'] course_module = modulestore().get_item(self.course.location) vertical1 = ItemFactory.create( parent_location=self.sequential.location, category='vertical', display_name='Vert1 Subsection1' ) problem1 = ItemFactory.create( parent_location=vertical1.location, category='notes', display_name='notes problem in vert1', publish_item=False ) info = _deprecated_blocks_info(course_module, block_types) # info['blocks'] should be empty here because there is nothing # published or un-published present self.assertEqual(info['blocks'], []) vertical2 = ItemFactory.create( parent_location=self.sequential.location, category='vertical', display_name='Vert2 Subsection1' ) ItemFactory.create( parent_location=vertical2.location, category='notes', display_name='notes problem in vert2', pubish_item=True ) # At this point CourseStructure will contain both the above # published and un-published verticals info = _deprecated_blocks_info(course_module, block_types) self.assertItemsEqual( info['blocks'], [ [reverse_usage_url('container_handler', vertical1.location), 'notes problem in vert1'], [reverse_usage_url('container_handler', vertical2.location), 'notes problem in vert2'] ] ) # Delete the un-published vertical or problem so that CourseStructure updates its data if delete_vertical: self.store.delete_item(vertical1.location, self.user.id) else: self.store.delete_item(problem1.location, self.user.id) info = _deprecated_blocks_info(course_module, block_types) # info['blocks'] should only contain the info about vertical2 which is published. # There shouldn't be any info present about un-published vertical1 self.assertEqual( info['blocks'], [[reverse_usage_url('container_handler', vertical2.location), 'notes problem in vert2']] ) class TestCourseReIndex(CourseTestCase): """ Unit tests for the course outline. """ SUCCESSFUL_RESPONSE = _("Course has been successfully reindexed.") def setUp(self): """ Set up the for the course outline tests. """ super(TestCourseReIndex, self).setUp() self.course.start = datetime.datetime(2014, 1, 1, tzinfo=pytz.utc) modulestore().update_item(self.course, self.user.id) self.chapter = ItemFactory.create( parent_location=self.course.location, category='chapter', display_name="Week 1" ) self.sequential = ItemFactory.create( parent_location=self.chapter.location, category='sequential', display_name="Lesson 1" ) self.vertical = ItemFactory.create( parent_location=self.sequential.location, category='vertical', display_name='Subsection 1' ) self.video = ItemFactory.create( parent_location=self.vertical.location, category="video", display_name="My Video" ) self.html = ItemFactory.create( parent_location=self.vertical.location, category="html", display_name="My HTML", data="<div>This is my unique HTML content</div>", ) def test_reindex_course(self): """ Verify that course gets reindexed. """ index_url = reverse_course_url('course_search_index_handler', self.course.id) response = self.client.get(index_url, {}, HTTP_ACCEPT='application/json') # A course with the default release date should display as "Unscheduled" self.assertIn(self.SUCCESSFUL_RESPONSE, response.content) self.assertEqual(response.status_code, 200) response = self.client.post(index_url, {}, HTTP_ACCEPT='application/json') self.assertEqual(response.content, '') self.assertEqual(response.status_code, 405) self.client.logout() response = self.client.get(index_url, {}, HTTP_ACCEPT='application/json') self.assertEqual(response.status_code, 302) def test_negative_conditions(self): """ Test the error conditions for the access """ index_url = reverse_course_url('course_search_index_handler', self.course.id) # register a non-staff member and try to delete the course branch non_staff_client, _ = self.create_non_staff_authed_user_client() response = non_staff_client.get(index_url, {}, HTTP_ACCEPT='application/json') self.assertEqual(response.status_code, 403) def test_empty_content_type(self): """ Test json content type is set if '' is selected """ index_url = reverse_course_url('course_search_index_handler', self.course.id) response = self.client.get(index_url, {}, CONTENT_TYPE='') # A course with the default release date should display as "Unscheduled" self.assertIn(self.SUCCESSFUL_RESPONSE, response.content) self.assertEqual(response.status_code, 200) @mock.patch('xmodule.html_module.HtmlDescriptor.index_dictionary') def test_reindex_course_search_index_error(self, mock_index_dictionary): """ Test json response with mocked error data for html """ # set mocked exception response err = SearchIndexingError mock_index_dictionary.return_value = err index_url = reverse_course_url('course_search_index_handler', self.course.id) # Start manual reindex and check error in response response = self.client.get(index_url, {}, HTTP_ACCEPT='application/json') self.assertEqual(response.status_code, 500) def test_reindex_json_responses(self): """ Test json response with real data """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # Start manual reindex reindex_course_and_check_access(self.course.id, self.user) # Check results remain the same response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) @mock.patch('xmodule.video_module.VideoDescriptor.index_dictionary') def test_reindex_video_error_json_responses(self, mock_index_dictionary): """ Test json response with mocked error data for video """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # set mocked exception response err = SearchIndexingError mock_index_dictionary.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): reindex_course_and_check_access(self.course.id, self.user) @mock.patch('xmodule.html_module.HtmlDescriptor.index_dictionary') def test_reindex_html_error_json_responses(self, mock_index_dictionary): """ Test json response with mocked error data for html """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # set mocked exception response err = SearchIndexingError mock_index_dictionary.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): reindex_course_and_check_access(self.course.id, self.user) @mock.patch('xmodule.seq_module.SequenceDescriptor.index_dictionary') def test_reindex_seq_error_json_responses(self, mock_index_dictionary): """ Test json response with mocked error data for sequence """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # set mocked exception response err = Exception mock_index_dictionary.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): reindex_course_and_check_access(self.course.id, self.user) @mock.patch('xmodule.modulestore.mongo.base.MongoModuleStore.get_course') def test_reindex_no_item(self, mock_get_course): """ Test system logs an error if no item found. """ # set mocked exception response err = ItemNotFoundError mock_get_course.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): reindex_course_and_check_access(self.course.id, self.user) def test_reindex_no_permissions(self): # register a non-staff member and try to delete the course branch user2 = UserFactory() with self.assertRaises(PermissionDenied): reindex_course_and_check_access(self.course.id, user2) def test_indexing_responses(self): """ Test do_course_reindex response with real data """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # Start manual reindex CoursewareSearchIndexer.do_course_reindex(modulestore(), self.course.id) # Check results are the same following reindex response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) @mock.patch('xmodule.video_module.VideoDescriptor.index_dictionary') def test_indexing_video_error_responses(self, mock_index_dictionary): """ Test do_course_reindex response with mocked error data for video """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # set mocked exception response err = Exception mock_index_dictionary.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): CoursewareSearchIndexer.do_course_reindex(modulestore(), self.course.id) @mock.patch('xmodule.html_module.HtmlDescriptor.index_dictionary') def test_indexing_html_error_responses(self, mock_index_dictionary): """ Test do_course_reindex response with mocked error data for html """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # set mocked exception response err = Exception mock_index_dictionary.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): CoursewareSearchIndexer.do_course_reindex(modulestore(), self.course.id) @mock.patch('xmodule.seq_module.SequenceDescriptor.index_dictionary') def test_indexing_seq_error_responses(self, mock_index_dictionary): """ Test do_course_reindex response with mocked error data for sequence """ # results are indexed because they are published from ItemFactory response = perform_search( "unique", user=self.user, size=10, from_=0, course_id=unicode(self.course.id)) self.assertEqual(response['total'], 1) # set mocked exception response err = Exception mock_index_dictionary.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): CoursewareSearchIndexer.do_course_reindex(modulestore(), self.course.id) @mock.patch('xmodule.modulestore.mongo.base.MongoModuleStore.get_course') def test_indexing_no_item(self, mock_get_course): """ Test system logs an error if no item found. """ # set mocked exception response err = ItemNotFoundError mock_get_course.return_value = err # Start manual reindex and check error in response with self.assertRaises(SearchIndexingError): CoursewareSearchIndexer.do_course_reindex(modulestore(), self.course.id)
agpl-3.0
robbiet480/home-assistant
homeassistant/components/xs1/__init__.py
8
2700
"""Support for the EZcontrol XS1 gateway.""" import asyncio import logging import voluptuous as vol import xs1_api_client from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_PORT, CONF_SSL, CONF_USERNAME, ) from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) DOMAIN = "xs1" ACTUATORS = "actuators" SENSORS = "sensors" # define configuration parameters CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PASSWORD): cv.string, vol.Optional(CONF_PORT, default=80): cv.string, vol.Optional(CONF_SSL, default=False): cv.boolean, vol.Optional(CONF_USERNAME): cv.string, } ) }, extra=vol.ALLOW_EXTRA, ) XS1_COMPONENTS = ["climate", "sensor", "switch"] # Lock used to limit the amount of concurrent update requests # as the XS1 Gateway can only handle a very # small amount of concurrent requests UPDATE_LOCK = asyncio.Lock() def setup(hass, config): """Set up XS1 Component.""" _LOGGER.debug("Initializing XS1") host = config[DOMAIN][CONF_HOST] port = config[DOMAIN][CONF_PORT] ssl = config[DOMAIN][CONF_SSL] user = config[DOMAIN].get(CONF_USERNAME) password = config[DOMAIN].get(CONF_PASSWORD) # initialize XS1 API try: xs1 = xs1_api_client.XS1( host=host, port=port, ssl=ssl, user=user, password=password ) except ConnectionError as error: _LOGGER.error( "Failed to create XS1 API client because of a connection error: %s", error, ) return False _LOGGER.debug("Establishing connection to XS1 gateway and retrieving data...") hass.data[DOMAIN] = {} actuators = xs1.get_all_actuators(enabled=True) sensors = xs1.get_all_sensors(enabled=True) hass.data[DOMAIN][ACTUATORS] = actuators hass.data[DOMAIN][SENSORS] = sensors _LOGGER.debug("Loading components for XS1 platform...") # Load components for supported devices for component in XS1_COMPONENTS: discovery.load_platform(hass, component, DOMAIN, {}, config) return True class XS1DeviceEntity(Entity): """Representation of a base XS1 device.""" def __init__(self, device): """Initialize the XS1 device.""" self.device = device async def async_update(self): """Retrieve latest device state.""" async with UPDATE_LOCK: await self.hass.async_add_executor_job(self.device.update)
apache-2.0
hendradarwin/VTK
Filters/General/Testing/Python/clipImage.py
20
1534
#!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # create pipeline # v16 = vtk.vtkVolume16Reader() v16.SetDataDimensions(64,64) v16.GetOutput().SetOrigin(0.0,0.0,0.0) v16.SetDataByteOrderToLittleEndian() v16.SetFilePrefix("" + str(VTK_DATA_ROOT) + "/Data/headsq/quarter") v16.SetImageRange(45,45) v16.SetDataSpacing(3.2,3.2,1.5) v16.Update() # do the pixel clipping clip = vtk.vtkClipDataSet() clip.SetInputConnection(v16.GetOutputPort()) clip.SetValue(1000) clipMapper = vtk.vtkDataSetMapper() clipMapper.SetInputConnection(clip.GetOutputPort()) clipMapper.ScalarVisibilityOff() clipActor = vtk.vtkActor() clipActor.SetMapper(clipMapper) # put an outline around the data outline = vtk.vtkOutlineFilter() outline.SetInputConnection(v16.GetOutputPort()) outlineMapper = vtk.vtkPolyDataMapper() outlineMapper.SetInputConnection(outline.GetOutputPort()) outlineActor = vtk.vtkActor() outlineActor.SetMapper(outlineMapper) outlineActor.VisibilityOff() # Create the RenderWindow, Renderer and both Actors # ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Add the actors to the renderer, set the background and size # ren1.AddActor(outlineActor) ren1.AddActor(clipActor) ren1.SetBackground(0,0,0) renWin.SetSize(200,200) iren.Initialize() # render the image # # prevent the tk window from showing up then start the event loop # --- end of script --
bsd-3-clause
dhruv13J/scikit-learn
sklearn/decomposition/nmf.py
15
19103
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def check_non_negative(X, whom): X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") U, S, V = randomized_svd(X, n_components) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": random_state = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' random_state = self.random_state if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a') elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar') elif init == "random": rng = check_random_state(random_state) W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
toinbis/369old
src/web369/conf/base.py
1
2325
from pkg_resources import resource_filename DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'web369', 'USER': 'root', 'PASSWORD': '', } } TIME_ZONE = 'Europe/Vilnius' LANGUAGE_CODE = 'lt' SITE_ID = 1 USE_I18N = True USE_L10N = True STATIC_URL = '/static/' STATIC_ROOT = resource_filename('web369', '../../var/htdocs/static') STATICFILES_DIRS = ( resource_filename('web369', 'static'), ) MEDIA_URL = '/media/' MEDIA_ROOT = resource_filename('web369', '../../var/htdocs/media') ADMIN_MEDIA_PREFIX = STATIC_URL + 'admin/' SECRET_KEY = 'SBX*YTL!cANetM&uFTf6R5Je(@PX3!rtgo)kgwNT' TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) ROOT_URLCONF = 'web369.urls.default' TEMPLATE_DIRS = ( resource_filename('web369', 'templates'), ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', # 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.request', ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.sitemaps', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', # 'south', 'web369', ) CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache', 'LOCATION': '/tmp/django_cache', 'TIMEOUT': 60, 'OPTIONS': { 'MAX_ENTRIES': 1000 } } } # Word count will be updated when new documents are scrapped: LIVE_WORD_COUNT = True
bsd-3-clause
ZhangXinNan/tensorflow
tensorflow/python/ops/parallel_for/pfor.py
2
101653
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Compiled parallel-for loop.""" # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl import flags from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_parsing_ops from tensorflow.python.ops import gen_sparse_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest flags.DEFINE_bool( "op_conversion_fallback_to_while_loop", False, "If true, falls back to using a while loop for ops for " "which a converter is not defined.") def _stack(t, length): """stacks `t` `length` times.""" ones = array_ops.ones_like(array_ops.shape(t)) multiples = array_ops.concat([length, ones], 0) t = array_ops.tile(array_ops.expand_dims(t, 0), multiples) return wrap(t, True) # The following stateful ops can be safely called once, and with the same # signature as the unconverted version, if their inputs are loop invariant. # TODO(agarwal): implement a strategy for converting Variable reads/writes. The # plan is to map each read/write in the loop_fn to a corresponding merged # read/write in the converted graph. Writes need to be mergeable (e.g. # AssignAdd) to be used in `pfor`. Given a certain read/write order in the # loop_fn, doing a one-to-one conversion will simulate executing such # instructions in lock-step across all iterations. passthrough_stateful_ops = set([ "VariableV2", "VarHandleOp", "ReadVariableOp", "StackV2", "TensorArrayWriteV3", "TensorArrayReadV3", "TensorArraySizeV3", ]) def _is_stateful_pfor_op(op): if isinstance(op, WhileOp): return op.is_stateful if op.type == "Const": # Const didn't have an op_def. return False if op.type in passthrough_stateful_ops: return False assert hasattr(op, "op_def") and op.op_def is not None, op return op.op_def.is_stateful # pylint: disable=protected-access class WhileOp(object): """Object for storing state for converting the outputs of a while_loop.""" def __init__(self, exit_node, pfor_ops): """Initializer. Args: exit_node: A tensor output from the while_loop. pfor_ops: list of ops inside the current pfor loop. """ self._pfor_ops = set(pfor_ops) self._pfor_op_ids = set([x._id for x in pfor_ops]) assert isinstance(exit_node, ops.Tensor) self._while_context = exit_node.op._get_control_flow_context() assert isinstance(self._while_context, control_flow_ops.WhileContext) self._context_name = self._while_context.name self._condition = self._while_context.pivot.op.inputs[0] # Parts of an external while_loop could be created inside a pfor loop. # However for the purpose here, we declare such loops to be external. Also # note that we check if the condition was created inside or outside to # determine if the while_loop was first created inside or outside. # TODO(agarwal): check that the Enter and Exit of this loop are unstacked. self._is_inside_loop = self.op_is_inside_loop(self._condition.op) if self._is_inside_loop: for e in self._while_context.loop_exits: assert self.op_is_inside_loop(e.op) # Note the code below tries to reverse engineer an existing while_loop graph # by assuming the following pattern of nodes. # # NextIteration <---- Body <--- Enter # | ^ # V ___| Y # Enter -> Merge -> Switch___ # ^ | N # | V # LoopCond Exit # Node that elements in the list below correspond one-to-one with each # other. i.e. these lists are the same size, and the i_th entry corresponds # to different Operations/Tensors of a single cycle as illustrated above. # List of Switch ops (ops.Operation) that feed into an Exit Node. self._exit_switches = [] # List of inputs (ops.Tensor) to NextIteration. self._body_outputs = [] # List of list of control inputs of the NextIteration nodes. self._next_iter_control_inputs = [] # List of Merge ops (ops.Operation). self._enter_merges = [] # List of output (ops.Tensor) of Exit nodes. self._outputs = [] # List of Enter Tensors. # There are two types of Enter nodes: # - The Enter nodes that are used in the `loop_vars` argument to # `while_loop` (see # https://www.tensorflow.org/api_docs/python/tf/while_loop). We collect # these Enter nodes immediately below by tracing backwards from the Exit # nodes via Exit <- Switch <- Merge <- Enter. You can see this chain in the # diagram above. This allows us to have a 1:1 correspondence between the # self._outputs and the first elements in self._enters. # - The Enter nodes that are used only by the body. They don't appear in the # `loop_vars` and are not returned from the `while_loop`. In Python code, # they are usually captured by the body lambda. We collect them below by # iterating over all the ops in the graph. They are appended to the end of # self._enters or self._direct_enters, and don't correspond to any outputs # in self._outputs. Note that we keep the resource/variant Enter nodes in # self._direct_enters and the constructed while_loop's body uses them # directly as opposed to passing them as loop variables. This is done # because the while_body cannot partition the resource/variant Tensors, so # it has to leave them unchanged. self._enters = [] self._direct_enters = [] for e in self._while_context.loop_exits: self._outputs.append(e.op.outputs[0]) switch = e.op.inputs[0].op assert switch.type == "Switch", switch self._exit_switches.append(switch) merge = switch.inputs[0].op assert merge.type == "Merge", merge self._enter_merges.append(merge) enter = merge.inputs[0].op assert enter.type == "Enter", enter self._enters.append(enter.outputs[0]) next_iter = merge.inputs[1].op assert next_iter.type == "NextIteration", next_iter self._body_outputs.append(next_iter.inputs[0]) self._next_iter_control_inputs.append(next_iter.control_inputs) # Collect all the Enter nodes that are not part of `loop_vars`, the second # category described above. # Also track whether the loop body has any stateful ops. self._is_stateful = False for op in ops.get_default_graph().get_operations(): # TODO(agarwal): make sure this works with nested case. control_flow_context = op._get_control_flow_context() if control_flow_context is None: continue if control_flow_context.name == self._context_name: self._is_stateful |= _is_stateful_pfor_op(op) if op.type == "Enter": output = op.outputs[0] if output not in self._enters: if output.dtype in (dtypes.resource, dtypes.variant): if output not in self._direct_enters: self._direct_enters.append(output) else: self._enters.append(output) def __str__(self): """String representation.""" return "while_loop(%s)" % self.name @property def inputs(self): """Input to all the Enter nodes.""" return [x.op.inputs[0] for x in self._enters + self._direct_enters] @property def control_inputs(self): """Control input to all the Enter nodes.""" control_inputs = [] for x in self._enters + self._direct_enters: control_inputs.extend(x.op.control_inputs) return control_inputs @property def outputs(self): """Outputs of all the Exit nodes.""" return self._outputs @property def name(self): """Context name for the while loop.""" return self._context_name @property def is_inside_loop(self): """Returns true if the while_loop was created inside the pfor.""" return self._is_inside_loop def op_is_inside_loop(self, op): """True if op was created inside the pfor loop body.""" assert isinstance(op, ops.Operation) # Note that we use self._pfor_op_ids for the check and not self._pfor_ops # since it appears there tensorflow API could return different python # objects representing the same Operation node. return op._id in self._pfor_op_ids @property def is_stateful(self): return self._is_stateful @property def pfor_converter(self): """Return a converter for the while loop.""" return self def _init_pfor(self, parent_pfor, indices, cond_stacked, inputs, inputs_stacked): """Create a PFor object for converting parts of the while_loop. Args: parent_pfor: PFor object being used for converting the while_loop. indices: int32 Tensor of ids for the iterations that are still active (i.e. did not exit the while_loop). cond_stacked: True if the while_loop condition is stacked. inputs: list of input Tensors corresponding 1-to-1 with self._enters. Note that these Tensors are a subset of the loop variables for the generated while_loop. inputs_stacked: List of booleans corresponding 1-to-1 with `inputs`, indicating if the value is stacked or not. Returns: A PFor instance. The instance is initialized by adding conversion mappings of nodes that will be external to the conversion that the returned instance will be used for. e.g. Enter nodes as well as Merge and Switch outputs are mapped to converted values. """ num_outputs = len(self._outputs) assert len(inputs) == len(self._enters) assert len(inputs_stacked) == len(self._enters) loop_var = parent_pfor.loop_var loop_len = array_ops.size(indices) pfor = PFor( loop_var, loop_len, pfor_ops=self._pfor_ops, all_indices=indices, all_indices_partitioned=cond_stacked) # Map all inputs of Enter nodes in self._direct_enters to their converted # values. for enter in self._direct_enters: enter_input = enter.op.inputs[0] converted_enter, stacked, is_sparse_stacked = parent_pfor._convert_helper( enter_input) # Since these are resources / variants, they should be unstacked. assert not stacked and not is_sparse_stacked, (enter, converted_enter) pfor._add_conversion(enter, wrap(converted_enter, False)) # Map all Enter nodes to the inputs. for enter, inp, stacked in zip(self._enters, inputs, inputs_stacked): pfor._add_conversion(enter, wrap(inp, stacked)) # Map outputs of Switch and Merge. for i in range(num_outputs): wrapped_inp = wrap(inputs[i], inputs_stacked[i]) merge = self._enter_merges[i] pfor._add_conversion(merge.outputs[0], wrapped_inp) # Note that second output of Merge is typically not used, except possibly # as a control dependency. To avoid trying to output the correct value, we # employ a hack here. We output a dummy invalid value with an incorrect # dtype. This will allow control dependency to work but if using it as an # input, it should typically lead to errors during graph construction due # to dtype mismatch. # TODO(agarwal): Check in the original graph to see if there are any # consumers of this Tensor that use it as an input. pfor._add_conversion(merge.outputs[1], wrap(constant_op.constant(-1.0), False)) switch = self._exit_switches[i] # Don't need to worry about switch.output[0] which will feed to Exit node. pfor._add_conversion(switch.outputs[1], wrapped_inp) return pfor def _convert_enter(self, parent_pfor, enter): """Converts an Enter node.""" inp, stacked, _ = parent_pfor._convert_helper(enter.op.inputs[0]) control_inputs = [ parent_pfor._convert_helper(x).t for x in enter.op.control_inputs ] if control_inputs: with ops.control_dependencies(control_inputs): inp = array_ops.identity(inp) return inp, stacked def _maybe_stacked(self, cache, inp): """Heuristic to figue out if the coverting inp leads to a stacked value. Args: cache: map from Tensor to boolean indicating stacked/unstacked. inp: input Tensor. Returns: True if `inp` could get stacked. If the function returns False, the converted value should be guaranteed to be unstacked. If returning True, it may or may not be stacked. """ if inp in cache: return cache[inp] if not self.op_is_inside_loop(inp.op): return False op = inp.op output = False if op.type in [ "Shape", "Rank" "ShapeN", "ZerosLike", "TensorArrayV3", "TensorArraySizeV3", ]: output = False elif _is_stateful_pfor_op(op): # This may be fairly aggressive. output = True elif op.type == "Exit": # This may be fairly aggressive. output = True else: for t in op.inputs: if self._maybe_stacked(cache, t): output = True break cache[inp] = output return output def _create_init_values(self, pfor_input): """Create arguments passed to converted while_loop.""" with ops.name_scope("while_init"): loop_len_vector = pfor_input.pfor.loop_len_vector loop_len = loop_len_vector[0] num_outputs = len(self._outputs) inputs = [] maybe_stacked_cache = {} # Convert all the Enters. Need to do this before checking for stacking # below. for i, enter in enumerate(self._enters): inp, stacked = self._convert_enter(pfor_input.pfor, enter) inputs.append(inp) maybe_stacked_cache[enter] = stacked # Since this enter node is part of the `loop_vars`, it corresponds to an # output and its preceding switch. We mark this switch's output the same # stackness, to act at the base case for the logic below. Below, we will # be going through the body figuring out which inputs might need to be # stacked and which inputs can safely remain unstacked. if i < num_outputs: maybe_stacked_cache[self._exit_switches[i].outputs[1]] = stacked # Shape invariants for init_values corresponding to self._enters. input_shape_invariants = [] # TensorArrays for outputs of converted while loop output_tas = [] # Shape invariants for output TensorArrays. ta_shape_invariants = [] # List of booleans indicating stackness of inputs, i.e. tensors # corresponding to self._enters. inputs_stacked = [] for i, inp in enumerate(inputs): enter = self._enters[i] inp_stacked = self._maybe_stacked(maybe_stacked_cache, enter) # Note that even when an input is unstacked, the body could make it # stacked. we use a heuristic below to figure out if body may be making # it stacked. if i < num_outputs: body_output = self._body_outputs[i] if enter.op in self._pfor_ops: body_output_stacked = self._maybe_stacked(maybe_stacked_cache, body_output) else: # If constructed outside of pfor loop, then the output would not be # stacked. body_output_stacked = False if body_output_stacked and not inp_stacked: inp = _stack(inp, loop_len_vector).t inputs[i] = inp inp_stacked = True # TODO(agarwal): other attributes for the TensorArray ? output_tas.append(tensor_array_ops.TensorArray(inp.dtype, loop_len)) ta_shape_invariants.append(tensor_shape.TensorShape(None)) inputs_stacked.append(inp_stacked) input_shape_invariants.append(tensor_shape.TensorShape(None)) # See documentation for __call__ for the structure of init_values. init_values = [True, pfor_input.pfor.all_indices] + inputs + output_tas # TODO(agarwal): try stricter shape invariants shape_invariants = ( [tensor_shape.TensorShape(None), tensor_shape.TensorShape(None) ] + input_shape_invariants + ta_shape_invariants) return init_values, inputs_stacked, shape_invariants def _process_cond_unstacked(self, conditions, indices, inputs, output_tas): """Handles case when condition is unstacked. Note that all iterations end together. So we don't need to partition the inputs. When all iterations are done, we write the inputs to the TensorArrays. Note that we only write to index 0 of output_tas. Since all iterations end together, they can all be output together. """ not_all_done = array_ops.reshape(conditions, []) new_output_tas = [] # pylint: disable=cell-var-from-loop for i, out_ta in enumerate(output_tas): inp = inputs[i] new_output_tas.append( control_flow_ops.cond(not_all_done, lambda: out_ta, lambda: out_ta.write(0, inp))) # pylint: enable=cell-var-from-loop return not_all_done, indices, inputs, new_output_tas def _process_cond_stacked(self, conditions, indices, inputs, inputs_stacked, output_tas): num_outputs = len(self._outputs) # Compute if all iterations are done. not_all_done = math_ops.reduce_any(conditions) conditions_int = math_ops.cast(conditions, dtypes.int32) # Partition the indices. done_indices, new_indices = data_flow_ops.dynamic_partition( indices, conditions_int, 2) new_inputs = [] new_output_tas = [] for i, (inp, stacked) in enumerate(zip(inputs, inputs_stacked)): # Partition the inputs. if stacked: done_inp, new_inp = data_flow_ops.dynamic_partition( inp, conditions_int, 2) else: # TODO(agarwal): avoid this stacking. See TODO earlier in # _process_cond_unstacked. done_inp = _stack(inp, [array_ops.size(done_indices)]).t new_inp = inp new_inputs.append(new_inp) # For iterations that are done, write them to TensorArrays. if i < num_outputs: out_ta = output_tas[i] # Note that done_indices can be empty. done_inp should also be empty in # that case. new_output_tas.append(out_ta.scatter(done_indices, done_inp)) return not_all_done, new_indices, new_inputs, new_output_tas def _process_body(self, pfor_input, inputs_stacked, new_indices, cond_stacked, new_inputs, not_all_done): """Convert the body function.""" def true_fn(control_inputs, body_pfor, body_output, stacked): """Converts the body function for all but last iteration. This essentially converts body_output. Additionally, it needs to handle any control dependencies on the NextIteration node. So it creates another Identity node with the converted dependencies. """ converted_control_inp = [] for x in control_inputs: for t in x.outputs: converted_control_inp.append(body_pfor._convert_helper(t).t) if stacked: # Note convert always does the stacking. output = body_pfor.convert(body_output) else: output, convert_stacked, _ = body_pfor._convert_helper(body_output) assert convert_stacked == stacked, body_output with ops.control_dependencies(converted_control_inp): return array_ops.identity(output) body_pfor = self._init_pfor(pfor_input.pfor, new_indices, cond_stacked, new_inputs, inputs_stacked) new_outputs = [] for i, (body_output, stacked) in enumerate( zip(self._body_outputs, inputs_stacked)): control_inp = self._next_iter_control_inputs[i] out_dtype = body_output.dtype # Note that we want to run the body only if not all pfor iterations are # done. If all are done, we return empty tensors since these values will # not be used. Notice that the value returned by the loop is based on # TensorArrays and not directly on these returned values. # pylint: disable=cell-var-from-loop new_output = control_flow_ops.cond( not_all_done, lambda: true_fn(control_inp, body_pfor, body_output, stacked), lambda: constant_op.constant([], dtype=out_dtype)) # pylint: enable=cell-var-from-loop new_outputs.append(new_output) return new_outputs def __call__(self, pfor_input): """Converter for the while_loop. The conversion of a while_loop is another while_loop. The arguments to this converted while_loop are as follows: not_all_done: Boolean scalar Tensor indicating if all the pfor iterations are done. indices: int32 1-D Tensor storing the id of the iterations that are not done. args: Remaining arguments. These can be divided into 3 categories: - First set of arguments are the tensors that correspond to the initial elements of self._enters. The elements that appear in original while loop's `loop_vars`. - The second set of arguments are the tensors that correspond to the remaining elements of self._enters. These are the tensors that directly enter the original while loop body. - Finally, the last set of arguments are TensorArrays. These TensorArrays correspond to the outputs of the original while_loop, i.e. to the elements in self._outputs. Each TensorArray has `PFor.loop_len` elements, i.e. the number of pfor iterations. At the end, the i'th element of each TensorArray will contain the output computed by the i'th iteration of pfor. Note that elements can be written into these tensors arrays in any order, depending on when the corresponding pfor iteration is done. If the original while_loop had `k` tensors in its `loop_vars` and its body directly captured `m` tensors, the `args` will contain `2 * k + m` values. In each iteration, the while_loop body recomputes the condition for all active pfor iterations to see which of them are now done. It then partitions all the inputs and passes them along to the converted body. Values for all the iterations that are done are written to TensorArrays indexed by the pfor iteration number. When all iterations are done, the TensorArrays are stacked to get the final value. Args: pfor_input: A PForInput object corresponding to the output of any Exit node from this while loop. Returns: List of converted outputs. """ # Create init_values that will be passed to the while_loop. init_values, inputs_stacked, shape_invariants = self._create_init_values( pfor_input) # Note that we use a list as a hack since we need the nested function body # to set the value of cond_is_stacked. python2.x doesn't support nonlocal # variables. cond_is_stacked = [None] def cond(not_all_done, *_): return not_all_done def body(not_all_done, indices, *args): # See documentatin for __call__ for the structure of *args. num_enters = len(self._enters) inputs = args[:num_enters] output_tas = args[num_enters:] # TODO(agarwal): see which outputs have consumers and only populate the # TensorArrays corresponding to those. Or do those paths get trimmed out # from inside the while_loop body? assert len(inputs) >= len(output_tas) assert len(inputs) == len(inputs_stacked) # Convert condition with ops.name_scope("while_cond"): # Note that we set cond_stacked to True here. At this point we don't # know if it could be loop invariant, hence the conservative value is # to assume stacked. cond_pfor = self._init_pfor(pfor_input.pfor, indices, cond_stacked=True, inputs=inputs, inputs_stacked=inputs_stacked) conditions, cond_stacked, _ = cond_pfor._convert_helper(self._condition) cond_is_stacked[0] = cond_stacked # Recompute the new condition, write outputs of done iterations, and # partition the inputs if needed. if not cond_stacked: (not_all_done, new_indices, new_inputs, new_output_tas) = self._process_cond_unstacked( conditions, indices, inputs, output_tas) else: (not_all_done, new_indices, new_inputs, new_output_tas) = self._process_cond_stacked( conditions, indices, inputs, inputs_stacked, output_tas) # Convert body with ops.name_scope("while_body"): # Compute the outputs from the body. new_outputs = self._process_body(pfor_input, inputs_stacked, new_indices, cond_stacked, new_inputs, not_all_done) # Note that the first num_outputs new values of inputs are computed using # the body. Rest of them were direct Enters into the condition/body and # the partitioning done earlier is sufficient to give the new value. num_outputs = len(self._outputs) new_args = ([not_all_done, new_indices] + new_outputs + list( new_inputs[num_outputs:]) + new_output_tas) return tuple(new_args) while_outputs = control_flow_ops.while_loop( cond, body, init_values, shape_invariants=shape_invariants) output_tas = while_outputs[-len(self._outputs):] outputs = [] assert cond_is_stacked[0] is not None for inp_stacked, ta in zip(inputs_stacked, output_tas): if cond_is_stacked[0]: outputs.append(wrap(ta.stack(), True)) else: # Note that if while_loop condition is unstacked, all iterations exit at # the same time and we wrote those outputs in index 0 of the tensor # array. outputs.append(wrap(ta.read(0), inp_stacked)) return outputs class _PforInput(object): """Input object passed to registered pfor converters.""" def __init__(self, pfor, op, inputs): """Creates a _PforInput object. Args: pfor: PFor converter object. op: the Operation object that is being converted. inputs: list of WrappedTensor objects representing converted values of the inputs of `op`. """ self.pfor = pfor self._op = op self._inputs = inputs def stack_inputs(self, stack_indices=None): """Stacks unstacked inputs at `stack_indices`. Args: stack_indices: indices of inputs at which stacking is done. If None, stacking is done at all indices. """ if stack_indices is None: stack_indices = range(len(self._inputs)) length = self.pfor.loop_len_vector for i in stack_indices: inp = self._inputs[i] if not inp.is_stacked: self._inputs[i] = _stack(inp.t, length) def expanddim_inputs_for_broadcast(self): """Reshapes stacked inputs to prepare them for broadcast. Since stacked inputs have an extra leading dimension, automatic broadcasting rules could incorrectly try to expand dimensions before that leading dimension. To avoid that, we reshape these stacked inputs to the maximum rank they will need to be broadcasted to. """ if not self._inputs: return # Find max rank def _get_rank(x): rank = array_ops.rank(x.t) if not x.is_stacked: rank += 1 return rank ranks = [_get_rank(x) for x in self._inputs] max_rank = ranks[0] for rank in ranks[1:]: max_rank = math_ops.maximum(rank, max_rank) for i, inp in enumerate(self._inputs): if inp.is_stacked: shape = array_ops.shape(inp.t) rank_diff = array_ops.reshape(max_rank - ranks[i], [1]) ones = array_ops.tile([1], rank_diff) new_shape = array_ops.concat([shape[:1], ones, shape[1:]], axis=0) self._inputs[i] = wrap(array_ops.reshape(inp.t, new_shape), True) @property def inputs(self): return self._inputs @property def num_inputs(self): return len(self._inputs) def input(self, index): assert len(self._inputs) > index, (index, self._inputs) return self._inputs[index] def stacked_input(self, index): t, is_stacked, _ = self.input(index) if not is_stacked: op_type = self.op_type op_def = getattr(self._op, "op_def", None) if op_def is None: input_name = "at index %d" % index else: input_name = "\"%s\"" % op_def.input_arg[index].name raise ValueError("Input %s of op \"%s\" expected to be not loop invariant" ".\nError while converting op %s" "with converted inputs\n%s" % (input_name, op_type, self._op, self.inputs)) return t def unstacked_input(self, index): t, is_stacked, _ = self.input(index) if is_stacked: op_type = self.op_type op_def = getattr(self._op, "op_def", None) if op_def is None: input_name = "at index %d" % index else: input_name = "\"%s\"" % op_def.input_arg[index].name raise ValueError("Input %s of op \"%s\" expected to be loop invariant" ".\nError while converting op %s" "with converted inputs\n%s" % (input_name, op_type, self._op, self.inputs)) return t @property def op(self): return self._op @property def op_type(self): return self._op.type def get_attr(self, attr): return self._op.get_attr(attr) @property def outputs(self): return self._op.outputs def output(self, index): assert index < len(self._op.outputs) return self._op.outputs[index] _pfor_converter_registry = {} class RegisterPFor(object): """Utility to register converters for pfor. Usage: @RegisterPFor(foo_op_type) def _foo_converter(pfor_input): ... The above will register conversion function `_foo_converter` for handling conversion of `foo_op_type`. During conversion, the registered functin will be called with a single argument of type `PForInput` which will contain state needed for the conversion. This registered function should output a list of WrappedTensor object with the same length as the number of outputs of op being converted. If the op had zero outputs, then it should return a ops.Operation object. """ def __init__(self, op_type): """Creates an object to register a converter for op with type `op_type`.""" self.op_type = op_type def __call__(self, converter): name = self.op_type assert name not in _pfor_converter_registry, "Re-registering %s " % name _pfor_converter_registry[name] = converter return converter class RegisterPForWithArgs(RegisterPFor): """Utility to register converters for pfor. Usage: @RegisteRPFor(foo_op_type, foo=value, ....) def _foo_converter(pfor_input, foo=None, ....): ... See RegisterPFor for details on the conversion function. `RegisterPForWithArgs` allows binding extra arguments to the conversion function at registration time. """ def __init__(self, op_type, *args, **kw_args): super(RegisterPForWithArgs, self).__init__(op_type) self._args = args self._kw_args = kw_args def __call__(self, converter): def _f(pfor_input): return converter(pfor_input, self.op_type, *self._args, **self._kw_args) super(RegisterPForWithArgs, self).__call__(_f) return converter def _create_op(op_type, inputs, op_dtypes, attrs=None): """Utility to create an op.""" return ops.get_default_graph().create_op( op_type, inputs, op_dtypes, attrs=attrs, compute_device=True) WrappedTensor = collections.namedtuple("WrappedTensor", ["t", "is_stacked", "is_sparse_stacked"]) """Wrapper around the result of a Tensor conversion. The additional fields are useful for keeping track of the conversion state as data flows through the ops in the loop body. For every op whose output is a Tensor, its converter should return either a WrappedTensor or a list of WrappedTensors. Args: t: The converted tensor is_stacked: True if the tensor is stacked, i.e. represents the results of all the iterations of the loop, where each row i of the tensor corresponds to that op's output on iteration i of the loop. False if the tensor is not stacked, i.e. represents the result of the op on of a single iteration of the loop, where the result does not vary between iterations. is_sparse_stacked: True if the tensor corresponds to a component tensor (indices, values, or dense_shape) of a sparse tensor, and has been logically stacked via a sparse conversion. """ def wrap(tensor, is_stacked=True, is_sparse_stacked=False): """Helper to create a WrappedTensor object.""" assert isinstance(is_stacked, bool) assert isinstance(is_sparse_stacked, bool) assert isinstance(tensor, ops.Tensor) assert not is_sparse_stacked or is_stacked, ("If the wrapped tensor is " "stacked via a sparse " "conversion, it must also be " "stacked.") return WrappedTensor(tensor, is_stacked, is_sparse_stacked) def _fallback_converter(pfor_input): logging.warn("Using a while_loop for converting %s", pfor_input.op_type) output_dtypes = [x.dtype for x in pfor_input.outputs] iters = pfor_input.pfor.loop_len_vector[0] def while_body(i, *ta_list): """Body of while loop.""" inputs = [ x[i, ...] if stacked else x for x, stacked, _ in pfor_input.inputs ] op_outputs = _create_op( pfor_input.op_type, inputs, output_dtypes, attrs=pfor_input.op.node_def.attr).outputs outputs = [] for out, ta in zip(op_outputs, ta_list): assert isinstance(out, ops.Tensor) outputs.append(ta.write(i, array_ops.expand_dims(out, 0))) return tuple([i + 1] + outputs) ta_list = control_flow_ops.while_loop( lambda i, *ta: i < iters, while_body, [0] + [ tensor_array_ops.TensorArray(dtype, iters) for dtype in output_dtypes ])[1:] return tuple([wrap(ta.concat(), True) for ta in ta_list]) class PFor(object): """Implementation of rewrite of parallel-for loops. This class takes a DAG or a set of DAGs representing the body of a parallel-for loop, and adds new operations to the graph that implements functionality equivalent to running that loop body for a specified number of iterations. This new set of nodes may or may not use a tensorflow loop construct. The process of conversion does not delete or change any existing operations. It only adds operations that efficiently implement the equivalent functionality. We refer to the added ops as "converted ops". The conversion process uses a simple greedy heuristic. It walks the loop body and tries to express the functionality of running each node in a loop with a new set of nodes. When converting an op several cases are possible: - The op is not inside the loop body. Hence it can be used as is. - The op does not depend on the iteration number and is stateless. In this case, it can be used as is. - The op is not stateful, and depends on iteration number only through control dependencies. In this case, we can create a single op with same inputs and attributes, but with "converted" control dependencies. - The op is not stateful, and all its inputs are loop invariant. In this case, similar to above, we can create a single op with same inputs and attributes, but with "converted" control dependencies. - The op is stateful or at least one of the inputs is not loop invariant. In this case, we run the registered converter for that op to create a set of converted ops. All nodes in the set will have converted control dependencies corresponding to control dependencies of the original op. If the op returned multiple outputs, "converted outputs" could be produced by different ops in this set. """ def __init__(self, loop_var, loop_len, pfor_ops, all_indices=None, all_indices_partitioned=False): """Creates an object to rewrite a parallel-for loop. Args: loop_var: ops.Tensor output of a Placeholder operation. The value should be an int32 scalar representing the loop iteration number. loop_len: A scalar or scalar Tensor representing the number of iterations the loop is run for. pfor_ops: List of all ops inside the loop body. all_indices: If not None, an int32 vector with size `loop_len` representing the iteration ids that are still active. These values should be unique and sorted. However they may not be contiguous. This is typically the case when inside a control flow construct which has partitioned the indices of the iterations that are being converted. all_indices_partitioned: If True, this object is being constructed from a control flow construct where not all the pfor iterations are guaranteed to be active. """ assert isinstance(loop_var, ops.Tensor) assert loop_var.op.type == "Placeholder" self._loop_var = loop_var loop_len_value = tensor_util.constant_value(loop_len) if loop_len_value is not None: loop_len = loop_len_value self._loop_len_vector = array_ops.reshape(loop_len, [1]) self._all_indices_partitioned = all_indices_partitioned if all_indices_partitioned: assert all_indices is not None self.all_indices = ( math_ops.range(loop_len) if all_indices is None else all_indices) self._conversion_map = {} self._conversion_map[loop_var] = wrap(self.all_indices, True) self._pfor_ops = set(pfor_ops) self._pfor_op_ids = set([x._id for x in pfor_ops]) def op_is_inside_loop(self, op): """True if op was created inside the pfor loop body.""" assert isinstance(op, ops.Operation) # Note that we use self._pfor_op_ids for the check and not self._pfor_ops # since it appears there tensorflow API could return different python # objects representing the same Operation node. return op._id in self._pfor_op_ids def _convert_sparse(self, y): """Returns the converted value corresponding to SparseTensor y. For SparseTensors, instead of stacking the component tensors separately, resulting in component tensors with shapes (N, m, rank), (N, m), and (N, rank) respectively for indices, values, and dense_shape (where N is the loop length and m is the number of sparse tensor values per loop iter), we want to logically stack the SparseTensors, to create a SparseTensor whose components are size (N * m, rank + 1), (N * m, ), and (rank + 1,) respectively. Here, we try to get the conversion of each component tensor. If the tensors are stacked via a sparse conversion, return the resulting SparseTensor composed of the converted components. Otherwise, the component tensors are either unstacked or stacked naively. In the latter case, we unstack the component tensors to reform loop_len SparseTensor elements, then correctly batch them. The unstacked tensors must have the same rank. Each dimension of each SparseTensor will expand to be the largest among all SparseTensor elements for that dimension. For example, if there are N SparseTensors of rank 3 being stacked, with N dense shapes, where the i_th shape is (x_i, y_i, z_i), the new dense shape will be (N, max_i(x_i), max_i(y_i), max_i(z_i)). Args: y: A tf.SparseTensor. Returns: A tf.SparseTensor that is the converted value corresponding to y. """ outputs = [ self._convert_helper(t) for t in (y.indices, y.values, y.dense_shape) ] assert all(isinstance(o, WrappedTensor) for o in outputs) if all(w.is_sparse_stacked for w in outputs): return sparse_tensor.SparseTensor(*[w.t for w in outputs]) assert not any(w.is_sparse_stacked for w in outputs), ( "Error converting SparseTensor. All components should be logically " "stacked, or none.") # If component tensors were not sparsely stacked, they are either unstacked # or stacked without knowledge that they are components of sparse tensors. # In this case, we have to restack them. return self._restack_sparse_tensor_logically( *[self._unwrap_or_tile(w) for w in outputs]) def _restack_sparse_tensor_logically(self, indices, values, shape): sparse_tensor_rank = indices.get_shape()[-1].value if sparse_tensor_rank is not None: sparse_tensor_rank += 1 def map_fn(args): res = gen_sparse_ops.serialize_sparse( args[0], args[1], args[2], out_type=dtypes.variant) return res # Applies a map function to the component tensors to serialize each # sparse tensor element and batch them all, then deserializes the batch. # TODO(rachelim): Try to do this without map_fn -- add the right offsets # to shape and indices tensors instead. result = functional_ops.map_fn( map_fn, [indices, values, shape], dtype=dtypes.variant) return sparse_ops.deserialize_sparse( result, dtype=values.dtype, rank=sparse_tensor_rank) def _unwrap_or_tile(self, wrapped_tensor): """Given a wrapped tensor, unwrap if stacked. Otherwise, tiles it.""" output, is_stacked = wrapped_tensor.t, wrapped_tensor.is_stacked if is_stacked: return output else: return _stack(output, self._loop_len_vector).t def convert(self, y): """Returns the converted value corresponding to y. Args: y: A ops.Tensor or a ops.Operation object. If latter, y should not have any outputs. Returns: If y does not need to be converted, it returns y as is. Else it returns the "converted value" corresponding to y. """ if isinstance(y, sparse_tensor.SparseTensor): return self._convert_sparse(y) output = self._convert_helper(y) if isinstance(output, WrappedTensor): assert isinstance(y, ops.Tensor) return self._unwrap_or_tile(output) else: assert isinstance(y, ops.Operation) assert not y.outputs assert isinstance(output, ops.Operation) return output def _was_converted(self, t): """True if t is not a conversion of itself.""" converted_t = self._conversion_map[t] return converted_t.t is not t def _add_conversion(self, old_output, new_output): self._conversion_map[old_output] = new_output def _convert_helper(self, op_or_tensor): stack = [op_or_tensor] while stack: y = stack[0] if y in self._conversion_map: assert isinstance(self._conversion_map[y], (WrappedTensor, ops.Operation)) stack.pop(0) continue if isinstance(y, ops.Operation): assert not y.outputs, ( "We only support converting Operation objects with no outputs. " "Got %s", y) y_op = y else: assert isinstance(y, ops.Tensor), y y_op = y.op is_while_loop = y_op.type == "Exit" if is_while_loop: while_op = WhileOp(y, pfor_ops=self._pfor_ops) is_inside_loop = while_op.is_inside_loop # If all nodes in the while_loop graph were created inside the pfor, we # treat the whole loop subgraph as a single op (y_op) and try to convert # it. For while_loops that are created completely or partially outside, # we treat them as external and should be able to simply return the Exit # node output as is without needing any conversion. Note that for # while_loops that are partially constructed inside, we assume they will # be loop invariant. If that is not the case, it will create runtime # errors since the converted graph would depend on the self._loop_var # placeholder. if is_inside_loop: y_op = while_op else: is_inside_loop = self.op_is_inside_loop(y_op) # If this op was not created inside the loop body, we will return as is. # 1. Convert inputs and control inputs. def _add_to_stack(x): if x not in self._conversion_map: stack.insert(0, x) return True else: return False if is_inside_loop: added_to_stack = False for inp in y_op.inputs: added_to_stack |= _add_to_stack(inp) for cinp in y_op.control_inputs: if cinp.outputs: for t in cinp.outputs: added_to_stack |= _add_to_stack(t) else: added_to_stack |= _add_to_stack(cinp) if added_to_stack: continue converted_inputs = [self._conversion_map[inp] for inp in y_op.inputs] some_input_converted = any( [self._was_converted(x) for x in y_op.inputs]) some_input_stacked = any([x.is_stacked for x in converted_inputs]) converted_control_ops = set() some_control_input_converted = False for cinp in y_op.control_inputs: if cinp.outputs: for t in cinp.outputs: converted_t = self._conversion_map[t] if self._was_converted(t): some_control_input_converted = True converted_control_ops.add(converted_t.t.op) else: converted_cinp = self._conversion_map[cinp] assert isinstance(converted_cinp, ops.Operation) if converted_cinp != cinp: some_control_input_converted = True converted_control_ops.add(converted_cinp) converted_control_ops = list(converted_control_ops) is_stateful = _is_stateful_pfor_op(y_op) else: converted_inputs = [] converted_control_ops = [] logging.vlog(3, "converting op:%s\ninputs:%s\ncontrol_inputs:%s", y_op, converted_inputs, converted_control_ops) # 2. Convert y_op # If converting a while_loop, we let the while_loop convertor deal with # putting the control dependencies appropriately. control_dependencies = [] if is_while_loop else converted_control_ops with ops.control_dependencies(control_dependencies), ops.name_scope( y_op.name + "/pfor/"): # None of the inputs and control inputs were converted. if (not is_inside_loop or (not is_stateful and not some_input_converted and not some_control_input_converted)): if y == y_op: assert not isinstance(y_op, WhileOp) new_outputs = y_op else: new_outputs = [wrap(x, False) for x in y_op.outputs] elif not (is_stateful or is_while_loop or some_input_stacked): # All inputs are unstacked or uncoverted but some control inputs are # converted. # TODO(rachelim): Handle the case where some inputs are sparsely # stacked (i.e. any([x.is_sparse_stacked for x in converted_inputs])) new_op = _create_op(y_op.type, [x.t for x in converted_inputs], [x.dtype for x in y_op.outputs], y_op.node_def.attr) if y == y_op: new_outputs = new_op else: new_outputs = [wrap(x, False) for x in new_op.outputs] else: # Either some inputs are not loop invariant or op is stateful. if hasattr(y_op, "pfor_converter"): converter = y_op.pfor_converter else: converter = _pfor_converter_registry.get(y_op.type, None) if converter is None: if flags.FLAGS.op_conversion_fallback_to_while_loop: converter = _fallback_converter else: raise ValueError( "No converter defined for %s\n%s\ninputs: %s. " "\nEither add a converter or set " "--op_conversion_fallback_to_while_loop=True, " "which may run slower" % (y_op.type, y_op, converted_inputs)) # TODO(rachelim): Handle the case where some inputs are sparsely # stacked. We should only call the converter if it supports handling # those inputs. new_outputs = converter(_PforInput(self, y_op, converted_inputs)) if isinstance(new_outputs, WrappedTensor): new_outputs = [new_outputs] assert isinstance(new_outputs, (list, tuple, ops.Operation)), new_outputs logging.vlog(2, "converted %s %s", y_op, new_outputs) # Insert into self._conversion_map if y == y_op: assert isinstance(new_outputs, ops.Operation) self._add_conversion(y_op, new_outputs) else: for old_output, new_output in zip(y_op.outputs, new_outputs): assert isinstance(new_output, WrappedTensor), (new_output, y, y_op) self._add_conversion(old_output, new_output) stack.pop(0) return self._conversion_map[op_or_tensor] @property def loop_len_vector(self): """Returns a single element vector whose value is number of iterations.""" return self._loop_len_vector @property def loop_var(self): """Returns placeholder loop variable.""" return self._loop_var @property def pfor_ops(self): return self._pfor_ops @property def all_indices_partitioned(self): """all_indices_partitioned property. Returns: True if we are inside a control flow construct and not all pfor iterations may be active. """ return self._all_indices_partitioned # nn_ops def _flatten_first_two_dims(x): """Merges first two dimensions.""" old_shape = array_ops.shape(x) new_shape = array_ops.concat([[-1], old_shape[2:]], axis=0) return array_ops.reshape(x, new_shape) def _unflatten_first_dim(x, first_dim): """Splits first dimension into [first_dim, -1].""" old_shape = array_ops.shape(x) new_shape = array_ops.concat([first_dim, [-1], old_shape[1:]], axis=0) return array_ops.reshape(x, new_shape) def _inputs_with_flattening(pfor_input, input_indices): """Stacks and flattens first dim of inputs at indices `input_indices`.""" if input_indices is None: input_indices = [] pfor_input.stack_inputs(stack_indices=input_indices) inputs = [] for i in range(pfor_input.num_inputs): if i in input_indices: inp = pfor_input.stacked_input(i) inp = _flatten_first_two_dims(inp) else: inp = pfor_input.unstacked_input(i) inputs.append(inp) return inputs @RegisterPForWithArgs("Conv2D", dims=[0]) @RegisterPForWithArgs("AvgPool", dims=[0]) @RegisterPForWithArgs("MaxPool", dims=[0]) @RegisterPForWithArgs("MaxPoolGrad", dims=[0, 1, 2]) @RegisterPForWithArgs("SoftmaxCrossEntropyWithLogits", dims=[0, 1]) def _convert_flatten_batch(pfor_input, op_type, dims): del op_type inputs = _inputs_with_flattening(pfor_input, dims) outputs = _create_op( pfor_input.op_type, inputs, [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs n = pfor_input.pfor.loop_len_vector outputs = [_unflatten_first_dim(x, n) for x in outputs] return [wrap(x, True) for x in outputs] _channel_flatten_input_cache = {} def _channel_flatten_input(x, data_format): """Merge the stack dimension with the channel dimension. If S is pfor's stacking dimension, then, - for SNCHW, we transpose to NSCHW. If N dimension has size 1, the transpose should be cheap. - for SNHWC, we transpose to NHWCS. We then merge the S and C dimension. Args: x: ops.Tensor to transform. data_format: "NCHW" or "NHWC". Returns: A 3-element tuple with the transformed value, along with the shape for reshape and order for transpose required to transform back. """ graph = ops.get_default_graph() cache_key = (graph, x, data_format) if cache_key not in _channel_flatten_input_cache: x_shape = array_ops.shape(x) if data_format == b"NCHW": order = [1, 0, 2, 3, 4] shape = array_ops.concat([x_shape[1:2], [-1], x_shape[3:]], axis=0) reverse_order = order else: order = [1, 2, 3, 0, 4] shape = array_ops.concat([x_shape[1:4], [-1]], axis=0) reverse_order = [3, 0, 1, 2, 4] # Move S dimension next to C dimension. x = array_ops.transpose(x, order) reverse_shape = array_ops.shape(x) # Reshape to merge the S and C dimension. x = array_ops.reshape(x, shape) outputs = x, reverse_order, reverse_shape _channel_flatten_input_cache[cache_key] = outputs else: outputs = _channel_flatten_input_cache[cache_key] return outputs # Note that with training=True, running FusedBatchNorm on individual examples # is very different from running FusedBatchNorm on a batch of those examples. # This is because, for the latter case, the operation can be considered as first # computing the mean and variance over all the examples and then using these # to scale all those examples. This creates a data dependency between these # different "iterations" since the inputs to the scaling step depends on the # statistics coming from all these inputs. # As with other kernels, the conversion here effectively runs the kernel # independently for each iteration, and returns outputs by stacking outputs from # each of those iterations. @RegisterPFor("FusedBatchNorm") def _convert_fused_batch_norm(pfor_input): is_training = pfor_input.get_attr("is_training") # When BatchNorm is used with training=False, mean and variance are provided # externally and used as is by the op. Thus, we can merge the S and N # dimensions as we do for regular operations. # When BatchNorm is used with training=True, mean and variance are computed # for each channel across the batch dimension (first one). If we merge S and N # dimensions, mean and variances will be computed over a larger set. So, we # merge the S and C dimensions instead. if not is_training: # We return zeros for batch_mean and batch_variance output. Note that CPU # and GPU seem to have different behavior for those two outputs. CPU outputs # zero because these values are not used during inference. GPU outputs # something, probably real means and variances. inputs = _inputs_with_flattening(pfor_input, [0]) outputs = _create_op( pfor_input.op_type, inputs, [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs y = outputs[0] n = pfor_input.pfor.loop_len_vector y = _unflatten_first_dim(y, n) mean = pfor_input.unstacked_input(3) zeros = array_ops.zeros_like(mean) return [wrap(y, True), wrap(zeros, False), wrap(zeros, False)] pfor_input.stack_inputs() data_format = pfor_input.get_attr("data_format") # We merge the first dimension with the "C" dimension, run FusedBatchNorm, and # then transpose back. x = pfor_input.stacked_input(0) x, reverse_order, reverse_shape = _channel_flatten_input(x, data_format) # Note that we stack all the other inputs as well so that they are the same # size as the new size of the channel dimension. inputs = [x] + [ array_ops.reshape(pfor_input.stacked_input(i), [-1]) for i in range(1, pfor_input.num_inputs) ] outputs = _create_op( pfor_input.op_type, inputs, [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs y = outputs[0] y = array_ops.reshape(y, reverse_shape) y = array_ops.transpose(y, reverse_order) n = pfor_input.pfor.loop_len_vector outputs = [_unflatten_first_dim(x, n) for x in outputs[1:]] outputs = [y] + outputs return [wrap(x, True) for x in outputs] @RegisterPFor("FusedBatchNormGrad") def _convert_fused_batch_norm_grad(pfor_input): pfor_input.stack_inputs() data_format = pfor_input.get_attr("data_format") y_backprop = pfor_input.stacked_input(0) y_backprop, _, _ = _channel_flatten_input(y_backprop, data_format) x = pfor_input.stacked_input(1) x, x_reverse_order, x_reverse_shape = _channel_flatten_input(x, data_format) inputs = [y_backprop, x] + [ array_ops.reshape(pfor_input.stacked_input(i), [-1]) for i in range(2, pfor_input.num_inputs) ] outputs = _create_op( pfor_input.op_type, inputs, [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs x_backprop = outputs[0] x_backprop = array_ops.reshape(x_backprop, x_reverse_shape) x_backprop = array_ops.transpose(x_backprop, x_reverse_order) n = pfor_input.pfor.loop_len_vector outputs = [_unflatten_first_dim(x, n) for x in outputs[1:]] outputs = [x_backprop] + outputs return [wrap(output, True) for output in outputs] @RegisterPForWithArgs("Conv2DBackpropInput", flatten_dims=[2], shape_dim=0) @RegisterPForWithArgs("AvgPoolGrad", flatten_dims=[1], shape_dim=0) def _convert_flatten_batch_shape_input(pfor_input, op_type, flatten_dims, shape_dim): del op_type inputs = _inputs_with_flattening(pfor_input, flatten_dims) n = pfor_input.pfor.loop_len_vector # Adjust the `input_sizes` input. ones = array_ops.ones( [array_ops.shape(inputs[shape_dim])[0] - 1], dtype=n.dtype) inputs[shape_dim] *= array_ops.concat([n, ones], axis=0) outputs = _create_op( pfor_input.op_type, inputs, [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs outputs = [_unflatten_first_dim(x, n) for x in outputs] return [wrap(x, True) for x in outputs] @RegisterPFor("Conv2DBackpropFilter") def _convert_conv2d_backprop_filter(pfor_input): pfor_input.stack_inputs(stack_indices=[2]) inputs, inputs_stacked, _ = pfor_input.input(0) filter_sizes = pfor_input.unstacked_input(1) grads = pfor_input.stacked_input(2) strides = pfor_input.get_attr("strides") padding = pfor_input.get_attr("padding") use_cudnn_on_gpu = pfor_input.get_attr("use_cudnn_on_gpu") data_format = pfor_input.get_attr("data_format") dilations = pfor_input.get_attr("dilations") if inputs_stacked: # TODO(agarwal): Implement this efficiently. logging.warn("Conv2DBackpropFilter uses a while_loop. Fix that!") def while_body(i, ta): inp_i = inputs[i, ...] grad_i = grads[i, ...] output = nn_ops.conv2d_backprop_filter( inp_i, filter_sizes, grad_i, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, dilations=dilations) return i + 1, ta.write(i, array_ops.expand_dims(output, 0)) n = array_ops.reshape(pfor_input.pfor.loop_len_vector, []) _, ta = control_flow_ops.while_loop( lambda i, ta: i < n, while_body, (0, tensor_array_ops.TensorArray(inputs.dtype, n))) output = ta.concat() return wrap(output, True) else: # We merge the stack dimension with the channel dimension of the gradients # and pretend we had a larger filter (see change to filter_sizes below). # Once the filter backprop is computed, we reshape and transpose back # appropriately. grads, _, _ = _channel_flatten_input(grads, data_format) n = pfor_input.pfor.loop_len_vector old_filter_sizes = filter_sizes filter_sizes *= array_ops.concat([[1, 1, 1], n], axis=0) output = nn_ops.conv2d_backprop_filter( inputs, filter_sizes, grads, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, dilations=dilations) new_filter_shape = array_ops.concat([old_filter_sizes[:3], n, [-1]], axis=0) output = array_ops.reshape(output, new_filter_shape) output = array_ops.transpose(output, [3, 0, 1, 2, 4]) return wrap(output, True) # array_ops @RegisterPForWithArgs("Identity", array_ops.identity) @RegisterPForWithArgs("StopGradient", array_ops.stop_gradient) def _convert_identity(pfor_input, op_type, op_func): del op_type return wrap(op_func(*[x.t for x in pfor_input.inputs]), True) @RegisterPFor("Reshape") def _convert_reshape(pfor_input): t = pfor_input.stacked_input(0) shape = pfor_input.unstacked_input(1) new_dim = array_ops.shape(t)[:1] new_shape = array_ops.concat([new_dim, shape], axis=0) return wrap(array_ops.reshape(t, new_shape), True) @RegisterPFor("ExpandDims") def _convert_expanddims(pfor_input): t = pfor_input.stacked_input(0) dim = pfor_input.unstacked_input(1) dim += math_ops.cast(dim >= 0, dtypes.int32) return wrap(array_ops.expand_dims(t, axis=dim), True) @RegisterPFor("Slice") def _convert_slice(pfor_input): t = pfor_input.stacked_input(0) begin = pfor_input.unstacked_input(1) size = pfor_input.unstacked_input(2) begin = array_ops.concat([[0], begin], axis=0) size = array_ops.concat([[-1], size], axis=0) return wrap(array_ops.slice(t, begin, size), True) @RegisterPFor("Tile") def _convert_tile(pfor_input): t = pfor_input.stacked_input(0) multiples = pfor_input.unstacked_input(1) multiples = array_ops.concat([[1], multiples], 0) return wrap(array_ops.tile(t, multiples), True) @RegisterPFor("Pack") def _convert_pack(pfor_input): pfor_input.stack_inputs() axis = pfor_input.get_attr("axis") if axis >= 0: axis += 1 return wrap( array_ops.stack([x.t for x in pfor_input.inputs], axis=axis), True) @RegisterPFor("Unpack") def _convert_unpack(pfor_input): value = pfor_input.stacked_input(0) axis = pfor_input.get_attr("axis") if axis >= 0: axis += 1 num = pfor_input.get_attr("num") return [wrap(x, True) for x in array_ops.unstack(value, axis=axis, num=num)] @RegisterPFor("Pad") def _convert_pad(pfor_input): t = pfor_input.stacked_input(0) paddings = pfor_input.unstacked_input(1) paddings = array_ops.concat([[[0, 0]], paddings], 0) return wrap(array_ops.pad(t, paddings, mode="CONSTANT"), True) @RegisterPFor("Split") def _convert_split(pfor_input): split_dim = pfor_input.unstacked_input(0) t = pfor_input.stacked_input(1) num_split = pfor_input.get_attr("num_split") split_dim += math_ops.cast(split_dim >= 0, dtypes.int32) return [wrap(x, True) for x in array_ops.split(t, num_split, axis=split_dim)] @RegisterPFor("Transpose") def _convert_transpose(pfor_input): t = pfor_input.stacked_input(0) perm = pfor_input.unstacked_input(1) new_perm = array_ops.concat([[0], perm + 1], axis=0) return wrap(array_ops.transpose(t, new_perm), True) @RegisterPFor("ZerosLike") def _convert_zeroslike(pfor_input): t = pfor_input.stacked_input(0) shape = array_ops.shape(t)[1:] return wrap(array_ops.zeros(shape, dtype=t.dtype), False) @RegisterPFor("Gather") @RegisterPFor("GatherV2") def _convert_gather(pfor_input): param, param_stacked, _ = pfor_input.input(0) indices, indices_stacked, _ = pfor_input.input(1) op_type = pfor_input.op_type if op_type == "Gather": validate_indices = pfor_input.get_attr("validate_indices") axis = 0 else: validate_indices = None axis = pfor_input.unstacked_input(2) axis_value = tensor_util.constant_value(axis) if axis_value is not None: axis = axis_value if indices_stacked and not param_stacked: if indices == pfor_input.pfor.all_indices and axis == 0: param_shape0 = param.shape[0].value indices_shape0 = indices.shape[0].value if param_shape0 is not None and indices_shape0 == param_shape0: # Note that with loops and conditionals, indices may not be contiguous. # However they will be sorted and unique. So if the shape matches, then # it must be picking up all the rows of param. return wrap(param, True) # TODO(agarwal): use array_ops.slice here. output = array_ops.gather( param, indices, validate_indices=validate_indices, axis=axis) if axis != 0: axis = control_flow_ops.cond( axis < 0, lambda: axis + array_ops.rank(param), lambda: axis) order = array_ops.concat( [[axis], math_ops.range(axis), math_ops.range(axis + 1, array_ops.rank(output))], axis=0) output = control_flow_ops.cond( math_ops.equal(axis, 0), lambda: output, lambda: array_ops.transpose(output, order)) return wrap(output, True) if param_stacked: loop_len_vector = pfor_input.pfor.loop_len_vector pfor_input.stack_inputs(stack_indices=[1]) indices = pfor_input.stacked_input(1) param_flat = _flatten_first_two_dims(param) # Recompute indices to handle stacked param. indices_offset = math_ops.range( loop_len_vector[0]) * array_ops.shape(param)[1] # Reshape indices_offset to allow broadcast addition ones = array_ops.ones([array_ops.rank(indices) - 1], dtype=dtypes.int32) new_shape = array_ops.concat([loop_len_vector, ones], axis=0) indices_offset = array_ops.reshape(indices_offset, new_shape) indices += indices_offset # TODO(agarwal): handle axis != 0. May need to transpose param or # array_ops.gather_nd. if isinstance(axis, ops.Tensor): axis_value = tensor_util.constant_value(axis) else: try: axis_value = int(axis) except TypeError: axis_value = None msg = ("Gather, where indices and param are both loop dependent, currently " "requires axis=0") if axis_value is not None and axis_value != 0: raise ValueError("Error while converting %s. %s. Got axis=%d" % (pfor_input.op, msg, axis)) with ops.control_dependencies( [check_ops.assert_equal(axis, 0, message=msg)]): output = array_ops.gather(param_flat, indices) return wrap(output, True) @RegisterPFor("ConcatV2") def _convert_concatv2(pfor_input): n = pfor_input.num_inputs pfor_input.stack_inputs(stack_indices=range(n - 1)) axis = pfor_input.unstacked_input(n - 1) axis += math_ops.cast(axis >= 0, axis.dtype) return wrap( array_ops.concat([x.t for x in pfor_input.inputs[:n - 1]], axis=axis), True) @RegisterPFor("StridedSlice") def _convert_strided_slice(pfor_input): inp = pfor_input.stacked_input(0) begin = pfor_input.unstacked_input(1) end = pfor_input.unstacked_input(2) strides = pfor_input.unstacked_input(3) begin_mask = pfor_input.get_attr("begin_mask") end_mask = pfor_input.get_attr("end_mask") ellipsis_mask = pfor_input.get_attr("ellipsis_mask") new_axis_mask = pfor_input.get_attr("new_axis_mask") shrink_axis_mask = pfor_input.get_attr("shrink_axis_mask") begin = array_ops.concat([[0], begin], axis=0) end = array_ops.concat([[0], end], axis=0) strides = array_ops.concat([[1], strides], axis=0) begin_mask = begin_mask << 1 | 1 end_mask = end_mask << 1 | 1 ellipsis_mask <<= 1 new_axis_mask <<= 1 shrink_axis_mask <<= 1 return wrap( array_ops.strided_slice( inp, begin, end, strides, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask), True) @RegisterPFor("StridedSliceGrad") def _convert_strided_slice_grad(pfor_input): shape = pfor_input.unstacked_input(0) begin = pfor_input.unstacked_input(1) end = pfor_input.unstacked_input(2) strides = pfor_input.unstacked_input(3) dy = pfor_input.stacked_input(4) begin_mask = pfor_input.get_attr("begin_mask") end_mask = pfor_input.get_attr("end_mask") ellipsis_mask = pfor_input.get_attr("ellipsis_mask") new_axis_mask = pfor_input.get_attr("new_axis_mask") shrink_axis_mask = pfor_input.get_attr("shrink_axis_mask") shape = array_ops.concat([pfor_input.pfor.loop_len_vector, shape], axis=0) begin = array_ops.concat([[0], begin], axis=0) end = array_ops.concat([[0], end], axis=0) strides = array_ops.concat([[1], strides], axis=0) begin_mask = begin_mask << 1 | 1 end_mask = end_mask << 1 | 1 ellipsis_mask <<= 1 new_axis_mask <<= 1 shrink_axis_mask <<= 1 return wrap( array_ops.strided_slice_grad( shape, begin, end, strides, dy, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask), True) # math_ops @RegisterPFor("MatMul") def _convert_matmul(pfor_input): # TODO(agarwal): Check if tiling is faster than two transposes. a, a_stacked, _ = pfor_input.input(0) b, b_stacked, _ = pfor_input.input(1) tr_a = pfor_input.get_attr("transpose_a") tr_b = pfor_input.get_attr("transpose_b") if a_stacked and b_stacked: output = wrap(math_ops.matmul(a, b, adjoint_a=tr_a, adjoint_b=tr_b), True) return output elif a_stacked: if tr_a: a = array_ops.transpose(a, [0, 2, 1]) if a.shape.is_fully_defined(): x, y, z = a.shape else: x, y, z = [ array_ops.reshape(i, []) for i in array_ops.split(array_ops.shape(a), 3) ] a = array_ops.reshape(a, [x * y, z]) prod = math_ops.matmul(a, b, transpose_b=tr_b) return wrap(array_ops.reshape(prod, [x, y, -1]), True) else: assert b_stacked if tr_b: perm = [2, 0, 1] b = array_ops.transpose(b, perm) else: # As an optimization, if one of the first two dimensions is 1, then we can # reshape instead of transpose. # TODO(agarwal): This check can be done inside Transpose kernel. b_shape = array_ops.shape(b) min_dim = math_ops.minimum(b_shape[0], b_shape[1]) perm = control_flow_ops.cond( math_ops.equal(min_dim, 1), lambda: [0, 1, 2], lambda: [1, 0, 2]) new_shape = array_ops.stack([b_shape[1], b_shape[0], b_shape[2]]) b = array_ops.transpose(b, perm) b = array_ops.reshape(b, new_shape) if b.shape.is_fully_defined(): x, y, z = b.shape else: x, y, z = [ array_ops.reshape(i, []) for i in array_ops.split(array_ops.shape(b), 3) ] b = array_ops.reshape(b, [x, y * z]) prod = math_ops.matmul(a, b, transpose_a=tr_a) prod = array_ops.reshape(prod, [-1, y, z]) prod = array_ops.transpose(prod, [1, 0, 2]) return wrap(prod, True) @RegisterPFor("BatchMatMul") def _convert_batch_mat_mul(pfor_input): # TODO(agarwal): There may be a more efficient way to do this instead of # stacking the inputs. pfor_input.stack_inputs() x = pfor_input.stacked_input(0) y = pfor_input.stacked_input(1) adj_x = pfor_input.get_attr("adj_x") adj_y = pfor_input.get_attr("adj_y") x = _flatten_first_two_dims(x) y = _flatten_first_two_dims(y) output = math_ops.matmul(x, y, adjoint_a=adj_x, adjoint_b=adj_y) output = _unflatten_first_dim(output, pfor_input.pfor.loop_len_vector) return wrap(output, True) @RegisterPForWithArgs("Sum", math_ops.reduce_sum) @RegisterPForWithArgs("Prod", math_ops.reduce_prod) @RegisterPForWithArgs("Max", math_ops.reduce_max) @RegisterPForWithArgs("Min", math_ops.reduce_min) def _convert_reduction(pfor_input, _, op_func): t = pfor_input.stacked_input(0) indices = pfor_input.unstacked_input(1) # Shift positive indices by one to account for the extra dimension. indices += math_ops.cast(indices >= 0, dtypes.int32) keep_dims = pfor_input.get_attr("keep_dims") return wrap(op_func(t, indices, keepdims=keep_dims), True) @RegisterPForWithArgs("Cumsum", math_ops.cumsum) @RegisterPForWithArgs("Cumprod", math_ops.cumprod) def _convert_cumfoo(pfor_input, _, op_func): t = pfor_input.stacked_input(0) axis = pfor_input.unstacked_input(1) # Shift positive indices by one to account for the extra dimension. axis += math_ops.cast(axis >= 0, dtypes.int32) exclusive = pfor_input.get_attr("exclusive") reverse = pfor_input.get_attr("reverse") return wrap(op_func(t, axis, exclusive=exclusive, reverse=reverse), True) @RegisterPFor("BiasAdd") def _convert_biasadd(pfor_input): t = pfor_input.stacked_input(0) bias = pfor_input.unstacked_input(1) data_format = pfor_input.get_attr("data_format") if data_format != b"NCHW": return wrap(nn_ops.bias_add(t, bias, data_format=data_format), True) shape = array_ops.shape(t) flattened_shape = array_ops.concat([[-1], shape[2:]], axis=0) t = array_ops.reshape(t, flattened_shape) t = nn_ops.bias_add(t, bias, data_format=b"NCHW") t = array_ops.reshape(t, shape) return wrap(t, True) @RegisterPFor("UnsortedSegmentSum") def _convert_unsortedsegmentsum(pfor_input): data, data_stacked, _ = pfor_input.input(0) # TODO(agarwal): handle unstacked? segment_ids = pfor_input.stacked_input(1) # TODO(agarwal): handle stacked? num_segments = pfor_input.unstacked_input(2) if not data_stacked: data = _stack(data, pfor_input.pfor.loop_len_vector).t segment_shape = array_ops.shape(segment_ids) n = segment_shape[0] ones = array_ops.ones_like(segment_shape)[1:] segment_offset = num_segments * math_ops.range(n) segment_offset = array_ops.reshape(segment_offset, array_ops.concat([[n], ones], axis=0)) segment_ids += segment_offset num_segments *= n output = math_ops.unsorted_segment_sum(data, segment_ids, num_segments) new_output_shape = array_ops.concat( [[n, -1], array_ops.shape(output)[1:]], axis=0) output = array_ops.reshape(output, new_output_shape) return wrap(output, True) @RegisterPFor("Cast") def _convert_cast(pfor_input): inp = pfor_input.stacked_input(0) dtype = pfor_input.get_attr("DstT") return wrap(math_ops.cast(inp, dtype), True) # Note that ops handled here do not have attributes except "T", and hence don't # need extra arguments passed to the cwise_op call below. @RegisterPForWithArgs("Add", math_ops.add) @RegisterPForWithArgs("Ceil", math_ops.ceil) @RegisterPForWithArgs("Equal", math_ops.equal) @RegisterPForWithArgs("NotEqual", math_ops.not_equal) @RegisterPForWithArgs("Floor", math_ops.floor) @RegisterPForWithArgs("Greater", math_ops.greater) @RegisterPForWithArgs("GreaterEqual", math_ops.greater_equal) @RegisterPForWithArgs("Less", math_ops.less) @RegisterPForWithArgs("LessEqual", math_ops.less_equal) @RegisterPForWithArgs("LogicalOr", math_ops.logical_or) @RegisterPForWithArgs("LogicalAnd", math_ops.logical_and) @RegisterPForWithArgs("LogicalNot", math_ops.logical_not) @RegisterPForWithArgs("LogicalXor", math_ops.logical_xor) @RegisterPForWithArgs("Maximum", math_ops.maximum) @RegisterPForWithArgs("Minimum", math_ops.minimum) @RegisterPForWithArgs("Mul", math_ops.multiply) @RegisterPForWithArgs("Neg", math_ops.negative) @RegisterPForWithArgs("RealDiv", math_ops.divide) @RegisterPForWithArgs("Relu", nn_ops.relu) @RegisterPForWithArgs("Sigmoid", math_ops.sigmoid) @RegisterPForWithArgs("Square", math_ops.square) @RegisterPForWithArgs("Sub", math_ops.subtract) @RegisterPForWithArgs("Tanh", math_ops.tanh) def _convert_cwise(pfor_input, op_type, op_func): del op_type pfor_input.expanddim_inputs_for_broadcast() return wrap(op_func(*[x.t for x in pfor_input.inputs]), True) @RegisterPFor("Shape") def _convert_shape(pfor_input): out_type = pfor_input.get_attr("out_type") return wrap( array_ops.shape(pfor_input.stacked_input(0), out_type=out_type)[1:], False) @RegisterPFor("ShapeN") def _convert_shape_n(pfor_input): out_type = pfor_input.get_attr("out_type") shapes = [ array_ops.shape(x, out_type=out_type)[1:] if stacked else array_ops.shape(x) for x, stacked, _ in pfor_input.inputs ] return [wrap(x, False) for x in shapes] @RegisterPFor("Size") def _convert_size(pfor_input): out_type = pfor_input.get_attr("out_type") n = math_ops.cast(pfor_input.pfor.loop_len_vector[0], out_type) return wrap( array_ops.size(pfor_input.stacked_input(0), out_type=out_type) // n, False) @RegisterPFor("Rank") def _convert_rank(pfor_input): return wrap(array_ops.rank(pfor_input.stacked_input(0)) - 1, False) @RegisterPFor("AddN") def _convert_addn(pfor_input): # AddN does not support broadcasting. pfor_input.stack_inputs() return wrap(math_ops.add_n([x.t for x in pfor_input.inputs]), True) @RegisterPFor("BiasAddGrad") def _convert_biasaddgrad(pfor_input): grad = pfor_input.stacked_input(0) fmt = pfor_input.get_attr("data_format") if fmt == b"NCHW": output = math_ops.reduce_sum(grad, axis=[1, 3, 4], keepdims=False) else: grad_shape = array_ops.shape(grad) last_dim_shape = grad_shape[-1] first_dim_shape = grad_shape[0] output = array_ops.reshape(grad, [first_dim_shape, -1, last_dim_shape]) output = math_ops.reduce_sum(output, axis=[1], keepdims=False) return wrap(output, True) # Some required ops are not exposed under the tf namespace. Hence relying on # _create_op to create them. @RegisterPForWithArgs("ReluGrad") @RegisterPForWithArgs("TanhGrad") @RegisterPForWithArgs("SigmoidGrad") def _convert_grads(pfor_input, op_type, *args, **kw_args): del args del kw_args # TODO(agarwal): Looks like these ops don't support broadcasting. Hence we # have to use tiling here. pfor_input.stack_inputs() outputs = _create_op( op_type, [x.t for x in pfor_input.inputs], [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs return [wrap(x, True) for x in outputs] @RegisterPFor("Select") def _convert_select(pfor_input): pfor_input.stack_inputs() cond = pfor_input.stacked_input(0) t = pfor_input.stacked_input(1) e = pfor_input.stacked_input(2) cond_rank = array_ops.rank(cond) cond, t, e = control_flow_ops.cond( cond_rank > 1, lambda: _inputs_with_flattening(pfor_input, [0, 1, 2]), lambda: [cond, t, e]) outputs = _create_op( pfor_input.op_type, [cond, t, e], [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs n = pfor_input.pfor.loop_len_vector out = control_flow_ops.cond(cond_rank > 1, lambda: _unflatten_first_dim(outputs[0], n), lambda: outputs[0]) return [wrap(out, True) for x in outputs] # random_ops @RegisterPForWithArgs("RandomUniform") @RegisterPForWithArgs("RandomUniformInt") @RegisterPForWithArgs("RandomStandardNormal") @RegisterPForWithArgs("TruncatedNormal") @RegisterPForWithArgs("RandomGamma") @RegisterPForWithArgs("RandomPoissonV2") def _convert_random(pfor_input, op_type, *args, **kw_args): del args del kw_args inputs = [pfor_input.unstacked_input(i) for i in range(pfor_input.num_inputs)] # inputs[0] is "shape" inputs[0] = array_ops.concat( [pfor_input.pfor.loop_len_vector, inputs[0]], axis=0) logging.warning( "Note that %s inside pfor op may not give same output as " "inside a sequential loop.", op_type) outputs = _create_op( op_type, inputs, [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs return [wrap(x, True) for x in outputs] # logging_ops @RegisterPFor("Assert") def _convert_assert(pfor_input): cond, cond_stacked, _ = pfor_input.input(0) if cond_stacked: cond = math_ops.reduce_all(cond) data_list = [x.t for x in pfor_input.inputs][1:] return _create_op("Assert", [cond] + data_list, [], attrs=pfor_input.op.node_def.attr) @RegisterPFor("Print") def _convert_print(pfor_input): # Note that we don't stack all the inputs. Hence unstacked values are printed # once here vs multiple times in a while_loop. pfor_input.stack_inputs([0]) outputs = _create_op( "Print", [x.t for x in pfor_input.inputs], [x.dtype for x in pfor_input.outputs], attrs=pfor_input.op.node_def.attr).outputs return [wrap(x, True) for x in outputs] # data_flow_ops # TensorArray conversion is tricky since we don't support arrays of # TensorArrays. For converting them, we consider two distinct cases: # # 1. The array is constructed outside the pfor call, and read/written inside the # loop. # This is an easier case since we don't need to make an array of TensorArrays. # A correctness requirement is that these parallel iterations shouldn't attempt # to write to the same location. Hence at conversion time we disallow indices to # be loop-invariant as that would guarantee a collision. Even if the indices are # not loop-invariant, they could conflict and that shall trigger runtime errors. # # 2. The array is constructed and used entirely inside each pfor iteration. # For simplicity, here we require that the indices used for write/scatter are # "unstacked". Otherwise it becomes hard to merge the TensorArrays created in # different pfor iterations. We consider two sub_cases: # # 2a Elements written to the array are "stacked" # To simulate multiple TensorArrays, we may increase the dimension of each # element of the array. i.e. the i_th row of the j_th entry of the converted # TensorArray corresponds to the j_th entry of the TensorArray in the i_th # pfor iteration. # # 2b Elements written to the array are "unstacked" # In this case we don't increase the dimensions to avoid redundant tiling. Each # iteration is trying to write the same value. So we convert that to a single # write. # # Here are some tricks used to implement the above: # - TensorArrayV3 constructor encodes the element shape as an attr. Instead of # trying to trace whether future writes are stacked or unstacked in order to set # this attr, we set it to correspond to unknown shape. # - We use the "flow" output of the different ops to track whether the array # elements are stacked or unstacked. If a stacked write/scatter is done, we make # the flow stacked as well. # - We use some heuristic traversal of the graph to track whether the # TensorArray handle was created inside or outside the pfor loop. @RegisterPFor("TensorArrayV3") def _convert_tensor_array_v3(pfor_input): size = pfor_input.unstacked_input(0) dtype = pfor_input.get_attr("dtype") dynamic_size = pfor_input.get_attr("dynamic_size") clear_after_read = pfor_input.get_attr("clear_after_read") identical_element_shapes = pfor_input.get_attr("identical_element_shapes") tensor_array_name = pfor_input.get_attr("tensor_array_name") handle, flow = data_flow_ops.tensor_array_v3( size, dtype=dtype, # We don't set element shape since we don't know if writes are stacked or # not yet. element_shape=None, dynamic_size=dynamic_size, clear_after_read=clear_after_read, identical_element_shapes=identical_element_shapes, tensor_array_name=tensor_array_name) # Note we keep flow unstacked for now since we don't know if writes will be # stacked or not. return wrap(handle, False), wrap(flow, False) @RegisterPFor("TensorArraySizeV3") def _convert_tensor_array_size_v3(pfor_input): handle = pfor_input.unstacked_input(0) flow, flow_stacked, _ = pfor_input.input(1) if flow_stacked: flow = _unstack_flow(flow) size = data_flow_ops.tensor_array_size_v3(handle, flow) return wrap(size, False) def _handle_inside_pfor(pfor_input, handle): """Returns True if handle was created inside the pfor loop.""" # We use some heuristic to find the original TensorArray creation op. # The logic should handle the common cases (except cond based subgraphs). # In theory the user could perform different operations on the handle (like # Reshape, stack multiple handles, etc) which could break this logic. # TODO(agarwal): handle Switch/Merge. while handle.op.type in ("Enter", "Identity"): handle = handle.op.inputs[0] if handle.op.type not in [ "TensorArrayV3", "TensorArrayGradV3", "TensorArrayGradWithShape"]: raise ValueError("Unable to find source for handle %s" % handle) else: return pfor_input.pfor.op_is_inside_loop(handle.op) def _unstack_flow(value): # TODO(agarwal): consider looking if this is a Tile op then get its input. # This may avoid running the Tile operations. return array_ops.gather(value, 0) @RegisterPFor("TensorArrayReadV3") def _convert_tensor_array_read_v3(pfor_input): handle = pfor_input.unstacked_input(0) index, index_stacked, _ = pfor_input.input(1) dtype = pfor_input.get_attr("dtype") flow, flow_stacked, _ = pfor_input.input(2) if flow_stacked: flow = _unstack_flow(flow) is_inside_pfor = _handle_inside_pfor(pfor_input, pfor_input.op.inputs[0]) if is_inside_pfor: # Note that if we are inside a control flow construct inside the pfor, and # only some of the iterations are doing the read (i.e. # `all_indices_partitioned` is True), then the read operation should only # return values for the currently active pfor iterations (`all_indices` # below). Hence, whenever the returned value is stacked (i.e. `flow` is # stacked), we may need to do an extra gather after reading the values. Also # note that if `is_inside` is false, then values in the tensor array are # unstacked. So the check is only needed in this branch. all_indices = pfor_input.pfor.all_indices all_indices_partitioned = pfor_input.pfor.all_indices_partitioned # Note: flow_stacked indicates if values in the TensorArray are stacked or # not. if index_stacked: if flow_stacked: raise ValueError( "It looks like TensorArrayReadV3 was called on a TensorArray whose" " values are not loop-invariant, and the read indices were also" " not loop invariant. This is currently unsupported.") value = data_flow_ops.tensor_array_gather_v3( handle, index, flow, dtype=dtype) return wrap(value, True) value = data_flow_ops.tensor_array_read_v3( handle, index, flow, dtype=dtype) if flow_stacked and all_indices_partitioned: value = array_ops.gather(value, all_indices) return wrap(value, flow_stacked) # Values in the TensorArray should be unstacked (since different iterations # couldn't write to the same location). So whether output is stacked or not # depends on index_stacked. if index_stacked: value = data_flow_ops.tensor_array_gather_v3( handle, index, flow, dtype=dtype) else: value = data_flow_ops.tensor_array_read_v3( handle, index, flow, dtype=dtype) return wrap(value, index_stacked) @RegisterPFor("TensorArrayWriteV3") def _convert_tensor_array_write_v3(pfor_input): handle = pfor_input.unstacked_input(0) index, index_stacked, _ = pfor_input.input(1) value, value_stacked, _ = pfor_input.input(2) flow, flow_stacked, _ = pfor_input.input(3) if value_stacked and pfor_input.pfor.all_indices_partitioned: # Looks like we are in a control flow in a pfor where not all iterations are # active now. We don't allow that since that could lead to different indices # having different shapes which will be hard to merge later. raise ValueError("Writing non loop invariant values to TensorArray from " "inside a while_loop/cond not supported.") if flow_stacked: flow = _unstack_flow(flow) is_inside = _handle_inside_pfor(pfor_input, pfor_input.op.inputs[0]) if is_inside: if index_stacked: raise ValueError("Need indices for %s to be loop invariant" % handle) if not flow_stacked and not value_stacked: flow_out = data_flow_ops.tensor_array_write_v3(handle, index, value, flow) return wrap(flow_out, False) else: if not value_stacked: value = _stack(value, pfor_input.pfor.loop_len_vector).t # TODO(agarwal): Note that if flow is unstacked and value is stacked, then # this may or may not be a safe situation. flow is unstacked both for a # freshly created TensorArray, as well as after unstacked values are # written to it. If it is the latter, then we cannot write a stacked value # now since that may cause runtime errors due to different shapes in the # array. At the moment we are not able to handle this gracefully and # distinguish between the two cases. That would require some heuristic # traversal of the graph to figure out whether all the writes are # unstacked or not. flow_out = data_flow_ops.tensor_array_write_v3(handle, index, value, flow) return _stack(flow_out, pfor_input.pfor.loop_len_vector) else: if not index_stacked: raise ValueError("Need indices for %s to be not loop invariant" % handle) # Note that even when index_stacked is true, actual values in index may # still not be unique. However that will cause runtime error when executing # the scatter operation below. if not value_stacked: value = _stack(value, pfor_input.pfor.loop_len_vector).t flow_out = data_flow_ops.tensor_array_scatter_v3(handle, index, value, flow) return _stack(flow_out, pfor_input.pfor.loop_len_vector) def _transpose_first_two_dims(value): # TODO(agarwal): optimize if one of the dims == 1. value_shape = array_ops.shape(value) v0 = value_shape[0] v1 = value_shape[1] value = array_ops.reshape(value, [v0, v1, -1]) value = array_ops.transpose(value, [1, 0, 2]) new_shape = array_ops.concat([[v1, v0], value_shape[2:]], axis=0) return array_ops.reshape(value, new_shape) @RegisterPFor("TensorArrayGatherV3") def _convert_tensor_array_gather_v3(pfor_input): handle = pfor_input.unstacked_input(0) indices, indices_stacked, _ = pfor_input.input(1) indices = array_ops.reshape(indices, [-1]) flow, flow_stacked, _ = pfor_input.input(2) if flow_stacked: flow = _unstack_flow(flow) dtype = pfor_input.get_attr("dtype") # TODO(agarwal): support element_shape attr? n = pfor_input.pfor.loop_len_vector value = data_flow_ops.tensor_array_gather_v3( handle, indices, flow, dtype=dtype) is_inside = _handle_inside_pfor(pfor_input, pfor_input.op.inputs[0]) if is_inside: # flow_stacked indicates if values in the TensorArray are stacked or not. if indices_stacked: if flow_stacked: raise ValueError( "It looks like TensorArrayGatherV3 was called on a TensorArray " "whose values are not loop-invariant, and the indices were also " "not loop invariant. This is currently unsupported.") else: value = _unflatten_first_dim(value, n) return wrap(value, True) else: if flow_stacked: # Since elements in this array are stacked and `value` was produced by # gather, its first two dims are "gathered elements" and "stack # dimension". Our semantics require these two to be flipped. value = _transpose_first_two_dims(value) return wrap(value, flow_stacked) else: # Values in the TensorArray should be unstacked (since different iterations # couldn't write to the same location). So whether output is stacked or not # depends on indices_stacked. if indices_stacked: value = _unflatten_first_dim(value, n) return wrap(value, indices_stacked) @RegisterPFor("TensorArrayScatterV3") def _convert_tensor_array_scatter_v3(pfor_input): handle = pfor_input.unstacked_input(0) indices, indices_stacked, _ = pfor_input.input(1) indices = array_ops.reshape(indices, [-1]) value, value_stacked, _ = pfor_input.input(2) flow, flow_stacked, _ = pfor_input.input(3) if flow_stacked: flow = _unstack_flow(flow) is_inside = _handle_inside_pfor(pfor_input, pfor_input.op.inputs[0]) if is_inside: if indices_stacked: raise ValueError("Need indices for %s to be loop invariant" % handle) # Note that flow_stacked indicates if existing values in the array are # stacked or not. if not flow_stacked and not value_stacked: flow_out = data_flow_ops.tensor_array_scatter_v3(handle, indices, value, flow) return wrap(flow_out, False) if not value_stacked: # TODO(agarwal): tile in the second dimension directly instead of # transposing below. value = _stack(value, pfor_input.pfor.loop_len_vector).t value = _transpose_first_two_dims(value) # TODO(agarwal): Note that if a previous write was unstacked, flow will be # unstacked, and a stacked value may be written here which may cause # runtime error due to different elements having different shape. We do # not try to prevent that. flow_out = data_flow_ops.tensor_array_scatter_v3(handle, indices, value, flow) return _stack(flow_out, pfor_input.pfor.loop_len_vector) if not indices_stacked: raise ValueError("Need indices for %s to be not loop invariant" % handle) if not value_stacked: value = _stack(value, pfor_input.pfor.loop_len_vector).t value = _flatten_first_two_dims(value) flow_out = data_flow_ops.tensor_array_scatter_v3(handle, indices, value, flow) return _stack(flow_out, pfor_input.pfor.loop_len_vector) @RegisterPFor("TensorArrayGradV3") def _convert_tensor_array_grad_v3(pfor_input): handle = pfor_input.unstacked_input(0) flow, flow_stacked, _ = pfor_input.input(1) if flow_stacked: flow = _unstack_flow(flow) source = pfor_input.get_attr("source") # TODO(agarwal): For now, we assume that gradients are stacked if the # TensorArrayGradV3 call is being done inside the pfor. Getting that wrong # will give runtime error due to incorrect shape being written to the # accumulator. It is difficult to know in advance if gradients written will be # stacked or not. Note that flow being stacked is not indicative of the # gradient being stacked or not. Revisit this later. shape_to_prepend = pfor_input.pfor.loop_len_vector grad_handle, flow_out = data_flow_ops.tensor_array_grad_with_shape( handle=handle, flow_in=flow, shape_to_prepend=shape_to_prepend, source=source) flow_out = _stack(flow_out, pfor_input.pfor.loop_len_vector).t return [wrap(grad_handle, False), wrap(flow_out, True)] # StackV2 conversion is tricky since we don't have arrays of StackV2. So similar # to TensorArrays, we convert them by changing the dimension of the elements # inside the stack. # # We consider two cases: # # 1. StackV2 is constructed and used entirely inside the pfor loop. # We keep a single Stack and perform the push/pop operations of all the # iterations in lock-step. We also assume that all the iterations perform these # operations. In case of dynamic control flow, if only some of the iterations # try to perform a push/pop, then the conversion may not work correctly and may # cause undefined behavior. # TODO(agarwal): test StackV2 with dynamic control flow. # # 2. StackV2 is constructed outside the pfor loop. # Performing stack push/pop in a parallel fashion is ill-defined. However given # that reading stacks created externally is a common operation when computing # jacobians, we provide some special semantics here as follows. # - disallow push operations to the stack # - pop operations are performed in lock step by all iterations, similar to the # case when the stack is created inside. A single value is popped during the # lock-step operation and broadcast to all the iterations. Values in the stack # are assumed to be loop-invariant. # # Some other implementation details: # We use an ugly logic to find whether values in Stack data structure are # loop invariant or not. When converting push/pop operations, we keep track of # whether the last conversion used a stacked value or not (see _stack_cache # below). As a result if an unstacked value is written first, subsequent stacked # writes are disallowed when they could have been allowed in theory. # Map from cache key based on StackV2 handle to a bool indicating whether values # are stacked or not. # TODO(agarwal): move _stack_cache inside pfor? _stack_cache = {} def _stack_cache_key(pfor_input): """Create cache key corresponding to a stack handle.""" op_type = pfor_input.op_type assert op_type in ["StackPushV2", "StackPopV2"], op_type orig_handle = pfor_input.op.inputs[0] while orig_handle.op.type in ["Identity", "Enter"]: orig_handle = orig_handle.op.inputs[0] assert orig_handle.op.type == "StackV2", orig_handle.op return ops.get_default_graph(), pfor_input.pfor, orig_handle def _stack_handle_inside_pfor(handle, pfor_input): while handle.op.type in ["Identity", "Enter"]: handle = handle.op.inputs[0] assert handle.op.type == "StackV2", ( "Unable to find StackV2 op. Got %s" % handle.op) return pfor_input.pfor.op_is_inside_loop(handle.op) @RegisterPFor("StackPushV2") def _convert_stack_push_v2(pfor_input): handle = pfor_input.unstacked_input(0) elem, elem_stacked, _ = pfor_input.input(1) swap_memory = pfor_input.get_attr("swap_memory") if not _stack_handle_inside_pfor(pfor_input.op.inputs[0], pfor_input): raise ValueError("StackPushV2 not allowed on stacks created outside pfor") stack_cache_key = _stack_cache_key(pfor_input) stacked = _stack_cache.get(stack_cache_key, None) if stacked is None: stacked = elem_stacked _stack_cache[stack_cache_key] = stacked else: # If we previously made it unstacked then we can't revert to being stacked. if not stacked and elem_stacked: raise ValueError( "It looks like the stack was previously determined to be loop" " invariant, but we are now trying to push a loop dependent value" " to it. This is currently unsupported.") if stacked and not elem_stacked: elem = _stack(elem, pfor_input.pfor.loop_len_vector).t out = data_flow_ops.stack_push_v2(handle, elem, swap_memory=swap_memory) return wrap(out, stacked) # Note that inputs to this convertor will be unstacked. However it should get # called since it is a stateful op. @RegisterPFor("StackPopV2") def _convert_stack_pop_v2(pfor_input): handle = pfor_input.unstacked_input(0) stack_cache_key = _stack_cache_key(pfor_input) stacked = _stack_cache.get(stack_cache_key, None) # If a StackPushV2 has not been converted yet, we default to unstacked since # the push could be outside of pfor, or the covertor may not be called if the # inputs are unconverted. if stacked is None: stacked = False _stack_cache[stack_cache_key] = False elem_type = pfor_input.get_attr("elem_type") out = data_flow_ops.stack_pop_v2(handle, elem_type) return wrap(out, stacked) # parsing_ops @RegisterPFor("DecodeCSV") def _convert_decode_csv(pfor_input): lines = pfor_input.stacked_input(0) record_defaults = [ pfor_input.unstacked_input(i) for i in range(1, pfor_input.num_inputs) ] field_delim = pfor_input.get_attr("field_delim") use_quote_delim = pfor_input.get_attr("use_quote_delim") select_cols = pfor_input.get_attr("select_cols") if not select_cols: select_cols = None return [ wrap(t, True) for t in parsing_ops.decode_csv( lines, record_defaults, field_delim=field_delim, use_quote_delim=use_quote_delim, select_cols=select_cols) ] @RegisterPFor("ParseSingleExample") def _convert_parse_single_example(pfor_input): serialized = pfor_input.stacked_input(0) dense_defaults = [ pfor_input.unstacked_input(i) for i in range(1, pfor_input.num_inputs) ] sparse_keys = pfor_input.get_attr("sparse_keys") dense_keys = pfor_input.get_attr("dense_keys") sparse_types = pfor_input.get_attr("sparse_types") dense_shapes = pfor_input.get_attr("dense_shapes") output = gen_parsing_ops.parse_example( serialized=serialized, names=[], dense_defaults=dense_defaults, sparse_keys=sparse_keys, dense_keys=dense_keys, sparse_types=sparse_types, dense_shapes=dense_shapes) return [wrap(t, True, True) for t in nest.flatten(output)]
apache-2.0
danviv/trading-with-python
cookbook/reconstructVXX/reconstructVXX.py
77
3574
# -*- coding: utf-8 -*- """ Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np import os class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ dataDir = os.path.expanduser('~')+'/twpData' X = DataFrame.from_csv(dataDir+'/vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2', 'ret','30days_avg']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =np.nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info p1 = first.price(date) p2 = second.price(date) w1 = 100*dr/dt w2 = 100*(dt-dr)/dt Y.set_value(date,'first',p1) Y.set_value(date,'second',p2) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',w1) Y.set_value(date,'w2',w2) Y.set_value(date,'30days_avg',(p1*w1+p2*w2)/100) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- if __name__=="__main__": Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')
bsd-3-clause
plaes/numpy
doc/source/conf.py
6
8773
# -*- coding: utf-8 -*- import sys, os, re # Check Sphinx version import sphinx if sphinx.__version__ < "0.5": raise RuntimeError("Sphinx 0.5.dev or newer required") # ----------------------------------------------------------------------------- # General configuration # ----------------------------------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('../sphinxext')) extensions = ['sphinx.ext.autodoc', 'sphinx.ext.pngmath', 'numpydoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'plot_directive'] if sphinx.__version__ >= "0.7": extensions.append('sphinx.ext.autosummary') else: extensions.append('autosummary') extensions.append('only_directives') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. #master_doc = 'index' # General substitutions. project = 'NumPy' copyright = '2008-2009, The Scipy community' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # import numpy # The short X.Y version (including .devXXXX, rcX, b1 suffixes if present) version = re.sub(r'(\d+\.\d+)\.\d+(.*)', r'\1\2', numpy.__version__) version = re.sub(r'(\.dev\d+).*?$', r'\1', version) # The full version, including alpha/beta/rc tags. release = numpy.__version__ print version, release # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # The reST default role (used for this markup: `text`) to use for all documents. default_role = "autolink" # List of directories, relative to source directories, that shouldn't be searched # for source files. exclude_dirs = [] # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # ----------------------------------------------------------------------------- # HTML output # ----------------------------------------------------------------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'scipy.css' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "%s v%s Manual (DRAFT)" % (project, version) # The name of an image file (within the static path) to place at the top of # the sidebar. html_logo = 'scipyshiny_small.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { 'index': 'indexsidebar.html' } # Additional templates that should be rendered to pages, maps page names to # template names. html_additional_pages = { 'index': 'indexcontent.html', } # If false, no module index is generated. html_use_modindex = True # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".html"). #html_file_suffix = '.html' # Output file base name for HTML help builder. htmlhelp_basename = 'numpy' # Pngmath should try to align formulas properly pngmath_use_preview = True # ----------------------------------------------------------------------------- # LaTeX output # ----------------------------------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). _stdauthor = 'Written by the NumPy community' latex_documents = [ ('reference/index', 'numpy-ref.tex', 'NumPy Reference', _stdauthor, 'manual'), ('user/index', 'numpy-user.tex', 'NumPy User Guide', _stdauthor, 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r''' \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters section, place a newline after the Parameters % header \usepackage{expdlist} \let\latexdescription=\description \def\description{\latexdescription{}{} \breaklabel} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\py@HeaderFamily}% {\py@TitleColor}{0em}{\py@TitleColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother % Fix footer/header \renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}} \renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}} ''' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_use_modindex = False # ----------------------------------------------------------------------------- # Intersphinx configuration # ----------------------------------------------------------------------------- intersphinx_mapping = {'http://docs.python.org/dev': None} # ----------------------------------------------------------------------------- # Numpy extensions # ----------------------------------------------------------------------------- # If we want to do a phantom import from an XML file for all autodocs phantom_import_file = 'dump.xml' # Make numpydoc to generate plots for example sections numpydoc_use_plots = True # ----------------------------------------------------------------------------- # Autosummary # ----------------------------------------------------------------------------- if sphinx.__version__ >= "0.7": import glob autosummary_generate = glob.glob("reference/*.rst") # ----------------------------------------------------------------------------- # Coverage checker # ----------------------------------------------------------------------------- coverage_ignore_modules = r""" """.split() coverage_ignore_functions = r""" test($|_) (some|all)true bitwise_not cumproduct pkgload generic\. """.split() coverage_ignore_classes = r""" """.split() coverage_c_path = [] coverage_c_regexes = {} coverage_ignore_c_items = {} # ----------------------------------------------------------------------------- # Plots # ----------------------------------------------------------------------------- plot_pre_code = """ import numpy as np np.random.seed(0) """ plot_include_source = True plot_formats = [('png', 100), 'pdf'] import math phi = (math.sqrt(5) + 1)/2 import matplotlib matplotlib.rcParams.update({ 'font.size': 8, 'axes.titlesize': 8, 'axes.labelsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'legend.fontsize': 8, 'figure.figsize': (3*phi, 3), 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, })
bsd-3-clause
smallyear/linuxLearn
salt/salt/client/ssh/state.py
1
6047
# -*- coding: utf-8 -*- ''' Create ssh executor system ''' from __future__ import absolute_import # Import python libs import os import tarfile import tempfile import json import shutil from contextlib import closing # Import salt libs import salt.client.ssh.shell import salt.client.ssh import salt.utils import salt.utils.thin import salt.utils.url import salt.roster import salt.state import salt.loader import salt.minion class SSHState(salt.state.State): ''' Create a State object which wraps the SSH functions for state operations ''' def __init__(self, opts, pillar=None, wrapper=None): self.wrapper = wrapper super(SSHState, self).__init__(opts, pillar) def load_modules(self, data=None, proxy=None): ''' Load up the modules for remote compilation via ssh ''' self.functions = self.wrapper self.utils = salt.loader.utils(self.opts) locals_ = salt.loader.minion_mods(self.opts, utils=self.utils) self.states = salt.loader.states(self.opts, locals_, self.utils) self.rend = salt.loader.render(self.opts, self.functions) def check_refresh(self, data, ret): ''' Stub out check_refresh ''' return def module_refresh(self): ''' Module refresh is not needed, stub it out ''' return class SSHHighState(salt.state.BaseHighState): ''' Used to compile the highstate on the master ''' stack = [] def __init__(self, opts, pillar=None, wrapper=None, fsclient=None): self.client = fsclient salt.state.BaseHighState.__init__(self, opts) self.state = SSHState(opts, pillar, wrapper) self.matcher = salt.minion.Matcher(self.opts) def load_dynamic(self, matches): ''' Stub out load_dynamic ''' return def lowstate_file_refs(chunks, extras=''): ''' Create a list of file ref objects to reconcile ''' refs = {} for chunk in chunks: if not isinstance(chunk, dict): continue saltenv = 'base' crefs = [] for state in chunk: if state == '__env__': saltenv = chunk[state] elif state.startswith('__'): continue crefs.extend(salt_refs(chunk[state])) if crefs: if saltenv not in refs: refs[saltenv] = [] refs[saltenv].append(crefs) if extras: extra_refs = extras.split(',') if extra_refs: for env in refs: for x in extra_refs: refs[env].append([x]) return refs def salt_refs(data, ret=None): ''' Pull salt file references out of the states ''' proto = 'salt://' if ret is None: ret = [] if isinstance(data, str): if data.startswith(proto) and data not in ret: ret.append(data) if isinstance(data, list): for comp in data: salt_refs(comp, ret) if isinstance(data, dict): for comp in data: salt_refs(data[comp], ret) return ret def prep_trans_tar(file_client, chunks, file_refs, pillar=None, id_=None): ''' Generate the execution package from the saltenv file refs and a low state data structure ''' gendir = tempfile.mkdtemp() trans_tar = salt.utils.mkstemp() lowfn = os.path.join(gendir, 'lowstate.json') pillarfn = os.path.join(gendir, 'pillar.json') sync_refs = [ [salt.utils.url.create('_modules')], [salt.utils.url.create('_states')], [salt.utils.url.create('_grains')], [salt.utils.url.create('_renderers')], [salt.utils.url.create('_returners')], [salt.utils.url.create('_output')], [salt.utils.url.create('_utils')], ] with salt.utils.fopen(lowfn, 'w+') as fp_: fp_.write(json.dumps(chunks)) if pillar: with salt.utils.fopen(pillarfn, 'w+') as fp_: fp_.write(json.dumps(pillar)) cachedir = os.path.join('salt-ssh', id_) for saltenv in file_refs: file_refs[saltenv].extend(sync_refs) env_root = os.path.join(gendir, saltenv) if not os.path.isdir(env_root): os.makedirs(env_root) for ref in file_refs[saltenv]: for name in ref: short = salt.utils.url.parse(name)[0] path = file_client.cache_file(name, saltenv, cachedir=cachedir) if path: tgt = os.path.join(env_root, short) tgt_dir = os.path.dirname(tgt) if not os.path.isdir(tgt_dir): os.makedirs(tgt_dir) shutil.copy(path, tgt) continue files = file_client.cache_dir(name, saltenv, cachedir=cachedir) if files: for filename in files: fn = filename[filename.find(short) + len(short):] if fn.startswith('/'): fn = fn.strip('/') tgt = os.path.join( env_root, short, fn, ) tgt_dir = os.path.dirname(tgt) if not os.path.isdir(tgt_dir): os.makedirs(tgt_dir) shutil.copy(filename, tgt) continue try: # cwd may not exist if it was removed but salt was run from it cwd = os.getcwd() except OSError: cwd = None os.chdir(gendir) with closing(tarfile.open(trans_tar, 'w:gz')) as tfp: for root, dirs, files in os.walk(gendir): for name in files: full = os.path.join(root, name) tfp.add(full[len(gendir):].lstrip(os.sep)) if cwd: os.chdir(cwd) shutil.rmtree(gendir) return trans_tar
apache-2.0
doganov/edx-platform
common/djangoapps/enrollment/data.py
41
9880
""" Data Aggregation Layer of the Enrollment API. Collects all enrollment specific data into a single source to be used throughout the API. """ import logging from django.contrib.auth.models import User from opaque_keys.edx.keys import CourseKey from enrollment.errors import ( CourseEnrollmentClosedError, CourseEnrollmentFullError, CourseEnrollmentExistsError, UserNotFoundError, InvalidEnrollmentAttribute ) from enrollment.serializers import CourseEnrollmentSerializer, CourseSerializer from openedx.core.djangoapps.content.course_overviews.models import CourseOverview from openedx.core.lib.exceptions import CourseNotFoundError from student.models import ( CourseEnrollment, NonExistentCourseError, EnrollmentClosedError, CourseFullError, AlreadyEnrolledError, CourseEnrollmentAttribute ) log = logging.getLogger(__name__) def get_course_enrollments(user_id): """Retrieve a list representing all aggregated data for a user's course enrollments. Construct a representation of all course enrollment data for a specific user. Args: user_id (str): The name of the user to retrieve course enrollment information for. Returns: A serializable list of dictionaries of all aggregated enrollment data for a user. """ qset = CourseEnrollment.objects.filter( user__username=user_id, is_active=True ).order_by('created') enrollments = CourseEnrollmentSerializer(qset, many=True).data # Find deleted courses and filter them out of the results deleted = [] valid = [] for enrollment in enrollments: if enrollment.get("course_details") is not None: valid.append(enrollment) else: deleted.append(enrollment) if deleted: log.warning( ( u"Course enrollments for user %s reference " u"courses that do not exist (this can occur if a course is deleted)." ), user_id, ) return valid def get_course_enrollment(username, course_id): """Retrieve an object representing all aggregated data for a user's course enrollment. Get the course enrollment information for a specific user and course. Args: username (str): The name of the user to retrieve course enrollment information for. course_id (str): The course to retrieve course enrollment information for. Returns: A serializable dictionary representing the course enrollment. """ course_key = CourseKey.from_string(course_id) try: enrollment = CourseEnrollment.objects.get( user__username=username, course_id=course_key ) return CourseEnrollmentSerializer(enrollment).data except CourseEnrollment.DoesNotExist: return None def create_course_enrollment(username, course_id, mode, is_active): """Create a new course enrollment for the given user. Creates a new course enrollment for the specified user username. Args: username (str): The name of the user to create a new course enrollment for. course_id (str): The course to create the course enrollment for. mode (str): (Optional) The mode for the new enrollment. is_active (boolean): (Optional) Determines if the enrollment is active. Returns: A serializable dictionary representing the new course enrollment. Raises: CourseNotFoundError CourseEnrollmentFullError EnrollmentClosedError CourseEnrollmentExistsError """ course_key = CourseKey.from_string(course_id) try: user = User.objects.get(username=username) except User.DoesNotExist: msg = u"Not user with username '{username}' found.".format(username=username) log.warn(msg) raise UserNotFoundError(msg) try: enrollment = CourseEnrollment.enroll(user, course_key, check_access=True) return _update_enrollment(enrollment, is_active=is_active, mode=mode) except NonExistentCourseError as err: raise CourseNotFoundError(err.message) except EnrollmentClosedError as err: raise CourseEnrollmentClosedError(err.message) except CourseFullError as err: raise CourseEnrollmentFullError(err.message) except AlreadyEnrolledError as err: enrollment = get_course_enrollment(username, course_id) raise CourseEnrollmentExistsError(err.message, enrollment) def update_course_enrollment(username, course_id, mode=None, is_active=None): """Modify a course enrollment for a user. Allows updates to a specific course enrollment. Args: username (str): The name of the user to retrieve course enrollment information for. course_id (str): The course to retrieve course enrollment information for. mode (str): (Optional) If specified, modify the mode for this enrollment. is_active (boolean): (Optional) Determines if the enrollment is active. Returns: A serializable dictionary representing the modified course enrollment. """ course_key = CourseKey.from_string(course_id) try: user = User.objects.get(username=username) except User.DoesNotExist: msg = u"Not user with username '{username}' found.".format(username=username) log.warn(msg) raise UserNotFoundError(msg) try: enrollment = CourseEnrollment.objects.get(user=user, course_id=course_key) return _update_enrollment(enrollment, is_active=is_active, mode=mode) except CourseEnrollment.DoesNotExist: return None def add_or_update_enrollment_attr(user_id, course_id, attributes): """Set enrollment attributes for the enrollment of given user in the course provided. Args: course_id (str): The Course to set enrollment attributes for. user_id (str): The User to set enrollment attributes for. attributes (list): Attributes to be set. Example: >>>add_or_update_enrollment_attr( "Bob", "course-v1-edX-DemoX-1T2015", [ { "namespace": "credit", "name": "provider_id", "value": "hogwarts", }, ] ) """ course_key = CourseKey.from_string(course_id) user = _get_user(user_id) enrollment = CourseEnrollment.get_enrollment(user, course_key) if not _invalid_attribute(attributes) and enrollment is not None: CourseEnrollmentAttribute.add_enrollment_attr(enrollment, attributes) def get_enrollment_attributes(user_id, course_id): """Retrieve enrollment attributes for given user for provided course. Args: user_id: The User to get enrollment attributes for course_id (str): The Course to get enrollment attributes for. Example: >>>get_enrollment_attributes("Bob", "course-v1-edX-DemoX-1T2015") [ { "namespace": "credit", "name": "provider_id", "value": "hogwarts", }, ] Returns: list """ course_key = CourseKey.from_string(course_id) user = _get_user(user_id) enrollment = CourseEnrollment.get_enrollment(user, course_key) return CourseEnrollmentAttribute.get_enrollment_attributes(enrollment) def _get_user(user_id): """Retrieve user with provided user_id Args: user_id(str): username of the user for which object is to retrieve Returns: obj """ try: return User.objects.get(username=user_id) except User.DoesNotExist: msg = u"Not user with username '{username}' found.".format(username=user_id) log.warn(msg) raise UserNotFoundError(msg) def _update_enrollment(enrollment, is_active=None, mode=None): enrollment.update_enrollment(is_active=is_active, mode=mode) enrollment.save() return CourseEnrollmentSerializer(enrollment).data def _invalid_attribute(attributes): """Validate enrollment attribute Args: attributes(dict): dict of attribute Return: list of invalid attributes """ invalid_attributes = [] for attribute in attributes: if "namespace" not in attribute: msg = u"'namespace' not in enrollment attribute" log.warn(msg) invalid_attributes.append("namespace") raise InvalidEnrollmentAttribute(msg) if "name" not in attribute: msg = u"'name' not in enrollment attribute" log.warn(msg) invalid_attributes.append("name") raise InvalidEnrollmentAttribute(msg) if "value" not in attribute: msg = u"'value' not in enrollment attribute" log.warn(msg) invalid_attributes.append("value") raise InvalidEnrollmentAttribute(msg) return invalid_attributes def get_course_enrollment_info(course_id, include_expired=False): """Returns all course enrollment information for the given course. Based on the course id, return all related course information. Args: course_id (str): The course to retrieve enrollment information for. include_expired (bool): Boolean denoting whether expired course modes should be included in the returned JSON data. Returns: A serializable dictionary representing the course's enrollment information. Raises: CourseNotFoundError """ course_key = CourseKey.from_string(course_id) try: course = CourseOverview.get_from_id(course_key) except CourseOverview.DoesNotExist: msg = u"Requested enrollment information for unknown course {course}".format(course=course_id) log.warning(msg) raise CourseNotFoundError(msg) else: return CourseSerializer(course, include_expired=include_expired).data
agpl-3.0
xodus7/tensorflow
tensorflow/java/maven/tensorflow-android/update.py
27
3972
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fetch android artifacts and update pom properties.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import string import sys import urllib2 def get_args(): """Parse command line args.""" parser = argparse.ArgumentParser() parser.add_argument( '--version', required=True, help='Version for the artifact.') parser.add_argument( '--dir', required=True, help='Directory where the pom and aar artifact will be written.') parser.add_argument( '--template', required=True, help='Path to pom template file.') return parser.parse_args() def get_json(url): """Load the contents of the URL as a json object.""" return json.load(urllib2.urlopen(url)) def get_commit_id(build_info): """Fetch the git commit id from the build info json object.""" release_commit_id = build_info.get('build_commit_id') if release_commit_id: return release_commit_id actions = build_info.get('actions') build_data = next( a for a in actions if a.get('_class') == 'hudson.plugins.git.util.BuildData') if not build_data: raise ValueError('Missing BuildData: %s' % build_info) revision_info = build_data.get('lastBuiltRevision') if not revision_info: raise ValueError('Missing lastBuiltRevision: %s' % build_info) return revision_info.get('SHA1') def get_aar_url(build_info): """Given the json build info, find the URL to the tensorflow.aar artifact.""" base_url = build_info.get('url') if not base_url: raise ValueError('Missing url: %s' % build_info) build_class = build_info.get('_class') if (build_class == 'hudson.model.FreeStyleBuild' or build_class == 'hudson.matrix.MatrixRun'): aar_info = next( a for a in build_info.get('artifacts') if a.get('fileName') == 'tensorflow.aar') if not aar_info: raise ValueError('Missing aar artifact: %s' % build_info) return '%s/artifact/%s' % (base_url, aar_info.get('relativePath')) raise ValueError('Unknown build_type %s' % build_info) def read_template(path): with open(path) as f: return string.Template(f.read()) def main(): args = get_args() release_prefix = 'https://storage.googleapis.com/tensorflow/libtensorflow' info_url = '%s/android_buildinfo-%s.json' % (release_prefix, args.version) aar_url = '%s/tensorflow-%s.aar' % (release_prefix, args.version) build_type = 'release-android' # Retrieve build information build_info = get_json(info_url) # Check all required build info is present build_commit_id = get_commit_id(build_info) if not build_commit_id: raise ValueError('Missing commit id: %s' % build_info) # Write the pom file updated with build attributes. template = read_template(args.template) with open('%s/pom-android.xml' % args.dir, 'w') as f: f.write( template.substitute({ 'build_commit_id': build_commit_id, 'build_type': build_type, 'version': args.version })) # Retrieve the aar location if needed. if not aar_url: aar_url = get_aar_url(build_info) # And download the aar to the desired location. with open('%s/tensorflow.aar' % args.dir, 'w') as f: aar = urllib2.urlopen(aar_url) f.write(aar.read()) if __name__ == '__main__': sys.exit(main())
apache-2.0
marcoarruda/MissionPlanner
Lib/site-packages/scipy/fftpack/benchmarks/bench_basic.py
63
7559
""" Test functions for fftpack.basic module """ import sys from numpy.testing import * from scipy.fftpack import ifft, fft, fftn, irfft, rfft from numpy import arange, asarray, zeros, dot, exp, pi, double, cdouble import numpy.fft from numpy.random import rand def random(size): return rand(*size) def direct_dft(x): x = asarray(x) n = len(x) y = zeros(n,dtype=cdouble) w = -arange(n)*(2j*pi/n) for i in range(n): y[i] = dot(exp(i*w),x) return y def direct_idft(x): x = asarray(x) n = len(x) y = zeros(n,dtype=cdouble) w = arange(n)*(2j*pi/n) for i in range(n): y[i] = dot(exp(i*w),x)/n return y class TestFft(TestCase): def bench_random(self): from numpy.fft import fft as numpy_fft print print ' Fast Fourier Transform' print '=================================================' print ' | real input | complex input ' print '-------------------------------------------------' print ' size | scipy | numpy | scipy | numpy ' print '-------------------------------------------------' for size,repeat in [(100,7000),(1000,2000), (256,10000), (512,10000), (1024,1000), (2048,1000), (2048*2,500), (2048*4,500), ]: print '%5s' % size, sys.stdout.flush() for x in [random([size]).astype(double), random([size]).astype(cdouble)+random([size]).astype(cdouble)*1j ]: if size > 500: y = fft(x) else: y = direct_dft(x) assert_array_almost_equal(fft(x),y) print '|%8.2f' % measure('fft(x)',repeat), sys.stdout.flush() assert_array_almost_equal(numpy_fft(x),y) print '|%8.2f' % measure('numpy_fft(x)',repeat), sys.stdout.flush() print ' (secs for %s calls)' % (repeat) sys.stdout.flush() class TestIfft(TestCase): def bench_random(self): from numpy.fft import ifft as numpy_ifft print print ' Inverse Fast Fourier Transform' print '===============================================' print ' | real input | complex input ' print '-----------------------------------------------' print ' size | scipy | numpy | scipy | numpy ' print '-----------------------------------------------' for size,repeat in [(100,7000),(1000,2000), (256,10000), (512,10000), (1024,1000), (2048,1000), (2048*2,500), (2048*4,500), ]: print '%5s' % size, sys.stdout.flush() for x in [random([size]).astype(double), random([size]).astype(cdouble)+random([size]).astype(cdouble)*1j ]: if size > 500: y = ifft(x) else: y = direct_idft(x) assert_array_almost_equal(ifft(x),y) print '|%8.2f' % measure('ifft(x)',repeat), sys.stdout.flush() assert_array_almost_equal(numpy_ifft(x),y) print '|%8.2f' % measure('numpy_ifft(x)',repeat), sys.stdout.flush() print ' (secs for %s calls)' % (repeat) sys.stdout.flush() class TestRfft(TestCase): def bench_random(self): from numpy.fft import rfft as numpy_rfft print print 'Fast Fourier Transform (real data)' print '==================================' print ' size | scipy | numpy ' print '----------------------------------' for size,repeat in [(100,7000),(1000,2000), (256,10000), (512,10000), (1024,1000), (2048,1000), (2048*2,500), (2048*4,500), ]: print '%5s' % size, sys.stdout.flush() x = random([size]).astype(double) print '|%8.2f' % measure('rfft(x)',repeat), sys.stdout.flush() print '|%8.2f' % measure('numpy_rfft(x)',repeat), sys.stdout.flush() print ' (secs for %s calls)' % (repeat) sys.stdout.flush() class TestIrfft(TestCase): def bench_random(self): from numpy.fft import irfft as numpy_irfft print print 'Inverse Fast Fourier Transform (real data)' print '==================================' print ' size | scipy | numpy ' print '----------------------------------' for size,repeat in [(100,7000),(1000,2000), (256,10000), (512,10000), (1024,1000), (2048,1000), (2048*2,500), (2048*4,500), ]: print '%5s' % size, sys.stdout.flush() x = random([size]).astype(double) x1 = zeros(size/2+1,dtype=cdouble) x1[0] = x[0] for i in range(1,size/2): x1[i] = x[2*i-1] + 1j * x[2*i] if not size%2: x1[-1] = x[-1] y = irfft(x) print '|%8.2f' % measure('irfft(x)',repeat), sys.stdout.flush() assert_array_almost_equal(numpy_irfft(x1,size),y) print '|%8.2f' % measure('numpy_irfft(x1,size)',repeat), sys.stdout.flush() print ' (secs for %s calls)' % (repeat) sys.stdout.flush() class TestFftn(TestCase): def bench_random(self): from numpy.fft import fftn as numpy_fftn print print ' Multi-dimensional Fast Fourier Transform' print '===================================================' print ' | real input | complex input ' print '---------------------------------------------------' print ' size | scipy | numpy | scipy | numpy ' print '---------------------------------------------------' for size,repeat in [((100,100),100),((1000,100),7), ((256,256),10), ((512,512),3), ]: print '%9s' % ('%sx%s'%size), sys.stdout.flush() for x in [random(size).astype(double), random(size).astype(cdouble)+random(size).astype(cdouble)*1j ]: y = fftn(x) #if size > 500: y = fftn(x) #else: y = direct_dft(x) assert_array_almost_equal(fftn(x),y) print '|%8.2f' % measure('fftn(x)',repeat), sys.stdout.flush() assert_array_almost_equal(numpy_fftn(x),y) print '|%8.2f' % measure('numpy_fftn(x)',repeat), sys.stdout.flush() print ' (secs for %s calls)' % (repeat) sys.stdout.flush() if __name__ == "__main__": run_module_suite()
gpl-3.0
cbeck88/fifengine
engine/python/fife/extensions/cegui/ceguibasicapplication.py
2
4813
# -*- coding: utf-8 -*- # #################################################################### # Copyright (C) 2005-2013 by the FIFE team # http://www.fifengine.net # This file is part of FIFE. # # FIFE is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # #################################################################### """ The basic application and main loop. See the L{ApplicationBase} documentation. """ from fife import fife from fife.extensions.basicapplication import ApplicationBase import PyCEGUI class CEGUIEventListener(fife.IKeyListener, fife.ICommandListener): """ Default, rudimentary event listener. Will cause the application to quit on pressing ESC. """ def __init__(self, app): self.app = app self.engine = app.engine eventmanager = self.engine.getEventManager() #eventmanager.setNonConsumableKeys([fife.Key.ESCAPE]) fife.IKeyListener.__init__(self) eventmanager.addKeyListener(self) fife.ICommandListener.__init__(self) eventmanager.addCommandListener(self) self.quitrequested = False self.debuggeractive = False def keyPressed(self, evt): keyval = evt.getKey().getValue() if keyval == fife.Key.ESCAPE: self.app.quit() def keyReleased(self, evt): pass def onCommand(self, command): if command.getCommandType() == fife.CMD_QUIT_GAME: self.quitrequested = True command.consume() DEFAULT_GUI_DIR = "gui/" class CEGUIApplicationBase(ApplicationBase): def __init__(self, setting=None): super(CEGUIApplicationBase, self).__init__(setting) self._initGuiManager() self._loadCEGuiSettings() def _initGuiManager(self): settings = self.engine.getSettings() major_v, minor_v = map(int, PyCEGUI.Version__.split('.')[:2]) #For CEGUI versions lower than 0.8.0 we use the old CEGuiManager if major_v == 0 and minor_v <= 7: guimanager = fife.CEGuiManager() else: guimanager = fife.CEGui_0Manager() #transfer ownership to the engine guimanager.thisown = 0 self.guimanager = guimanager self.engine.setGuiManager(self.guimanager) self.engine.getEventManager().addSdlEventListener(self.guimanager) def _loadCEGuiSettings(self): self._loadResourcePaths() def _loadResourcePaths(self): resourceprovider = PyCEGUI.System.getSingleton().getResourceProvider() major_v, minor_v = map(int, PyCEGUI.Version__.split('.')[:2]) if major_v == 0 and minor_v <= 7: resourcetypemap = { "schemes" : PyCEGUI.Scheme.setDefaultResourceGroup, "imagesets" : PyCEGUI.Imageset.setDefaultResourceGroup, "fonts" : PyCEGUI.Font.setDefaultResourceGroup, "layouts" : PyCEGUI.WindowManager.setDefaultResourceGroup, "looksnfeels" : PyCEGUI.WidgetLookManager.setDefaultResourceGroup, } else: resourcetypemap = { "schemes" : PyCEGUI.Scheme.setDefaultResourceGroup, "imagesets" : PyCEGUI.ImageManager.setImagesetDefaultResourceGroup, "fonts" : PyCEGUI.Font.setDefaultResourceGroup, "layouts" : PyCEGUI.WindowManager.setDefaultResourceGroup, "looksnfeels" : PyCEGUI.WidgetLookManager.setDefaultResourceGroup, } if not self._setting: for restype, res_setfunc in resourcetypemap.iteritems(): resourceprovider.setResourceGroupDirectory(restype, DEFAULT_GUI_DIR + restype) res_setfunc(restype) else: for restype, res_setfunc in resourcetypemap.iteritems(): path = self._setting.get("CEGUI", restype) if path: resourceprovider.setResourceGroupDirectory(restype, path) res_setfunc(restype) else: #set default path resourceprovider.setResourceGroupDirectory(restype, DEFAULT_GUI_DIR + restype) res_setfunc(restype) parser = PyCEGUI.System.getSingleton().getXMLParser() if parser.isPropertyPresent("SchemaDefaultResourceGroup"): path = self._setting.get("CEGUI", "schemas") if path: rp.setResourceGroupDirectory("schemas", path) else: rp.setResourceGroupDirectory("schemas", DEFAULT_GUI_DIR + "schemas") parser.setProperty("SchemaDefaultResourceGroup", "schemas") def createListener(self): self._listener = CEGUIEventListener(self) return self._listener
lgpl-2.1
shuangshuangwang/spark
examples/src/main/python/mllib/gradient_boosting_classification_example.py
27
2446
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Gradient Boosted Trees Classification Example. """ from pyspark import SparkContext # $example on$ from pyspark.mllib.tree import GradientBoostedTrees, GradientBoostedTreesModel from pyspark.mllib.util import MLUtils # $example off$ if __name__ == "__main__": sc = SparkContext(appName="PythonGradientBoostedTreesClassificationExample") # $example on$ # Load and parse the data file. data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") # Split the data into training and test sets (30% held out for testing) (trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a GradientBoostedTrees model. # Notes: (a) Empty categoricalFeaturesInfo indicates all features are continuous. # (b) Use more iterations in practice. model = GradientBoostedTrees.trainClassifier(trainingData, categoricalFeaturesInfo={}, numIterations=3) # Evaluate model on test instances and compute test error predictions = model.predict(testData.map(lambda x: x.features)) labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions) testErr = labelsAndPredictions.filter( lambda lp: lp[0] != lp[1]).count() / float(testData.count()) print('Test Error = ' + str(testErr)) print('Learned classification GBT model:') print(model.toDebugString()) # Save and load model model.save(sc, "target/tmp/myGradientBoostingClassificationModel") sameModel = GradientBoostedTreesModel.load(sc, "target/tmp/myGradientBoostingClassificationModel") # $example off$
apache-2.0
rapidpro/chatpro
chatpro/rooms/models.py
1
2494
from __future__ import absolute_import, unicode_literals from chatpro.profiles.tasks import sync_org_contacts from dash.orgs.models import Org from django.contrib.auth.models import User from django.db import models from django.utils.translation import ugettext_lazy as _ class Room(models.Model): """ Corresponds to a RapidPro contact group """ uuid = models.CharField(max_length=36, unique=True) org = models.ForeignKey(Org, verbose_name=_("Organization"), related_name='rooms') name = models.CharField(verbose_name=_("Name"), max_length=128, blank=True, help_text=_("Name of this room")) users = models.ManyToManyField(User, verbose_name=_("Users"), related_name='rooms', help_text=_("Users who can chat in this room")) managers = models.ManyToManyField(User, verbose_name=_("Managers"), related_name='manage_rooms', help_text=_("Users who can manage contacts in this room")) is_active = models.BooleanField(default=True, help_text="Whether this room is active") @classmethod def create(cls, org, name, uuid): return cls.objects.create(org=org, name=name, uuid=uuid) @classmethod def get_all(cls, org): return cls.objects.filter(org=org, is_active=True) @classmethod def update_room_groups(cls, org, group_uuids): """ Updates an org's chat rooms based on the selected groups UUIDs """ # de-activate rooms not included org.rooms.exclude(uuid__in=group_uuids).update(is_active=False) # fetch group details groups = org.get_temba_client().get_groups() group_names = {group.uuid: group.name for group in groups} for group_uuid in group_uuids: existing = org.rooms.filter(uuid=group_uuid).first() if existing: existing.name = group_names[group_uuid] existing.is_active = True existing.save() else: cls.create(org, group_names[group_uuid], group_uuid) sync_org_contacts.delay(org.id) def get_contacts(self): return self.contacts.filter(is_active=True) def get_users(self): return self.users.filter(is_active=True).select_related('profile') def get_managers(self): return self.managers.filter(is_active=True).select_related('profile') def __unicode__(self): return self.name
bsd-3-clause
sbalde/edxplatform
common/djangoapps/third_party_auth/tests/specs/test_testshib.py
24
12276
""" Third_party_auth integration tests using a mock version of the TestShib provider """ import json import unittest import httpretty from mock import patch from django.core.urlresolvers import reverse from openedx.core.lib.json_utils import EscapedEdxJSONEncoder from student.tests.factories import UserFactory from third_party_auth.tasks import fetch_saml_metadata from third_party_auth.tests import testutil TESTSHIB_ENTITY_ID = 'https://idp.testshib.org/idp/shibboleth' TESTSHIB_METADATA_URL = 'https://mock.testshib.org/metadata/testshib-providers.xml' TESTSHIB_SSO_URL = 'https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO' TPA_TESTSHIB_LOGIN_URL = '/auth/login/tpa-saml/?auth_entry=login&next=%2Fdashboard&idp=testshib' TPA_TESTSHIB_REGISTER_URL = '/auth/login/tpa-saml/?auth_entry=register&next=%2Fdashboard&idp=testshib' TPA_TESTSHIB_COMPLETE_URL = '/auth/complete/tpa-saml/' @unittest.skipUnless(testutil.AUTH_FEATURE_ENABLED, 'third_party_auth not enabled') class TestShibIntegrationTest(testutil.SAMLTestCase): """ TestShib provider Integration Test, to test SAML functionality """ def setUp(self): super(TestShibIntegrationTest, self).setUp() self.login_page_url = reverse('signin_user') self.register_page_url = reverse('register_user') self.enable_saml( private_key=self._get_private_key(), public_key=self._get_public_key(), entity_id="https://saml.example.none", ) # Mock out HTTP requests that may be made to TestShib: httpretty.enable() def metadata_callback(_request, _uri, headers): """ Return a cached copy of TestShib's metadata by reading it from disk """ return (200, headers, self.read_data_file('testshib_metadata.xml')) httpretty.register_uri(httpretty.GET, TESTSHIB_METADATA_URL, content_type='text/xml', body=metadata_callback) self.addCleanup(httpretty.disable) self.addCleanup(httpretty.reset) # Configure the SAML library to use the same request ID for every request. # Doing this and freezing the time allows us to play back recorded request/response pairs uid_patch = patch('onelogin.saml2.utils.OneLogin_Saml2_Utils.generate_unique_id', return_value='TESTID') uid_patch.start() self.addCleanup(uid_patch.stop) def test_login_before_metadata_fetched(self): self._configure_testshib_provider(fetch_metadata=False) # The user goes to the login page, and sees a button to login with TestShib: self._check_login_page() # The user clicks on the TestShib button: try_login_response = self.client.get(TPA_TESTSHIB_LOGIN_URL) # The user should be redirected to back to the login page: self.assertEqual(try_login_response.status_code, 302) self.assertEqual(try_login_response['Location'], self.url_prefix + self.login_page_url) # When loading the login page, the user will see an error message: response = self.client.get(self.login_page_url) self.assertEqual(response.status_code, 200) self.assertIn('Authentication with TestShib is currently unavailable.', response.content) def test_register(self): self._configure_testshib_provider() self._freeze_time(timestamp=1434326820) # This is the time when the saved request/response was recorded. # The user goes to the register page, and sees a button to register with TestShib: self._check_register_page() # The user clicks on the TestShib button: try_login_response = self.client.get(TPA_TESTSHIB_REGISTER_URL) # The user should be redirected to TestShib: self.assertEqual(try_login_response.status_code, 302) self.assertTrue(try_login_response['Location'].startswith(TESTSHIB_SSO_URL)) # Now the user will authenticate with the SAML provider testshib_response = self._fake_testshib_login_and_return() # We should be redirected to the register screen since this account is not linked to an edX account: self.assertEqual(testshib_response.status_code, 302) self.assertEqual(testshib_response['Location'], self.url_prefix + self.register_page_url) register_response = self.client.get(self.register_page_url) # We'd now like to see if the "You've successfully signed into TestShib" message is # shown, but it's managed by a JavaScript runtime template, and we can't run JS in this # type of test, so we just check for the variable that triggers that message. self.assertIn('"currentProvider": "TestShib"', register_response.content) self.assertIn('"errorMessage": null', register_response.content) # Now do a crude check that the data (e.g. email) from the provider is displayed in the form: self.assertIn('"defaultValue": "[email protected]"', register_response.content) self.assertIn('"defaultValue": "Me Myself And I"', register_response.content) # Now complete the form: ajax_register_response = self.client.post( reverse('user_api_registration'), { 'email': '[email protected]', 'name': 'Myself', 'username': 'myself', 'honor_code': True, } ) self.assertEqual(ajax_register_response.status_code, 200) # Then the AJAX will finish the third party auth: continue_response = self.client.get(TPA_TESTSHIB_COMPLETE_URL) # And we should be redirected to the dashboard: self.assertEqual(continue_response.status_code, 302) self.assertEqual(continue_response['Location'], self.url_prefix + reverse('dashboard')) # Now check that we can login again: self.client.logout() self.verify_user_email('[email protected]') self._test_return_login() def test_login(self): self._configure_testshib_provider() self._freeze_time(timestamp=1434326820) # This is the time when the saved request/response was recorded. user = UserFactory.create() # The user goes to the login page, and sees a button to login with TestShib: self._check_login_page() # The user clicks on the TestShib button: try_login_response = self.client.get(TPA_TESTSHIB_LOGIN_URL) # The user should be redirected to TestShib: self.assertEqual(try_login_response.status_code, 302) self.assertTrue(try_login_response['Location'].startswith(TESTSHIB_SSO_URL)) # Now the user will authenticate with the SAML provider testshib_response = self._fake_testshib_login_and_return() # We should be redirected to the login screen since this account is not linked to an edX account: self.assertEqual(testshib_response.status_code, 302) self.assertEqual(testshib_response['Location'], self.url_prefix + self.login_page_url) login_response = self.client.get(self.login_page_url) # We'd now like to see if the "You've successfully signed into TestShib" message is # shown, but it's managed by a JavaScript runtime template, and we can't run JS in this # type of test, so we just check for the variable that triggers that message. self.assertIn('"currentProvider": "TestShib"', login_response.content) self.assertIn('"errorMessage": null', login_response.content) # Now the user enters their username and password. # The AJAX on the page will log them in: ajax_login_response = self.client.post( reverse('user_api_login_session'), {'email': user.email, 'password': 'test'} ) self.assertEqual(ajax_login_response.status_code, 200) # Then the AJAX will finish the third party auth: continue_response = self.client.get(TPA_TESTSHIB_COMPLETE_URL) # And we should be redirected to the dashboard: self.assertEqual(continue_response.status_code, 302) self.assertEqual(continue_response['Location'], self.url_prefix + reverse('dashboard')) # Now check that we can login again: self.client.logout() self._test_return_login() def _test_return_login(self): """ Test logging in to an account that is already linked. """ # Make sure we're not logged in: dashboard_response = self.client.get(reverse('dashboard')) self.assertEqual(dashboard_response.status_code, 302) # The user goes to the login page, and sees a button to login with TestShib: self._check_login_page() # The user clicks on the TestShib button: try_login_response = self.client.get(TPA_TESTSHIB_LOGIN_URL) # The user should be redirected to TestShib: self.assertEqual(try_login_response.status_code, 302) self.assertTrue(try_login_response['Location'].startswith(TESTSHIB_SSO_URL)) # Now the user will authenticate with the SAML provider login_response = self._fake_testshib_login_and_return() # There will be one weird redirect required to set the login cookie: self.assertEqual(login_response.status_code, 302) self.assertEqual(login_response['Location'], self.url_prefix + TPA_TESTSHIB_COMPLETE_URL) # And then we should be redirected to the dashboard: login_response = self.client.get(TPA_TESTSHIB_COMPLETE_URL) self.assertEqual(login_response.status_code, 302) self.assertEqual(login_response['Location'], self.url_prefix + reverse('dashboard')) # Now we are logged in: dashboard_response = self.client.get(reverse('dashboard')) self.assertEqual(dashboard_response.status_code, 200) def _freeze_time(self, timestamp): """ Mock the current time for SAML, so we can replay canned requests/responses """ now_patch = patch('onelogin.saml2.utils.OneLogin_Saml2_Utils.now', return_value=timestamp) now_patch.start() self.addCleanup(now_patch.stop) def _check_login_page(self): """ Load the login form and check that it contains a TestShib button """ response = self.client.get(self.login_page_url) self.assertEqual(response.status_code, 200) self.assertIn("TestShib", response.content) self.assertIn(json.dumps(TPA_TESTSHIB_LOGIN_URL, cls=EscapedEdxJSONEncoder), response.content) return response def _check_register_page(self): """ Load the login form and check that it contains a TestShib button """ response = self.client.get(self.register_page_url) self.assertEqual(response.status_code, 200) self.assertIn("TestShib", response.content) self.assertIn(json.dumps(TPA_TESTSHIB_REGISTER_URL, cls=EscapedEdxJSONEncoder), response.content) return response def _configure_testshib_provider(self, **kwargs): """ Enable and configure the TestShib SAML IdP as a third_party_auth provider """ fetch_metadata = kwargs.pop('fetch_metadata', True) kwargs.setdefault('name', 'TestShib') kwargs.setdefault('enabled', True) kwargs.setdefault('idp_slug', 'testshib') kwargs.setdefault('entity_id', TESTSHIB_ENTITY_ID) kwargs.setdefault('metadata_source', TESTSHIB_METADATA_URL) kwargs.setdefault('icon_class', 'fa-university') kwargs.setdefault('attr_email', 'urn:oid:1.3.6.1.4.1.5923.1.1.1.6') # eduPersonPrincipalName self.configure_saml_provider(**kwargs) if fetch_metadata: self.assertTrue(httpretty.is_enabled()) num_changed, num_failed, num_total = fetch_saml_metadata() self.assertEqual(num_failed, 0) self.assertEqual(num_changed, 1) self.assertEqual(num_total, 1) def _fake_testshib_login_and_return(self): """ Mocked: the user logs in to TestShib and then gets redirected back """ # The SAML provider (TestShib) will authenticate the user, then get the browser to POST a response: return self.client.post( TPA_TESTSHIB_COMPLETE_URL, content_type='application/x-www-form-urlencoded', data=self.read_data_file('testshib_response.txt'), )
agpl-3.0
JoKnopp/wp-import
test/test_postgresql.py
1
4427
# -*- coding: UTF-8 -*- # © Copyright 2009 Wolodja Wentland. All Rights Reserved. # This file is part of wp-import. # # wp-import is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # wp-import is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with wp-import. If not, see <http://www.gnu.org/licenses/>. """Tests for wp_import.postgresql """ from __future__ import absolute_import from __future__ import unicode_literals import os import re import tempfile from nose.tools import * import wp_import.utils as wpi_utils import wp_import.postgresql as wpi_psql PREFIX = os.path.join(*os.path.split(os.path.dirname(__file__))[:-1]) TEST_DATA_DIR = os.path.join(PREFIX, 'test', 'data') DOWNLOAD_DIR = os.path.join(TEST_DATA_DIR, 'download') EXPECTED_STMTS = { 'categorylinks': [ """INSERT INTO "categorylinks" VALUES """ \ "(130,'Linux','Linux\u5185\u6838','2006-07-25T19:03:22Z')"], 'langlinks': [ """INSERT INTO "langlinks" VALUES """ \ "(43017,'af','Dante Alighieri')"], 'pagelinks': [ """INSERT INTO "pagelinks" VALUES (12,0,'P/NP\u554f\u984c')"""], 'redirect': [ """INSERT INTO "redirect" VALUES (71247,0,'ASCII\u827a\u672f')"""]} class FakeOptions(object): pass def test_insert_statements(): fn_pat = re.compile( r'''(?P<language>\w+)wiki-(?P<date>\d{8})-(?P<table>[\w_]+).*''') for dump_path in sorted(wpi_utils.find('*.sql.gz', DOWNLOAD_DIR)): filename = os.path.basename(dump_path) mat = fn_pat.match(filename) stmts = list(wpi_psql.insert_statements(dump_path)) eq_(list(wpi_psql.insert_statements(dump_path)), EXPECTED_STMTS[mat.group('table')]) def test_categorylink_pipeline(): for file_path in wpi_utils.find('*categorylinks*.sql.gz', DOWNLOAD_DIR): with wpi_utils.open_compressed(file_path) as cl_file: eq_(list(wpi_psql.categorylinks_pipeline(cl_file)), EXPECTED_STMTS['categorylinks']) def test_psql_quotation(): eq_(list(wpi_psql.psql_quotation(['f `b`', 'baz', 'shrubbery ``'])), ['f "b"', 'baz', 'shrubbery ""']) def test_timestamp_to_iso_8601(): eq_(list(wpi_psql.timestamp_to_iso_8601([',20080218135752) foo'])), [",'2008-02-18T13:57:52Z') foo"]) def test_parse_pgpass(): with tempfile.NamedTemporaryFile() as tmp_f: tmp_f.write('*:*:*:*:GrailQuest\n') tmp_f.seek(0) eq_(wpi_psql._parse_pgpass(tmp_f.name).next(), {'user': '*', 'host': '*', 'port': '*', 'database': '*', 'password': 'GrailQuest'}) tmp_f.write('hostname:port:database:username:password\n') tmp_f.seek(0) eq_(wpi_psql._parse_pgpass(tmp_f.name).next(), {'user': 'username', 'host': 'hostname', 'port': 'port', 'database': 'database', 'password': 'password'}) def test_password_from_pgpass(): with tempfile.NamedTemporaryFile() as tmp_f: options = FakeOptions() options.pg_passfile = tmp_f.name options.pg_user = 'KingArthur' options.pg_port = '2342' options.pg_host = 'Camelot' # test generic pgpass line tmp_f.write('*:*:*:*:GrailQuest\n') tmp_f.seek(0) eq_(wpi_psql.password_from_pgpass(options), 'GrailQuest') # test specific pgpass line tmp_f.write('Camelot:2342:postgres:KingArthur:GrailQuest\n') tmp_f.seek(0) eq_(wpi_psql.password_from_pgpass(options), 'GrailQuest') # test pick most specific tmp_f.write('Jerusalem:2342:postgres:Brian:Jehova\n') tmp_f.write('Camelot:2342:postgres:KingArthur:GrailQuest\n') tmp_f.write('*:*:*:*:UnladenSwallow\n') tmp_f.seek(0) eq_(wpi_psql.password_from_pgpass(options), 'GrailQuest') tmp_f.write('*:*:*:*\n') tmp_f.seek(0) assert_raises(KeyError, wpi_psql.password_from_pgpass, options=options)
gpl-3.0
simonfork/aquaria
ExternalLibs/freetype2/src/tools/glnames.py
259
103407
#!/usr/bin/env python # # # FreeType 2 glyph name builder # # Copyright 1996-2000, 2003, 2005, 2007, 2008 by # David Turner, Robert Wilhelm, and Werner Lemberg. # # This file is part of the FreeType project, and may only be used, modified, # and distributed under the terms of the FreeType project license, # LICENSE.TXT. By continuing to use, modify, or distribute this file you # indicate that you have read the license and understand and accept it # fully. """\ usage: %s <output-file> This python script generates the glyph names tables defined in the `psnames' module. Its single argument is the name of the header file to be created. """ import sys, string, struct, re, os.path # This table lists the glyphs according to the Macintosh specification. # It is used by the TrueType Postscript names table. # # See # # http://fonts.apple.com/TTRefMan/RM06/Chap6post.html # # for the official list. # mac_standard_names = \ [ # 0 ".notdef", ".null", "nonmarkingreturn", "space", "exclam", "quotedbl", "numbersign", "dollar", "percent", "ampersand", # 10 "quotesingle", "parenleft", "parenright", "asterisk", "plus", "comma", "hyphen", "period", "slash", "zero", # 20 "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "colon", # 30 "semicolon", "less", "equal", "greater", "question", "at", "A", "B", "C", "D", # 40 "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", # 50 "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", # 60 "Y", "Z", "bracketleft", "backslash", "bracketright", "asciicircum", "underscore", "grave", "a", "b", # 70 "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", # 80 "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", # 90 "w", "x", "y", "z", "braceleft", "bar", "braceright", "asciitilde", "Adieresis", "Aring", # 100 "Ccedilla", "Eacute", "Ntilde", "Odieresis", "Udieresis", "aacute", "agrave", "acircumflex", "adieresis", "atilde", # 110 "aring", "ccedilla", "eacute", "egrave", "ecircumflex", "edieresis", "iacute", "igrave", "icircumflex", "idieresis", # 120 "ntilde", "oacute", "ograve", "ocircumflex", "odieresis", "otilde", "uacute", "ugrave", "ucircumflex", "udieresis", # 130 "dagger", "degree", "cent", "sterling", "section", "bullet", "paragraph", "germandbls", "registered", "copyright", # 140 "trademark", "acute", "dieresis", "notequal", "AE", "Oslash", "infinity", "plusminus", "lessequal", "greaterequal", # 150 "yen", "mu", "partialdiff", "summation", "product", "pi", "integral", "ordfeminine", "ordmasculine", "Omega", # 160 "ae", "oslash", "questiondown", "exclamdown", "logicalnot", "radical", "florin", "approxequal", "Delta", "guillemotleft", # 170 "guillemotright", "ellipsis", "nonbreakingspace", "Agrave", "Atilde", "Otilde", "OE", "oe", "endash", "emdash", # 180 "quotedblleft", "quotedblright", "quoteleft", "quoteright", "divide", "lozenge", "ydieresis", "Ydieresis", "fraction", "currency", # 190 "guilsinglleft", "guilsinglright", "fi", "fl", "daggerdbl", "periodcentered", "quotesinglbase", "quotedblbase", "perthousand", "Acircumflex", # 200 "Ecircumflex", "Aacute", "Edieresis", "Egrave", "Iacute", "Icircumflex", "Idieresis", "Igrave", "Oacute", "Ocircumflex", # 210 "apple", "Ograve", "Uacute", "Ucircumflex", "Ugrave", "dotlessi", "circumflex", "tilde", "macron", "breve", # 220 "dotaccent", "ring", "cedilla", "hungarumlaut", "ogonek", "caron", "Lslash", "lslash", "Scaron", "scaron", # 230 "Zcaron", "zcaron", "brokenbar", "Eth", "eth", "Yacute", "yacute", "Thorn", "thorn", "minus", # 240 "multiply", "onesuperior", "twosuperior", "threesuperior", "onehalf", "onequarter", "threequarters", "franc", "Gbreve", "gbreve", # 250 "Idotaccent", "Scedilla", "scedilla", "Cacute", "cacute", "Ccaron", "ccaron", "dcroat" ] # The list of standard `SID' glyph names. For the official list, # see Annex A of document at # # http://partners.adobe.com/asn/developer/pdfs/tn/5176.CFF.pdf. # sid_standard_names = \ [ # 0 ".notdef", "space", "exclam", "quotedbl", "numbersign", "dollar", "percent", "ampersand", "quoteright", "parenleft", # 10 "parenright", "asterisk", "plus", "comma", "hyphen", "period", "slash", "zero", "one", "two", # 20 "three", "four", "five", "six", "seven", "eight", "nine", "colon", "semicolon", "less", # 30 "equal", "greater", "question", "at", "A", "B", "C", "D", "E", "F", # 40 "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", # 50 "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", # 60 "bracketleft", "backslash", "bracketright", "asciicircum", "underscore", "quoteleft", "a", "b", "c", "d", # 70 "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", # 80 "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", # 90 "y", "z", "braceleft", "bar", "braceright", "asciitilde", "exclamdown", "cent", "sterling", "fraction", # 100 "yen", "florin", "section", "currency", "quotesingle", "quotedblleft", "guillemotleft", "guilsinglleft", "guilsinglright", "fi", # 110 "fl", "endash", "dagger", "daggerdbl", "periodcentered", "paragraph", "bullet", "quotesinglbase", "quotedblbase", "quotedblright", # 120 "guillemotright", "ellipsis", "perthousand", "questiondown", "grave", "acute", "circumflex", "tilde", "macron", "breve", # 130 "dotaccent", "dieresis", "ring", "cedilla", "hungarumlaut", "ogonek", "caron", "emdash", "AE", "ordfeminine", # 140 "Lslash", "Oslash", "OE", "ordmasculine", "ae", "dotlessi", "lslash", "oslash", "oe", "germandbls", # 150 "onesuperior", "logicalnot", "mu", "trademark", "Eth", "onehalf", "plusminus", "Thorn", "onequarter", "divide", # 160 "brokenbar", "degree", "thorn", "threequarters", "twosuperior", "registered", "minus", "eth", "multiply", "threesuperior", # 170 "copyright", "Aacute", "Acircumflex", "Adieresis", "Agrave", "Aring", "Atilde", "Ccedilla", "Eacute", "Ecircumflex", # 180 "Edieresis", "Egrave", "Iacute", "Icircumflex", "Idieresis", "Igrave", "Ntilde", "Oacute", "Ocircumflex", "Odieresis", # 190 "Ograve", "Otilde", "Scaron", "Uacute", "Ucircumflex", "Udieresis", "Ugrave", "Yacute", "Ydieresis", "Zcaron", # 200 "aacute", "acircumflex", "adieresis", "agrave", "aring", "atilde", "ccedilla", "eacute", "ecircumflex", "edieresis", # 210 "egrave", "iacute", "icircumflex", "idieresis", "igrave", "ntilde", "oacute", "ocircumflex", "odieresis", "ograve", # 220 "otilde", "scaron", "uacute", "ucircumflex", "udieresis", "ugrave", "yacute", "ydieresis", "zcaron", "exclamsmall", # 230 "Hungarumlautsmall", "dollaroldstyle", "dollarsuperior", "ampersandsmall", "Acutesmall", "parenleftsuperior", "parenrightsuperior", "twodotenleader", "onedotenleader", "zerooldstyle", # 240 "oneoldstyle", "twooldstyle", "threeoldstyle", "fouroldstyle", "fiveoldstyle", "sixoldstyle", "sevenoldstyle", "eightoldstyle", "nineoldstyle", "commasuperior", # 250 "threequartersemdash", "periodsuperior", "questionsmall", "asuperior", "bsuperior", "centsuperior", "dsuperior", "esuperior", "isuperior", "lsuperior", # 260 "msuperior", "nsuperior", "osuperior", "rsuperior", "ssuperior", "tsuperior", "ff", "ffi", "ffl", "parenleftinferior", # 270 "parenrightinferior", "Circumflexsmall", "hyphensuperior", "Gravesmall", "Asmall", "Bsmall", "Csmall", "Dsmall", "Esmall", "Fsmall", # 280 "Gsmall", "Hsmall", "Ismall", "Jsmall", "Ksmall", "Lsmall", "Msmall", "Nsmall", "Osmall", "Psmall", # 290 "Qsmall", "Rsmall", "Ssmall", "Tsmall", "Usmall", "Vsmall", "Wsmall", "Xsmall", "Ysmall", "Zsmall", # 300 "colonmonetary", "onefitted", "rupiah", "Tildesmall", "exclamdownsmall", "centoldstyle", "Lslashsmall", "Scaronsmall", "Zcaronsmall", "Dieresissmall", # 310 "Brevesmall", "Caronsmall", "Dotaccentsmall", "Macronsmall", "figuredash", "hypheninferior", "Ogoneksmall", "Ringsmall", "Cedillasmall", "questiondownsmall", # 320 "oneeighth", "threeeighths", "fiveeighths", "seveneighths", "onethird", "twothirds", "zerosuperior", "foursuperior", "fivesuperior", "sixsuperior", # 330 "sevensuperior", "eightsuperior", "ninesuperior", "zeroinferior", "oneinferior", "twoinferior", "threeinferior", "fourinferior", "fiveinferior", "sixinferior", # 340 "seveninferior", "eightinferior", "nineinferior", "centinferior", "dollarinferior", "periodinferior", "commainferior", "Agravesmall", "Aacutesmall", "Acircumflexsmall", # 350 "Atildesmall", "Adieresissmall", "Aringsmall", "AEsmall", "Ccedillasmall", "Egravesmall", "Eacutesmall", "Ecircumflexsmall", "Edieresissmall", "Igravesmall", # 360 "Iacutesmall", "Icircumflexsmall", "Idieresissmall", "Ethsmall", "Ntildesmall", "Ogravesmall", "Oacutesmall", "Ocircumflexsmall", "Otildesmall", "Odieresissmall", # 370 "OEsmall", "Oslashsmall", "Ugravesmall", "Uacutesmall", "Ucircumflexsmall", "Udieresissmall", "Yacutesmall", "Thornsmall", "Ydieresissmall", "001.000", # 380 "001.001", "001.002", "001.003", "Black", "Bold", "Book", "Light", "Medium", "Regular", "Roman", # 390 "Semibold" ] # This table maps character codes of the Adobe Standard Type 1 # encoding to glyph indices in the sid_standard_names table. # t1_standard_encoding = \ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 0, 111, 112, 113, 114, 0, 115, 116, 117, 118, 119, 120, 121, 122, 0, 123, 0, 124, 125, 126, 127, 128, 129, 130, 131, 0, 132, 133, 0, 134, 135, 136, 137, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 138, 0, 139, 0, 0, 0, 0, 140, 141, 142, 143, 0, 0, 0, 0, 0, 144, 0, 0, 0, 145, 0, 0, 146, 147, 148, 149, 0, 0, 0, 0 ] # This table maps character codes of the Adobe Expert Type 1 # encoding to glyph indices in the sid_standard_names table. # t1_expert_encoding = \ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 229, 230, 0, 231, 232, 233, 234, 235, 236, 237, 238, 13, 14, 15, 99, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 27, 28, 249, 250, 251, 252, 0, 253, 254, 255, 256, 257, 0, 0, 0, 258, 0, 0, 259, 260, 261, 262, 0, 0, 263, 264, 265, 0, 266, 109, 110, 267, 268, 269, 0, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 304, 305, 306, 0, 0, 307, 308, 309, 310, 311, 0, 312, 0, 0, 313, 0, 0, 314, 315, 0, 0, 316, 317, 318, 0, 0, 0, 158, 155, 163, 319, 320, 321, 322, 323, 324, 325, 0, 0, 326, 150, 164, 169, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378 ] # This data has been taken literally from the file `glyphlist.txt', # version 2.0, 22 Sept 2002. It is available from # # http://partners.adobe.com/asn/developer/typeforum/unicodegn.html # http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt # adobe_glyph_list = """\ A;0041 AE;00C6 AEacute;01FC AEmacron;01E2 AEsmall;F7E6 Aacute;00C1 Aacutesmall;F7E1 Abreve;0102 Abreveacute;1EAE Abrevecyrillic;04D0 Abrevedotbelow;1EB6 Abrevegrave;1EB0 Abrevehookabove;1EB2 Abrevetilde;1EB4 Acaron;01CD Acircle;24B6 Acircumflex;00C2 Acircumflexacute;1EA4 Acircumflexdotbelow;1EAC Acircumflexgrave;1EA6 Acircumflexhookabove;1EA8 Acircumflexsmall;F7E2 Acircumflextilde;1EAA Acute;F6C9 Acutesmall;F7B4 Acyrillic;0410 Adblgrave;0200 Adieresis;00C4 Adieresiscyrillic;04D2 Adieresismacron;01DE Adieresissmall;F7E4 Adotbelow;1EA0 Adotmacron;01E0 Agrave;00C0 Agravesmall;F7E0 Ahookabove;1EA2 Aiecyrillic;04D4 Ainvertedbreve;0202 Alpha;0391 Alphatonos;0386 Amacron;0100 Amonospace;FF21 Aogonek;0104 Aring;00C5 Aringacute;01FA Aringbelow;1E00 Aringsmall;F7E5 Asmall;F761 Atilde;00C3 Atildesmall;F7E3 Aybarmenian;0531 B;0042 Bcircle;24B7 Bdotaccent;1E02 Bdotbelow;1E04 Becyrillic;0411 Benarmenian;0532 Beta;0392 Bhook;0181 Blinebelow;1E06 Bmonospace;FF22 Brevesmall;F6F4 Bsmall;F762 Btopbar;0182 C;0043 Caarmenian;053E Cacute;0106 Caron;F6CA Caronsmall;F6F5 Ccaron;010C Ccedilla;00C7 Ccedillaacute;1E08 Ccedillasmall;F7E7 Ccircle;24B8 Ccircumflex;0108 Cdot;010A Cdotaccent;010A Cedillasmall;F7B8 Chaarmenian;0549 Cheabkhasiancyrillic;04BC Checyrillic;0427 Chedescenderabkhasiancyrillic;04BE Chedescendercyrillic;04B6 Chedieresiscyrillic;04F4 Cheharmenian;0543 Chekhakassiancyrillic;04CB Cheverticalstrokecyrillic;04B8 Chi;03A7 Chook;0187 Circumflexsmall;F6F6 Cmonospace;FF23 Coarmenian;0551 Csmall;F763 D;0044 DZ;01F1 DZcaron;01C4 Daarmenian;0534 Dafrican;0189 Dcaron;010E Dcedilla;1E10 Dcircle;24B9 Dcircumflexbelow;1E12 Dcroat;0110 Ddotaccent;1E0A Ddotbelow;1E0C Decyrillic;0414 Deicoptic;03EE Delta;2206 Deltagreek;0394 Dhook;018A Dieresis;F6CB DieresisAcute;F6CC DieresisGrave;F6CD Dieresissmall;F7A8 Digammagreek;03DC Djecyrillic;0402 Dlinebelow;1E0E Dmonospace;FF24 Dotaccentsmall;F6F7 Dslash;0110 Dsmall;F764 Dtopbar;018B Dz;01F2 Dzcaron;01C5 Dzeabkhasiancyrillic;04E0 Dzecyrillic;0405 Dzhecyrillic;040F E;0045 Eacute;00C9 Eacutesmall;F7E9 Ebreve;0114 Ecaron;011A Ecedillabreve;1E1C Echarmenian;0535 Ecircle;24BA Ecircumflex;00CA Ecircumflexacute;1EBE Ecircumflexbelow;1E18 Ecircumflexdotbelow;1EC6 Ecircumflexgrave;1EC0 Ecircumflexhookabove;1EC2 Ecircumflexsmall;F7EA Ecircumflextilde;1EC4 Ecyrillic;0404 Edblgrave;0204 Edieresis;00CB Edieresissmall;F7EB Edot;0116 Edotaccent;0116 Edotbelow;1EB8 Efcyrillic;0424 Egrave;00C8 Egravesmall;F7E8 Eharmenian;0537 Ehookabove;1EBA Eightroman;2167 Einvertedbreve;0206 Eiotifiedcyrillic;0464 Elcyrillic;041B Elevenroman;216A Emacron;0112 Emacronacute;1E16 Emacrongrave;1E14 Emcyrillic;041C Emonospace;FF25 Encyrillic;041D Endescendercyrillic;04A2 Eng;014A Enghecyrillic;04A4 Enhookcyrillic;04C7 Eogonek;0118 Eopen;0190 Epsilon;0395 Epsilontonos;0388 Ercyrillic;0420 Ereversed;018E Ereversedcyrillic;042D Escyrillic;0421 Esdescendercyrillic;04AA Esh;01A9 Esmall;F765 Eta;0397 Etarmenian;0538 Etatonos;0389 Eth;00D0 Ethsmall;F7F0 Etilde;1EBC Etildebelow;1E1A Euro;20AC Ezh;01B7 Ezhcaron;01EE Ezhreversed;01B8 F;0046 Fcircle;24BB Fdotaccent;1E1E Feharmenian;0556 Feicoptic;03E4 Fhook;0191 Fitacyrillic;0472 Fiveroman;2164 Fmonospace;FF26 Fourroman;2163 Fsmall;F766 G;0047 GBsquare;3387 Gacute;01F4 Gamma;0393 Gammaafrican;0194 Gangiacoptic;03EA Gbreve;011E Gcaron;01E6 Gcedilla;0122 Gcircle;24BC Gcircumflex;011C Gcommaaccent;0122 Gdot;0120 Gdotaccent;0120 Gecyrillic;0413 Ghadarmenian;0542 Ghemiddlehookcyrillic;0494 Ghestrokecyrillic;0492 Gheupturncyrillic;0490 Ghook;0193 Gimarmenian;0533 Gjecyrillic;0403 Gmacron;1E20 Gmonospace;FF27 Grave;F6CE Gravesmall;F760 Gsmall;F767 Gsmallhook;029B Gstroke;01E4 H;0048 H18533;25CF H18543;25AA H18551;25AB H22073;25A1 HPsquare;33CB Haabkhasiancyrillic;04A8 Hadescendercyrillic;04B2 Hardsigncyrillic;042A Hbar;0126 Hbrevebelow;1E2A Hcedilla;1E28 Hcircle;24BD Hcircumflex;0124 Hdieresis;1E26 Hdotaccent;1E22 Hdotbelow;1E24 Hmonospace;FF28 Hoarmenian;0540 Horicoptic;03E8 Hsmall;F768 Hungarumlaut;F6CF Hungarumlautsmall;F6F8 Hzsquare;3390 I;0049 IAcyrillic;042F IJ;0132 IUcyrillic;042E Iacute;00CD Iacutesmall;F7ED Ibreve;012C Icaron;01CF Icircle;24BE Icircumflex;00CE Icircumflexsmall;F7EE Icyrillic;0406 Idblgrave;0208 Idieresis;00CF Idieresisacute;1E2E Idieresiscyrillic;04E4 Idieresissmall;F7EF Idot;0130 Idotaccent;0130 Idotbelow;1ECA Iebrevecyrillic;04D6 Iecyrillic;0415 Ifraktur;2111 Igrave;00CC Igravesmall;F7EC Ihookabove;1EC8 Iicyrillic;0418 Iinvertedbreve;020A Iishortcyrillic;0419 Imacron;012A Imacroncyrillic;04E2 Imonospace;FF29 Iniarmenian;053B Iocyrillic;0401 Iogonek;012E Iota;0399 Iotaafrican;0196 Iotadieresis;03AA Iotatonos;038A Ismall;F769 Istroke;0197 Itilde;0128 Itildebelow;1E2C Izhitsacyrillic;0474 Izhitsadblgravecyrillic;0476 J;004A Jaarmenian;0541 Jcircle;24BF Jcircumflex;0134 Jecyrillic;0408 Jheharmenian;054B Jmonospace;FF2A Jsmall;F76A K;004B KBsquare;3385 KKsquare;33CD Kabashkircyrillic;04A0 Kacute;1E30 Kacyrillic;041A Kadescendercyrillic;049A Kahookcyrillic;04C3 Kappa;039A Kastrokecyrillic;049E Kaverticalstrokecyrillic;049C Kcaron;01E8 Kcedilla;0136 Kcircle;24C0 Kcommaaccent;0136 Kdotbelow;1E32 Keharmenian;0554 Kenarmenian;053F Khacyrillic;0425 Kheicoptic;03E6 Khook;0198 Kjecyrillic;040C Klinebelow;1E34 Kmonospace;FF2B Koppacyrillic;0480 Koppagreek;03DE Ksicyrillic;046E Ksmall;F76B L;004C LJ;01C7 LL;F6BF Lacute;0139 Lambda;039B Lcaron;013D Lcedilla;013B Lcircle;24C1 Lcircumflexbelow;1E3C Lcommaaccent;013B Ldot;013F Ldotaccent;013F Ldotbelow;1E36 Ldotbelowmacron;1E38 Liwnarmenian;053C Lj;01C8 Ljecyrillic;0409 Llinebelow;1E3A Lmonospace;FF2C Lslash;0141 Lslashsmall;F6F9 Lsmall;F76C M;004D MBsquare;3386 Macron;F6D0 Macronsmall;F7AF Macute;1E3E Mcircle;24C2 Mdotaccent;1E40 Mdotbelow;1E42 Menarmenian;0544 Mmonospace;FF2D Msmall;F76D Mturned;019C Mu;039C N;004E NJ;01CA Nacute;0143 Ncaron;0147 Ncedilla;0145 Ncircle;24C3 Ncircumflexbelow;1E4A Ncommaaccent;0145 Ndotaccent;1E44 Ndotbelow;1E46 Nhookleft;019D Nineroman;2168 Nj;01CB Njecyrillic;040A Nlinebelow;1E48 Nmonospace;FF2E Nowarmenian;0546 Nsmall;F76E Ntilde;00D1 Ntildesmall;F7F1 Nu;039D O;004F OE;0152 OEsmall;F6FA Oacute;00D3 Oacutesmall;F7F3 Obarredcyrillic;04E8 Obarreddieresiscyrillic;04EA Obreve;014E Ocaron;01D1 Ocenteredtilde;019F Ocircle;24C4 Ocircumflex;00D4 Ocircumflexacute;1ED0 Ocircumflexdotbelow;1ED8 Ocircumflexgrave;1ED2 Ocircumflexhookabove;1ED4 Ocircumflexsmall;F7F4 Ocircumflextilde;1ED6 Ocyrillic;041E Odblacute;0150 Odblgrave;020C Odieresis;00D6 Odieresiscyrillic;04E6 Odieresissmall;F7F6 Odotbelow;1ECC Ogoneksmall;F6FB Ograve;00D2 Ogravesmall;F7F2 Oharmenian;0555 Ohm;2126 Ohookabove;1ECE Ohorn;01A0 Ohornacute;1EDA Ohorndotbelow;1EE2 Ohorngrave;1EDC Ohornhookabove;1EDE Ohorntilde;1EE0 Ohungarumlaut;0150 Oi;01A2 Oinvertedbreve;020E Omacron;014C Omacronacute;1E52 Omacrongrave;1E50 Omega;2126 Omegacyrillic;0460 Omegagreek;03A9 Omegaroundcyrillic;047A Omegatitlocyrillic;047C Omegatonos;038F Omicron;039F Omicrontonos;038C Omonospace;FF2F Oneroman;2160 Oogonek;01EA Oogonekmacron;01EC Oopen;0186 Oslash;00D8 Oslashacute;01FE Oslashsmall;F7F8 Osmall;F76F Ostrokeacute;01FE Otcyrillic;047E Otilde;00D5 Otildeacute;1E4C Otildedieresis;1E4E Otildesmall;F7F5 P;0050 Pacute;1E54 Pcircle;24C5 Pdotaccent;1E56 Pecyrillic;041F Peharmenian;054A Pemiddlehookcyrillic;04A6 Phi;03A6 Phook;01A4 Pi;03A0 Piwrarmenian;0553 Pmonospace;FF30 Psi;03A8 Psicyrillic;0470 Psmall;F770 Q;0051 Qcircle;24C6 Qmonospace;FF31 Qsmall;F771 R;0052 Raarmenian;054C Racute;0154 Rcaron;0158 Rcedilla;0156 Rcircle;24C7 Rcommaaccent;0156 Rdblgrave;0210 Rdotaccent;1E58 Rdotbelow;1E5A Rdotbelowmacron;1E5C Reharmenian;0550 Rfraktur;211C Rho;03A1 Ringsmall;F6FC Rinvertedbreve;0212 Rlinebelow;1E5E Rmonospace;FF32 Rsmall;F772 Rsmallinverted;0281 Rsmallinvertedsuperior;02B6 S;0053 SF010000;250C SF020000;2514 SF030000;2510 SF040000;2518 SF050000;253C SF060000;252C SF070000;2534 SF080000;251C SF090000;2524 SF100000;2500 SF110000;2502 SF190000;2561 SF200000;2562 SF210000;2556 SF220000;2555 SF230000;2563 SF240000;2551 SF250000;2557 SF260000;255D SF270000;255C SF280000;255B SF360000;255E SF370000;255F SF380000;255A SF390000;2554 SF400000;2569 SF410000;2566 SF420000;2560 SF430000;2550 SF440000;256C SF450000;2567 SF460000;2568 SF470000;2564 SF480000;2565 SF490000;2559 SF500000;2558 SF510000;2552 SF520000;2553 SF530000;256B SF540000;256A Sacute;015A Sacutedotaccent;1E64 Sampigreek;03E0 Scaron;0160 Scarondotaccent;1E66 Scaronsmall;F6FD Scedilla;015E Schwa;018F Schwacyrillic;04D8 Schwadieresiscyrillic;04DA Scircle;24C8 Scircumflex;015C Scommaaccent;0218 Sdotaccent;1E60 Sdotbelow;1E62 Sdotbelowdotaccent;1E68 Seharmenian;054D Sevenroman;2166 Shaarmenian;0547 Shacyrillic;0428 Shchacyrillic;0429 Sheicoptic;03E2 Shhacyrillic;04BA Shimacoptic;03EC Sigma;03A3 Sixroman;2165 Smonospace;FF33 Softsigncyrillic;042C Ssmall;F773 Stigmagreek;03DA T;0054 Tau;03A4 Tbar;0166 Tcaron;0164 Tcedilla;0162 Tcircle;24C9 Tcircumflexbelow;1E70 Tcommaaccent;0162 Tdotaccent;1E6A Tdotbelow;1E6C Tecyrillic;0422 Tedescendercyrillic;04AC Tenroman;2169 Tetsecyrillic;04B4 Theta;0398 Thook;01AC Thorn;00DE Thornsmall;F7FE Threeroman;2162 Tildesmall;F6FE Tiwnarmenian;054F Tlinebelow;1E6E Tmonospace;FF34 Toarmenian;0539 Tonefive;01BC Tonesix;0184 Tonetwo;01A7 Tretroflexhook;01AE Tsecyrillic;0426 Tshecyrillic;040B Tsmall;F774 Twelveroman;216B Tworoman;2161 U;0055 Uacute;00DA Uacutesmall;F7FA Ubreve;016C Ucaron;01D3 Ucircle;24CA Ucircumflex;00DB Ucircumflexbelow;1E76 Ucircumflexsmall;F7FB Ucyrillic;0423 Udblacute;0170 Udblgrave;0214 Udieresis;00DC Udieresisacute;01D7 Udieresisbelow;1E72 Udieresiscaron;01D9 Udieresiscyrillic;04F0 Udieresisgrave;01DB Udieresismacron;01D5 Udieresissmall;F7FC Udotbelow;1EE4 Ugrave;00D9 Ugravesmall;F7F9 Uhookabove;1EE6 Uhorn;01AF Uhornacute;1EE8 Uhorndotbelow;1EF0 Uhorngrave;1EEA Uhornhookabove;1EEC Uhorntilde;1EEE Uhungarumlaut;0170 Uhungarumlautcyrillic;04F2 Uinvertedbreve;0216 Ukcyrillic;0478 Umacron;016A Umacroncyrillic;04EE Umacrondieresis;1E7A Umonospace;FF35 Uogonek;0172 Upsilon;03A5 Upsilon1;03D2 Upsilonacutehooksymbolgreek;03D3 Upsilonafrican;01B1 Upsilondieresis;03AB Upsilondieresishooksymbolgreek;03D4 Upsilonhooksymbol;03D2 Upsilontonos;038E Uring;016E Ushortcyrillic;040E Usmall;F775 Ustraightcyrillic;04AE Ustraightstrokecyrillic;04B0 Utilde;0168 Utildeacute;1E78 Utildebelow;1E74 V;0056 Vcircle;24CB Vdotbelow;1E7E Vecyrillic;0412 Vewarmenian;054E Vhook;01B2 Vmonospace;FF36 Voarmenian;0548 Vsmall;F776 Vtilde;1E7C W;0057 Wacute;1E82 Wcircle;24CC Wcircumflex;0174 Wdieresis;1E84 Wdotaccent;1E86 Wdotbelow;1E88 Wgrave;1E80 Wmonospace;FF37 Wsmall;F777 X;0058 Xcircle;24CD Xdieresis;1E8C Xdotaccent;1E8A Xeharmenian;053D Xi;039E Xmonospace;FF38 Xsmall;F778 Y;0059 Yacute;00DD Yacutesmall;F7FD Yatcyrillic;0462 Ycircle;24CE Ycircumflex;0176 Ydieresis;0178 Ydieresissmall;F7FF Ydotaccent;1E8E Ydotbelow;1EF4 Yericyrillic;042B Yerudieresiscyrillic;04F8 Ygrave;1EF2 Yhook;01B3 Yhookabove;1EF6 Yiarmenian;0545 Yicyrillic;0407 Yiwnarmenian;0552 Ymonospace;FF39 Ysmall;F779 Ytilde;1EF8 Yusbigcyrillic;046A Yusbigiotifiedcyrillic;046C Yuslittlecyrillic;0466 Yuslittleiotifiedcyrillic;0468 Z;005A Zaarmenian;0536 Zacute;0179 Zcaron;017D Zcaronsmall;F6FF Zcircle;24CF Zcircumflex;1E90 Zdot;017B Zdotaccent;017B Zdotbelow;1E92 Zecyrillic;0417 Zedescendercyrillic;0498 Zedieresiscyrillic;04DE Zeta;0396 Zhearmenian;053A Zhebrevecyrillic;04C1 Zhecyrillic;0416 Zhedescendercyrillic;0496 Zhedieresiscyrillic;04DC Zlinebelow;1E94 Zmonospace;FF3A Zsmall;F77A Zstroke;01B5 a;0061 aabengali;0986 aacute;00E1 aadeva;0906 aagujarati;0A86 aagurmukhi;0A06 aamatragurmukhi;0A3E aarusquare;3303 aavowelsignbengali;09BE aavowelsigndeva;093E aavowelsigngujarati;0ABE abbreviationmarkarmenian;055F abbreviationsigndeva;0970 abengali;0985 abopomofo;311A abreve;0103 abreveacute;1EAF abrevecyrillic;04D1 abrevedotbelow;1EB7 abrevegrave;1EB1 abrevehookabove;1EB3 abrevetilde;1EB5 acaron;01CE acircle;24D0 acircumflex;00E2 acircumflexacute;1EA5 acircumflexdotbelow;1EAD acircumflexgrave;1EA7 acircumflexhookabove;1EA9 acircumflextilde;1EAB acute;00B4 acutebelowcmb;0317 acutecmb;0301 acutecomb;0301 acutedeva;0954 acutelowmod;02CF acutetonecmb;0341 acyrillic;0430 adblgrave;0201 addakgurmukhi;0A71 adeva;0905 adieresis;00E4 adieresiscyrillic;04D3 adieresismacron;01DF adotbelow;1EA1 adotmacron;01E1 ae;00E6 aeacute;01FD aekorean;3150 aemacron;01E3 afii00208;2015 afii08941;20A4 afii10017;0410 afii10018;0411 afii10019;0412 afii10020;0413 afii10021;0414 afii10022;0415 afii10023;0401 afii10024;0416 afii10025;0417 afii10026;0418 afii10027;0419 afii10028;041A afii10029;041B afii10030;041C afii10031;041D afii10032;041E afii10033;041F afii10034;0420 afii10035;0421 afii10036;0422 afii10037;0423 afii10038;0424 afii10039;0425 afii10040;0426 afii10041;0427 afii10042;0428 afii10043;0429 afii10044;042A afii10045;042B afii10046;042C afii10047;042D afii10048;042E afii10049;042F afii10050;0490 afii10051;0402 afii10052;0403 afii10053;0404 afii10054;0405 afii10055;0406 afii10056;0407 afii10057;0408 afii10058;0409 afii10059;040A afii10060;040B afii10061;040C afii10062;040E afii10063;F6C4 afii10064;F6C5 afii10065;0430 afii10066;0431 afii10067;0432 afii10068;0433 afii10069;0434 afii10070;0435 afii10071;0451 afii10072;0436 afii10073;0437 afii10074;0438 afii10075;0439 afii10076;043A afii10077;043B afii10078;043C afii10079;043D afii10080;043E afii10081;043F afii10082;0440 afii10083;0441 afii10084;0442 afii10085;0443 afii10086;0444 afii10087;0445 afii10088;0446 afii10089;0447 afii10090;0448 afii10091;0449 afii10092;044A afii10093;044B afii10094;044C afii10095;044D afii10096;044E afii10097;044F afii10098;0491 afii10099;0452 afii10100;0453 afii10101;0454 afii10102;0455 afii10103;0456 afii10104;0457 afii10105;0458 afii10106;0459 afii10107;045A afii10108;045B afii10109;045C afii10110;045E afii10145;040F afii10146;0462 afii10147;0472 afii10148;0474 afii10192;F6C6 afii10193;045F afii10194;0463 afii10195;0473 afii10196;0475 afii10831;F6C7 afii10832;F6C8 afii10846;04D9 afii299;200E afii300;200F afii301;200D afii57381;066A afii57388;060C afii57392;0660 afii57393;0661 afii57394;0662 afii57395;0663 afii57396;0664 afii57397;0665 afii57398;0666 afii57399;0667 afii57400;0668 afii57401;0669 afii57403;061B afii57407;061F afii57409;0621 afii57410;0622 afii57411;0623 afii57412;0624 afii57413;0625 afii57414;0626 afii57415;0627 afii57416;0628 afii57417;0629 afii57418;062A afii57419;062B afii57420;062C afii57421;062D afii57422;062E afii57423;062F afii57424;0630 afii57425;0631 afii57426;0632 afii57427;0633 afii57428;0634 afii57429;0635 afii57430;0636 afii57431;0637 afii57432;0638 afii57433;0639 afii57434;063A afii57440;0640 afii57441;0641 afii57442;0642 afii57443;0643 afii57444;0644 afii57445;0645 afii57446;0646 afii57448;0648 afii57449;0649 afii57450;064A afii57451;064B afii57452;064C afii57453;064D afii57454;064E afii57455;064F afii57456;0650 afii57457;0651 afii57458;0652 afii57470;0647 afii57505;06A4 afii57506;067E afii57507;0686 afii57508;0698 afii57509;06AF afii57511;0679 afii57512;0688 afii57513;0691 afii57514;06BA afii57519;06D2 afii57534;06D5 afii57636;20AA afii57645;05BE afii57658;05C3 afii57664;05D0 afii57665;05D1 afii57666;05D2 afii57667;05D3 afii57668;05D4 afii57669;05D5 afii57670;05D6 afii57671;05D7 afii57672;05D8 afii57673;05D9 afii57674;05DA afii57675;05DB afii57676;05DC afii57677;05DD afii57678;05DE afii57679;05DF afii57680;05E0 afii57681;05E1 afii57682;05E2 afii57683;05E3 afii57684;05E4 afii57685;05E5 afii57686;05E6 afii57687;05E7 afii57688;05E8 afii57689;05E9 afii57690;05EA afii57694;FB2A afii57695;FB2B afii57700;FB4B afii57705;FB1F afii57716;05F0 afii57717;05F1 afii57718;05F2 afii57723;FB35 afii57793;05B4 afii57794;05B5 afii57795;05B6 afii57796;05BB afii57797;05B8 afii57798;05B7 afii57799;05B0 afii57800;05B2 afii57801;05B1 afii57802;05B3 afii57803;05C2 afii57804;05C1 afii57806;05B9 afii57807;05BC afii57839;05BD afii57841;05BF afii57842;05C0 afii57929;02BC afii61248;2105 afii61289;2113 afii61352;2116 afii61573;202C afii61574;202D afii61575;202E afii61664;200C afii63167;066D afii64937;02BD agrave;00E0 agujarati;0A85 agurmukhi;0A05 ahiragana;3042 ahookabove;1EA3 aibengali;0990 aibopomofo;311E aideva;0910 aiecyrillic;04D5 aigujarati;0A90 aigurmukhi;0A10 aimatragurmukhi;0A48 ainarabic;0639 ainfinalarabic;FECA aininitialarabic;FECB ainmedialarabic;FECC ainvertedbreve;0203 aivowelsignbengali;09C8 aivowelsigndeva;0948 aivowelsigngujarati;0AC8 akatakana;30A2 akatakanahalfwidth;FF71 akorean;314F alef;05D0 alefarabic;0627 alefdageshhebrew;FB30 aleffinalarabic;FE8E alefhamzaabovearabic;0623 alefhamzaabovefinalarabic;FE84 alefhamzabelowarabic;0625 alefhamzabelowfinalarabic;FE88 alefhebrew;05D0 aleflamedhebrew;FB4F alefmaddaabovearabic;0622 alefmaddaabovefinalarabic;FE82 alefmaksuraarabic;0649 alefmaksurafinalarabic;FEF0 alefmaksurainitialarabic;FEF3 alefmaksuramedialarabic;FEF4 alefpatahhebrew;FB2E alefqamatshebrew;FB2F aleph;2135 allequal;224C alpha;03B1 alphatonos;03AC amacron;0101 amonospace;FF41 ampersand;0026 ampersandmonospace;FF06 ampersandsmall;F726 amsquare;33C2 anbopomofo;3122 angbopomofo;3124 angkhankhuthai;0E5A angle;2220 anglebracketleft;3008 anglebracketleftvertical;FE3F anglebracketright;3009 anglebracketrightvertical;FE40 angleleft;2329 angleright;232A angstrom;212B anoteleia;0387 anudattadeva;0952 anusvarabengali;0982 anusvaradeva;0902 anusvaragujarati;0A82 aogonek;0105 apaatosquare;3300 aparen;249C apostrophearmenian;055A apostrophemod;02BC apple;F8FF approaches;2250 approxequal;2248 approxequalorimage;2252 approximatelyequal;2245 araeaekorean;318E araeakorean;318D arc;2312 arighthalfring;1E9A aring;00E5 aringacute;01FB aringbelow;1E01 arrowboth;2194 arrowdashdown;21E3 arrowdashleft;21E0 arrowdashright;21E2 arrowdashup;21E1 arrowdblboth;21D4 arrowdbldown;21D3 arrowdblleft;21D0 arrowdblright;21D2 arrowdblup;21D1 arrowdown;2193 arrowdownleft;2199 arrowdownright;2198 arrowdownwhite;21E9 arrowheaddownmod;02C5 arrowheadleftmod;02C2 arrowheadrightmod;02C3 arrowheadupmod;02C4 arrowhorizex;F8E7 arrowleft;2190 arrowleftdbl;21D0 arrowleftdblstroke;21CD arrowleftoverright;21C6 arrowleftwhite;21E6 arrowright;2192 arrowrightdblstroke;21CF arrowrightheavy;279E arrowrightoverleft;21C4 arrowrightwhite;21E8 arrowtableft;21E4 arrowtabright;21E5 arrowup;2191 arrowupdn;2195 arrowupdnbse;21A8 arrowupdownbase;21A8 arrowupleft;2196 arrowupleftofdown;21C5 arrowupright;2197 arrowupwhite;21E7 arrowvertex;F8E6 asciicircum;005E asciicircummonospace;FF3E asciitilde;007E asciitildemonospace;FF5E ascript;0251 ascriptturned;0252 asmallhiragana;3041 asmallkatakana;30A1 asmallkatakanahalfwidth;FF67 asterisk;002A asteriskaltonearabic;066D asteriskarabic;066D asteriskmath;2217 asteriskmonospace;FF0A asterisksmall;FE61 asterism;2042 asuperior;F6E9 asymptoticallyequal;2243 at;0040 atilde;00E3 atmonospace;FF20 atsmall;FE6B aturned;0250 aubengali;0994 aubopomofo;3120 audeva;0914 augujarati;0A94 augurmukhi;0A14 aulengthmarkbengali;09D7 aumatragurmukhi;0A4C auvowelsignbengali;09CC auvowelsigndeva;094C auvowelsigngujarati;0ACC avagrahadeva;093D aybarmenian;0561 ayin;05E2 ayinaltonehebrew;FB20 ayinhebrew;05E2 b;0062 babengali;09AC backslash;005C backslashmonospace;FF3C badeva;092C bagujarati;0AAC bagurmukhi;0A2C bahiragana;3070 bahtthai;0E3F bakatakana;30D0 bar;007C barmonospace;FF5C bbopomofo;3105 bcircle;24D1 bdotaccent;1E03 bdotbelow;1E05 beamedsixteenthnotes;266C because;2235 becyrillic;0431 beharabic;0628 behfinalarabic;FE90 behinitialarabic;FE91 behiragana;3079 behmedialarabic;FE92 behmeeminitialarabic;FC9F behmeemisolatedarabic;FC08 behnoonfinalarabic;FC6D bekatakana;30D9 benarmenian;0562 bet;05D1 beta;03B2 betasymbolgreek;03D0 betdagesh;FB31 betdageshhebrew;FB31 bethebrew;05D1 betrafehebrew;FB4C bhabengali;09AD bhadeva;092D bhagujarati;0AAD bhagurmukhi;0A2D bhook;0253 bihiragana;3073 bikatakana;30D3 bilabialclick;0298 bindigurmukhi;0A02 birusquare;3331 blackcircle;25CF blackdiamond;25C6 blackdownpointingtriangle;25BC blackleftpointingpointer;25C4 blackleftpointingtriangle;25C0 blacklenticularbracketleft;3010 blacklenticularbracketleftvertical;FE3B blacklenticularbracketright;3011 blacklenticularbracketrightvertical;FE3C blacklowerlefttriangle;25E3 blacklowerrighttriangle;25E2 blackrectangle;25AC blackrightpointingpointer;25BA blackrightpointingtriangle;25B6 blacksmallsquare;25AA blacksmilingface;263B blacksquare;25A0 blackstar;2605 blackupperlefttriangle;25E4 blackupperrighttriangle;25E5 blackuppointingsmalltriangle;25B4 blackuppointingtriangle;25B2 blank;2423 blinebelow;1E07 block;2588 bmonospace;FF42 bobaimaithai;0E1A bohiragana;307C bokatakana;30DC bparen;249D bqsquare;33C3 braceex;F8F4 braceleft;007B braceleftbt;F8F3 braceleftmid;F8F2 braceleftmonospace;FF5B braceleftsmall;FE5B bracelefttp;F8F1 braceleftvertical;FE37 braceright;007D bracerightbt;F8FE bracerightmid;F8FD bracerightmonospace;FF5D bracerightsmall;FE5C bracerighttp;F8FC bracerightvertical;FE38 bracketleft;005B bracketleftbt;F8F0 bracketleftex;F8EF bracketleftmonospace;FF3B bracketlefttp;F8EE bracketright;005D bracketrightbt;F8FB bracketrightex;F8FA bracketrightmonospace;FF3D bracketrighttp;F8F9 breve;02D8 brevebelowcmb;032E brevecmb;0306 breveinvertedbelowcmb;032F breveinvertedcmb;0311 breveinverteddoublecmb;0361 bridgebelowcmb;032A bridgeinvertedbelowcmb;033A brokenbar;00A6 bstroke;0180 bsuperior;F6EA btopbar;0183 buhiragana;3076 bukatakana;30D6 bullet;2022 bulletinverse;25D8 bulletoperator;2219 bullseye;25CE c;0063 caarmenian;056E cabengali;099A cacute;0107 cadeva;091A cagujarati;0A9A cagurmukhi;0A1A calsquare;3388 candrabindubengali;0981 candrabinducmb;0310 candrabindudeva;0901 candrabindugujarati;0A81 capslock;21EA careof;2105 caron;02C7 caronbelowcmb;032C caroncmb;030C carriagereturn;21B5 cbopomofo;3118 ccaron;010D ccedilla;00E7 ccedillaacute;1E09 ccircle;24D2 ccircumflex;0109 ccurl;0255 cdot;010B cdotaccent;010B cdsquare;33C5 cedilla;00B8 cedillacmb;0327 cent;00A2 centigrade;2103 centinferior;F6DF centmonospace;FFE0 centoldstyle;F7A2 centsuperior;F6E0 chaarmenian;0579 chabengali;099B chadeva;091B chagujarati;0A9B chagurmukhi;0A1B chbopomofo;3114 cheabkhasiancyrillic;04BD checkmark;2713 checyrillic;0447 chedescenderabkhasiancyrillic;04BF chedescendercyrillic;04B7 chedieresiscyrillic;04F5 cheharmenian;0573 chekhakassiancyrillic;04CC cheverticalstrokecyrillic;04B9 chi;03C7 chieuchacirclekorean;3277 chieuchaparenkorean;3217 chieuchcirclekorean;3269 chieuchkorean;314A chieuchparenkorean;3209 chochangthai;0E0A chochanthai;0E08 chochingthai;0E09 chochoethai;0E0C chook;0188 cieucacirclekorean;3276 cieucaparenkorean;3216 cieuccirclekorean;3268 cieuckorean;3148 cieucparenkorean;3208 cieucuparenkorean;321C circle;25CB circlemultiply;2297 circleot;2299 circleplus;2295 circlepostalmark;3036 circlewithlefthalfblack;25D0 circlewithrighthalfblack;25D1 circumflex;02C6 circumflexbelowcmb;032D circumflexcmb;0302 clear;2327 clickalveolar;01C2 clickdental;01C0 clicklateral;01C1 clickretroflex;01C3 club;2663 clubsuitblack;2663 clubsuitwhite;2667 cmcubedsquare;33A4 cmonospace;FF43 cmsquaredsquare;33A0 coarmenian;0581 colon;003A colonmonetary;20A1 colonmonospace;FF1A colonsign;20A1 colonsmall;FE55 colontriangularhalfmod;02D1 colontriangularmod;02D0 comma;002C commaabovecmb;0313 commaaboverightcmb;0315 commaaccent;F6C3 commaarabic;060C commaarmenian;055D commainferior;F6E1 commamonospace;FF0C commareversedabovecmb;0314 commareversedmod;02BD commasmall;FE50 commasuperior;F6E2 commaturnedabovecmb;0312 commaturnedmod;02BB compass;263C congruent;2245 contourintegral;222E control;2303 controlACK;0006 controlBEL;0007 controlBS;0008 controlCAN;0018 controlCR;000D controlDC1;0011 controlDC2;0012 controlDC3;0013 controlDC4;0014 controlDEL;007F controlDLE;0010 controlEM;0019 controlENQ;0005 controlEOT;0004 controlESC;001B controlETB;0017 controlETX;0003 controlFF;000C controlFS;001C controlGS;001D controlHT;0009 controlLF;000A controlNAK;0015 controlRS;001E controlSI;000F controlSO;000E controlSOT;0002 controlSTX;0001 controlSUB;001A controlSYN;0016 controlUS;001F controlVT;000B copyright;00A9 copyrightsans;F8E9 copyrightserif;F6D9 cornerbracketleft;300C cornerbracketlefthalfwidth;FF62 cornerbracketleftvertical;FE41 cornerbracketright;300D cornerbracketrighthalfwidth;FF63 cornerbracketrightvertical;FE42 corporationsquare;337F cosquare;33C7 coverkgsquare;33C6 cparen;249E cruzeiro;20A2 cstretched;0297 curlyand;22CF curlyor;22CE currency;00A4 cyrBreve;F6D1 cyrFlex;F6D2 cyrbreve;F6D4 cyrflex;F6D5 d;0064 daarmenian;0564 dabengali;09A6 dadarabic;0636 dadeva;0926 dadfinalarabic;FEBE dadinitialarabic;FEBF dadmedialarabic;FEC0 dagesh;05BC dageshhebrew;05BC dagger;2020 daggerdbl;2021 dagujarati;0AA6 dagurmukhi;0A26 dahiragana;3060 dakatakana;30C0 dalarabic;062F dalet;05D3 daletdagesh;FB33 daletdageshhebrew;FB33 dalethatafpatah;05D3 05B2 dalethatafpatahhebrew;05D3 05B2 dalethatafsegol;05D3 05B1 dalethatafsegolhebrew;05D3 05B1 dalethebrew;05D3 dalethiriq;05D3 05B4 dalethiriqhebrew;05D3 05B4 daletholam;05D3 05B9 daletholamhebrew;05D3 05B9 daletpatah;05D3 05B7 daletpatahhebrew;05D3 05B7 daletqamats;05D3 05B8 daletqamatshebrew;05D3 05B8 daletqubuts;05D3 05BB daletqubutshebrew;05D3 05BB daletsegol;05D3 05B6 daletsegolhebrew;05D3 05B6 daletsheva;05D3 05B0 daletshevahebrew;05D3 05B0 dalettsere;05D3 05B5 dalettserehebrew;05D3 05B5 dalfinalarabic;FEAA dammaarabic;064F dammalowarabic;064F dammatanaltonearabic;064C dammatanarabic;064C danda;0964 dargahebrew;05A7 dargalefthebrew;05A7 dasiapneumatacyrilliccmb;0485 dblGrave;F6D3 dblanglebracketleft;300A dblanglebracketleftvertical;FE3D dblanglebracketright;300B dblanglebracketrightvertical;FE3E dblarchinvertedbelowcmb;032B dblarrowleft;21D4 dblarrowright;21D2 dbldanda;0965 dblgrave;F6D6 dblgravecmb;030F dblintegral;222C dbllowline;2017 dbllowlinecmb;0333 dbloverlinecmb;033F dblprimemod;02BA dblverticalbar;2016 dblverticallineabovecmb;030E dbopomofo;3109 dbsquare;33C8 dcaron;010F dcedilla;1E11 dcircle;24D3 dcircumflexbelow;1E13 dcroat;0111 ddabengali;09A1 ddadeva;0921 ddagujarati;0AA1 ddagurmukhi;0A21 ddalarabic;0688 ddalfinalarabic;FB89 dddhadeva;095C ddhabengali;09A2 ddhadeva;0922 ddhagujarati;0AA2 ddhagurmukhi;0A22 ddotaccent;1E0B ddotbelow;1E0D decimalseparatorarabic;066B decimalseparatorpersian;066B decyrillic;0434 degree;00B0 dehihebrew;05AD dehiragana;3067 deicoptic;03EF dekatakana;30C7 deleteleft;232B deleteright;2326 delta;03B4 deltaturned;018D denominatorminusonenumeratorbengali;09F8 dezh;02A4 dhabengali;09A7 dhadeva;0927 dhagujarati;0AA7 dhagurmukhi;0A27 dhook;0257 dialytikatonos;0385 dialytikatonoscmb;0344 diamond;2666 diamondsuitwhite;2662 dieresis;00A8 dieresisacute;F6D7 dieresisbelowcmb;0324 dieresiscmb;0308 dieresisgrave;F6D8 dieresistonos;0385 dihiragana;3062 dikatakana;30C2 dittomark;3003 divide;00F7 divides;2223 divisionslash;2215 djecyrillic;0452 dkshade;2593 dlinebelow;1E0F dlsquare;3397 dmacron;0111 dmonospace;FF44 dnblock;2584 dochadathai;0E0E dodekthai;0E14 dohiragana;3069 dokatakana;30C9 dollar;0024 dollarinferior;F6E3 dollarmonospace;FF04 dollaroldstyle;F724 dollarsmall;FE69 dollarsuperior;F6E4 dong;20AB dorusquare;3326 dotaccent;02D9 dotaccentcmb;0307 dotbelowcmb;0323 dotbelowcomb;0323 dotkatakana;30FB dotlessi;0131 dotlessj;F6BE dotlessjstrokehook;0284 dotmath;22C5 dottedcircle;25CC doubleyodpatah;FB1F doubleyodpatahhebrew;FB1F downtackbelowcmb;031E downtackmod;02D5 dparen;249F dsuperior;F6EB dtail;0256 dtopbar;018C duhiragana;3065 dukatakana;30C5 dz;01F3 dzaltone;02A3 dzcaron;01C6 dzcurl;02A5 dzeabkhasiancyrillic;04E1 dzecyrillic;0455 dzhecyrillic;045F e;0065 eacute;00E9 earth;2641 ebengali;098F ebopomofo;311C ebreve;0115 ecandradeva;090D ecandragujarati;0A8D ecandravowelsigndeva;0945 ecandravowelsigngujarati;0AC5 ecaron;011B ecedillabreve;1E1D echarmenian;0565 echyiwnarmenian;0587 ecircle;24D4 ecircumflex;00EA ecircumflexacute;1EBF ecircumflexbelow;1E19 ecircumflexdotbelow;1EC7 ecircumflexgrave;1EC1 ecircumflexhookabove;1EC3 ecircumflextilde;1EC5 ecyrillic;0454 edblgrave;0205 edeva;090F edieresis;00EB edot;0117 edotaccent;0117 edotbelow;1EB9 eegurmukhi;0A0F eematragurmukhi;0A47 efcyrillic;0444 egrave;00E8 egujarati;0A8F eharmenian;0567 ehbopomofo;311D ehiragana;3048 ehookabove;1EBB eibopomofo;311F eight;0038 eightarabic;0668 eightbengali;09EE eightcircle;2467 eightcircleinversesansserif;2791 eightdeva;096E eighteencircle;2471 eighteenparen;2485 eighteenperiod;2499 eightgujarati;0AEE eightgurmukhi;0A6E eighthackarabic;0668 eighthangzhou;3028 eighthnotebeamed;266B eightideographicparen;3227 eightinferior;2088 eightmonospace;FF18 eightoldstyle;F738 eightparen;247B eightperiod;248F eightpersian;06F8 eightroman;2177 eightsuperior;2078 eightthai;0E58 einvertedbreve;0207 eiotifiedcyrillic;0465 ekatakana;30A8 ekatakanahalfwidth;FF74 ekonkargurmukhi;0A74 ekorean;3154 elcyrillic;043B element;2208 elevencircle;246A elevenparen;247E elevenperiod;2492 elevenroman;217A ellipsis;2026 ellipsisvertical;22EE emacron;0113 emacronacute;1E17 emacrongrave;1E15 emcyrillic;043C emdash;2014 emdashvertical;FE31 emonospace;FF45 emphasismarkarmenian;055B emptyset;2205 enbopomofo;3123 encyrillic;043D endash;2013 endashvertical;FE32 endescendercyrillic;04A3 eng;014B engbopomofo;3125 enghecyrillic;04A5 enhookcyrillic;04C8 enspace;2002 eogonek;0119 eokorean;3153 eopen;025B eopenclosed;029A eopenreversed;025C eopenreversedclosed;025E eopenreversedhook;025D eparen;24A0 epsilon;03B5 epsilontonos;03AD equal;003D equalmonospace;FF1D equalsmall;FE66 equalsuperior;207C equivalence;2261 erbopomofo;3126 ercyrillic;0440 ereversed;0258 ereversedcyrillic;044D escyrillic;0441 esdescendercyrillic;04AB esh;0283 eshcurl;0286 eshortdeva;090E eshortvowelsigndeva;0946 eshreversedloop;01AA eshsquatreversed;0285 esmallhiragana;3047 esmallkatakana;30A7 esmallkatakanahalfwidth;FF6A estimated;212E esuperior;F6EC eta;03B7 etarmenian;0568 etatonos;03AE eth;00F0 etilde;1EBD etildebelow;1E1B etnahtafoukhhebrew;0591 etnahtafoukhlefthebrew;0591 etnahtahebrew;0591 etnahtalefthebrew;0591 eturned;01DD eukorean;3161 euro;20AC evowelsignbengali;09C7 evowelsigndeva;0947 evowelsigngujarati;0AC7 exclam;0021 exclamarmenian;055C exclamdbl;203C exclamdown;00A1 exclamdownsmall;F7A1 exclammonospace;FF01 exclamsmall;F721 existential;2203 ezh;0292 ezhcaron;01EF ezhcurl;0293 ezhreversed;01B9 ezhtail;01BA f;0066 fadeva;095E fagurmukhi;0A5E fahrenheit;2109 fathaarabic;064E fathalowarabic;064E fathatanarabic;064B fbopomofo;3108 fcircle;24D5 fdotaccent;1E1F feharabic;0641 feharmenian;0586 fehfinalarabic;FED2 fehinitialarabic;FED3 fehmedialarabic;FED4 feicoptic;03E5 female;2640 ff;FB00 ffi;FB03 ffl;FB04 fi;FB01 fifteencircle;246E fifteenparen;2482 fifteenperiod;2496 figuredash;2012 filledbox;25A0 filledrect;25AC finalkaf;05DA finalkafdagesh;FB3A finalkafdageshhebrew;FB3A finalkafhebrew;05DA finalkafqamats;05DA 05B8 finalkafqamatshebrew;05DA 05B8 finalkafsheva;05DA 05B0 finalkafshevahebrew;05DA 05B0 finalmem;05DD finalmemhebrew;05DD finalnun;05DF finalnunhebrew;05DF finalpe;05E3 finalpehebrew;05E3 finaltsadi;05E5 finaltsadihebrew;05E5 firsttonechinese;02C9 fisheye;25C9 fitacyrillic;0473 five;0035 fivearabic;0665 fivebengali;09EB fivecircle;2464 fivecircleinversesansserif;278E fivedeva;096B fiveeighths;215D fivegujarati;0AEB fivegurmukhi;0A6B fivehackarabic;0665 fivehangzhou;3025 fiveideographicparen;3224 fiveinferior;2085 fivemonospace;FF15 fiveoldstyle;F735 fiveparen;2478 fiveperiod;248C fivepersian;06F5 fiveroman;2174 fivesuperior;2075 fivethai;0E55 fl;FB02 florin;0192 fmonospace;FF46 fmsquare;3399 fofanthai;0E1F fofathai;0E1D fongmanthai;0E4F forall;2200 four;0034 fourarabic;0664 fourbengali;09EA fourcircle;2463 fourcircleinversesansserif;278D fourdeva;096A fourgujarati;0AEA fourgurmukhi;0A6A fourhackarabic;0664 fourhangzhou;3024 fourideographicparen;3223 fourinferior;2084 fourmonospace;FF14 fournumeratorbengali;09F7 fouroldstyle;F734 fourparen;2477 fourperiod;248B fourpersian;06F4 fourroman;2173 foursuperior;2074 fourteencircle;246D fourteenparen;2481 fourteenperiod;2495 fourthai;0E54 fourthtonechinese;02CB fparen;24A1 fraction;2044 franc;20A3 g;0067 gabengali;0997 gacute;01F5 gadeva;0917 gafarabic;06AF gaffinalarabic;FB93 gafinitialarabic;FB94 gafmedialarabic;FB95 gagujarati;0A97 gagurmukhi;0A17 gahiragana;304C gakatakana;30AC gamma;03B3 gammalatinsmall;0263 gammasuperior;02E0 gangiacoptic;03EB gbopomofo;310D gbreve;011F gcaron;01E7 gcedilla;0123 gcircle;24D6 gcircumflex;011D gcommaaccent;0123 gdot;0121 gdotaccent;0121 gecyrillic;0433 gehiragana;3052 gekatakana;30B2 geometricallyequal;2251 gereshaccenthebrew;059C gereshhebrew;05F3 gereshmuqdamhebrew;059D germandbls;00DF gershayimaccenthebrew;059E gershayimhebrew;05F4 getamark;3013 ghabengali;0998 ghadarmenian;0572 ghadeva;0918 ghagujarati;0A98 ghagurmukhi;0A18 ghainarabic;063A ghainfinalarabic;FECE ghaininitialarabic;FECF ghainmedialarabic;FED0 ghemiddlehookcyrillic;0495 ghestrokecyrillic;0493 gheupturncyrillic;0491 ghhadeva;095A ghhagurmukhi;0A5A ghook;0260 ghzsquare;3393 gihiragana;304E gikatakana;30AE gimarmenian;0563 gimel;05D2 gimeldagesh;FB32 gimeldageshhebrew;FB32 gimelhebrew;05D2 gjecyrillic;0453 glottalinvertedstroke;01BE glottalstop;0294 glottalstopinverted;0296 glottalstopmod;02C0 glottalstopreversed;0295 glottalstopreversedmod;02C1 glottalstopreversedsuperior;02E4 glottalstopstroke;02A1 glottalstopstrokereversed;02A2 gmacron;1E21 gmonospace;FF47 gohiragana;3054 gokatakana;30B4 gparen;24A2 gpasquare;33AC gradient;2207 grave;0060 gravebelowcmb;0316 gravecmb;0300 gravecomb;0300 gravedeva;0953 gravelowmod;02CE gravemonospace;FF40 gravetonecmb;0340 greater;003E greaterequal;2265 greaterequalorless;22DB greatermonospace;FF1E greaterorequivalent;2273 greaterorless;2277 greateroverequal;2267 greatersmall;FE65 gscript;0261 gstroke;01E5 guhiragana;3050 guillemotleft;00AB guillemotright;00BB guilsinglleft;2039 guilsinglright;203A gukatakana;30B0 guramusquare;3318 gysquare;33C9 h;0068 haabkhasiancyrillic;04A9 haaltonearabic;06C1 habengali;09B9 hadescendercyrillic;04B3 hadeva;0939 hagujarati;0AB9 hagurmukhi;0A39 haharabic;062D hahfinalarabic;FEA2 hahinitialarabic;FEA3 hahiragana;306F hahmedialarabic;FEA4 haitusquare;332A hakatakana;30CF hakatakanahalfwidth;FF8A halantgurmukhi;0A4D hamzaarabic;0621 hamzadammaarabic;0621 064F hamzadammatanarabic;0621 064C hamzafathaarabic;0621 064E hamzafathatanarabic;0621 064B hamzalowarabic;0621 hamzalowkasraarabic;0621 0650 hamzalowkasratanarabic;0621 064D hamzasukunarabic;0621 0652 hangulfiller;3164 hardsigncyrillic;044A harpoonleftbarbup;21BC harpoonrightbarbup;21C0 hasquare;33CA hatafpatah;05B2 hatafpatah16;05B2 hatafpatah23;05B2 hatafpatah2f;05B2 hatafpatahhebrew;05B2 hatafpatahnarrowhebrew;05B2 hatafpatahquarterhebrew;05B2 hatafpatahwidehebrew;05B2 hatafqamats;05B3 hatafqamats1b;05B3 hatafqamats28;05B3 hatafqamats34;05B3 hatafqamatshebrew;05B3 hatafqamatsnarrowhebrew;05B3 hatafqamatsquarterhebrew;05B3 hatafqamatswidehebrew;05B3 hatafsegol;05B1 hatafsegol17;05B1 hatafsegol24;05B1 hatafsegol30;05B1 hatafsegolhebrew;05B1 hatafsegolnarrowhebrew;05B1 hatafsegolquarterhebrew;05B1 hatafsegolwidehebrew;05B1 hbar;0127 hbopomofo;310F hbrevebelow;1E2B hcedilla;1E29 hcircle;24D7 hcircumflex;0125 hdieresis;1E27 hdotaccent;1E23 hdotbelow;1E25 he;05D4 heart;2665 heartsuitblack;2665 heartsuitwhite;2661 hedagesh;FB34 hedageshhebrew;FB34 hehaltonearabic;06C1 heharabic;0647 hehebrew;05D4 hehfinalaltonearabic;FBA7 hehfinalalttwoarabic;FEEA hehfinalarabic;FEEA hehhamzaabovefinalarabic;FBA5 hehhamzaaboveisolatedarabic;FBA4 hehinitialaltonearabic;FBA8 hehinitialarabic;FEEB hehiragana;3078 hehmedialaltonearabic;FBA9 hehmedialarabic;FEEC heiseierasquare;337B hekatakana;30D8 hekatakanahalfwidth;FF8D hekutaarusquare;3336 henghook;0267 herutusquare;3339 het;05D7 hethebrew;05D7 hhook;0266 hhooksuperior;02B1 hieuhacirclekorean;327B hieuhaparenkorean;321B hieuhcirclekorean;326D hieuhkorean;314E hieuhparenkorean;320D hihiragana;3072 hikatakana;30D2 hikatakanahalfwidth;FF8B hiriq;05B4 hiriq14;05B4 hiriq21;05B4 hiriq2d;05B4 hiriqhebrew;05B4 hiriqnarrowhebrew;05B4 hiriqquarterhebrew;05B4 hiriqwidehebrew;05B4 hlinebelow;1E96 hmonospace;FF48 hoarmenian;0570 hohipthai;0E2B hohiragana;307B hokatakana;30DB hokatakanahalfwidth;FF8E holam;05B9 holam19;05B9 holam26;05B9 holam32;05B9 holamhebrew;05B9 holamnarrowhebrew;05B9 holamquarterhebrew;05B9 holamwidehebrew;05B9 honokhukthai;0E2E hookabovecomb;0309 hookcmb;0309 hookpalatalizedbelowcmb;0321 hookretroflexbelowcmb;0322 hoonsquare;3342 horicoptic;03E9 horizontalbar;2015 horncmb;031B hotsprings;2668 house;2302 hparen;24A3 hsuperior;02B0 hturned;0265 huhiragana;3075 huiitosquare;3333 hukatakana;30D5 hukatakanahalfwidth;FF8C hungarumlaut;02DD hungarumlautcmb;030B hv;0195 hyphen;002D hypheninferior;F6E5 hyphenmonospace;FF0D hyphensmall;FE63 hyphensuperior;F6E6 hyphentwo;2010 i;0069 iacute;00ED iacyrillic;044F ibengali;0987 ibopomofo;3127 ibreve;012D icaron;01D0 icircle;24D8 icircumflex;00EE icyrillic;0456 idblgrave;0209 ideographearthcircle;328F ideographfirecircle;328B ideographicallianceparen;323F ideographiccallparen;323A ideographiccentrecircle;32A5 ideographicclose;3006 ideographiccomma;3001 ideographiccommaleft;FF64 ideographiccongratulationparen;3237 ideographiccorrectcircle;32A3 ideographicearthparen;322F ideographicenterpriseparen;323D ideographicexcellentcircle;329D ideographicfestivalparen;3240 ideographicfinancialcircle;3296 ideographicfinancialparen;3236 ideographicfireparen;322B ideographichaveparen;3232 ideographichighcircle;32A4 ideographiciterationmark;3005 ideographiclaborcircle;3298 ideographiclaborparen;3238 ideographicleftcircle;32A7 ideographiclowcircle;32A6 ideographicmedicinecircle;32A9 ideographicmetalparen;322E ideographicmoonparen;322A ideographicnameparen;3234 ideographicperiod;3002 ideographicprintcircle;329E ideographicreachparen;3243 ideographicrepresentparen;3239 ideographicresourceparen;323E ideographicrightcircle;32A8 ideographicsecretcircle;3299 ideographicselfparen;3242 ideographicsocietyparen;3233 ideographicspace;3000 ideographicspecialparen;3235 ideographicstockparen;3231 ideographicstudyparen;323B ideographicsunparen;3230 ideographicsuperviseparen;323C ideographicwaterparen;322C ideographicwoodparen;322D ideographiczero;3007 ideographmetalcircle;328E ideographmooncircle;328A ideographnamecircle;3294 ideographsuncircle;3290 ideographwatercircle;328C ideographwoodcircle;328D ideva;0907 idieresis;00EF idieresisacute;1E2F idieresiscyrillic;04E5 idotbelow;1ECB iebrevecyrillic;04D7 iecyrillic;0435 ieungacirclekorean;3275 ieungaparenkorean;3215 ieungcirclekorean;3267 ieungkorean;3147 ieungparenkorean;3207 igrave;00EC igujarati;0A87 igurmukhi;0A07 ihiragana;3044 ihookabove;1EC9 iibengali;0988 iicyrillic;0438 iideva;0908 iigujarati;0A88 iigurmukhi;0A08 iimatragurmukhi;0A40 iinvertedbreve;020B iishortcyrillic;0439 iivowelsignbengali;09C0 iivowelsigndeva;0940 iivowelsigngujarati;0AC0 ij;0133 ikatakana;30A4 ikatakanahalfwidth;FF72 ikorean;3163 ilde;02DC iluyhebrew;05AC imacron;012B imacroncyrillic;04E3 imageorapproximatelyequal;2253 imatragurmukhi;0A3F imonospace;FF49 increment;2206 infinity;221E iniarmenian;056B integral;222B integralbottom;2321 integralbt;2321 integralex;F8F5 integraltop;2320 integraltp;2320 intersection;2229 intisquare;3305 invbullet;25D8 invcircle;25D9 invsmileface;263B iocyrillic;0451 iogonek;012F iota;03B9 iotadieresis;03CA iotadieresistonos;0390 iotalatin;0269 iotatonos;03AF iparen;24A4 irigurmukhi;0A72 ismallhiragana;3043 ismallkatakana;30A3 ismallkatakanahalfwidth;FF68 issharbengali;09FA istroke;0268 isuperior;F6ED iterationhiragana;309D iterationkatakana;30FD itilde;0129 itildebelow;1E2D iubopomofo;3129 iucyrillic;044E ivowelsignbengali;09BF ivowelsigndeva;093F ivowelsigngujarati;0ABF izhitsacyrillic;0475 izhitsadblgravecyrillic;0477 j;006A jaarmenian;0571 jabengali;099C jadeva;091C jagujarati;0A9C jagurmukhi;0A1C jbopomofo;3110 jcaron;01F0 jcircle;24D9 jcircumflex;0135 jcrossedtail;029D jdotlessstroke;025F jecyrillic;0458 jeemarabic;062C jeemfinalarabic;FE9E jeeminitialarabic;FE9F jeemmedialarabic;FEA0 jeharabic;0698 jehfinalarabic;FB8B jhabengali;099D jhadeva;091D jhagujarati;0A9D jhagurmukhi;0A1D jheharmenian;057B jis;3004 jmonospace;FF4A jparen;24A5 jsuperior;02B2 k;006B kabashkircyrillic;04A1 kabengali;0995 kacute;1E31 kacyrillic;043A kadescendercyrillic;049B kadeva;0915 kaf;05DB kafarabic;0643 kafdagesh;FB3B kafdageshhebrew;FB3B kaffinalarabic;FEDA kafhebrew;05DB kafinitialarabic;FEDB kafmedialarabic;FEDC kafrafehebrew;FB4D kagujarati;0A95 kagurmukhi;0A15 kahiragana;304B kahookcyrillic;04C4 kakatakana;30AB kakatakanahalfwidth;FF76 kappa;03BA kappasymbolgreek;03F0 kapyeounmieumkorean;3171 kapyeounphieuphkorean;3184 kapyeounpieupkorean;3178 kapyeounssangpieupkorean;3179 karoriisquare;330D kashidaautoarabic;0640 kashidaautonosidebearingarabic;0640 kasmallkatakana;30F5 kasquare;3384 kasraarabic;0650 kasratanarabic;064D kastrokecyrillic;049F katahiraprolongmarkhalfwidth;FF70 kaverticalstrokecyrillic;049D kbopomofo;310E kcalsquare;3389 kcaron;01E9 kcedilla;0137 kcircle;24DA kcommaaccent;0137 kdotbelow;1E33 keharmenian;0584 kehiragana;3051 kekatakana;30B1 kekatakanahalfwidth;FF79 kenarmenian;056F kesmallkatakana;30F6 kgreenlandic;0138 khabengali;0996 khacyrillic;0445 khadeva;0916 khagujarati;0A96 khagurmukhi;0A16 khaharabic;062E khahfinalarabic;FEA6 khahinitialarabic;FEA7 khahmedialarabic;FEA8 kheicoptic;03E7 khhadeva;0959 khhagurmukhi;0A59 khieukhacirclekorean;3278 khieukhaparenkorean;3218 khieukhcirclekorean;326A khieukhkorean;314B khieukhparenkorean;320A khokhaithai;0E02 khokhonthai;0E05 khokhuatthai;0E03 khokhwaithai;0E04 khomutthai;0E5B khook;0199 khorakhangthai;0E06 khzsquare;3391 kihiragana;304D kikatakana;30AD kikatakanahalfwidth;FF77 kiroguramusquare;3315 kiromeetorusquare;3316 kirosquare;3314 kiyeokacirclekorean;326E kiyeokaparenkorean;320E kiyeokcirclekorean;3260 kiyeokkorean;3131 kiyeokparenkorean;3200 kiyeoksioskorean;3133 kjecyrillic;045C klinebelow;1E35 klsquare;3398 kmcubedsquare;33A6 kmonospace;FF4B kmsquaredsquare;33A2 kohiragana;3053 kohmsquare;33C0 kokaithai;0E01 kokatakana;30B3 kokatakanahalfwidth;FF7A kooposquare;331E koppacyrillic;0481 koreanstandardsymbol;327F koroniscmb;0343 kparen;24A6 kpasquare;33AA ksicyrillic;046F ktsquare;33CF kturned;029E kuhiragana;304F kukatakana;30AF kukatakanahalfwidth;FF78 kvsquare;33B8 kwsquare;33BE l;006C labengali;09B2 lacute;013A ladeva;0932 lagujarati;0AB2 lagurmukhi;0A32 lakkhangyaothai;0E45 lamaleffinalarabic;FEFC lamalefhamzaabovefinalarabic;FEF8 lamalefhamzaaboveisolatedarabic;FEF7 lamalefhamzabelowfinalarabic;FEFA lamalefhamzabelowisolatedarabic;FEF9 lamalefisolatedarabic;FEFB lamalefmaddaabovefinalarabic;FEF6 lamalefmaddaaboveisolatedarabic;FEF5 lamarabic;0644 lambda;03BB lambdastroke;019B lamed;05DC lameddagesh;FB3C lameddageshhebrew;FB3C lamedhebrew;05DC lamedholam;05DC 05B9 lamedholamdagesh;05DC 05B9 05BC lamedholamdageshhebrew;05DC 05B9 05BC lamedholamhebrew;05DC 05B9 lamfinalarabic;FEDE lamhahinitialarabic;FCCA laminitialarabic;FEDF lamjeeminitialarabic;FCC9 lamkhahinitialarabic;FCCB lamlamhehisolatedarabic;FDF2 lammedialarabic;FEE0 lammeemhahinitialarabic;FD88 lammeeminitialarabic;FCCC lammeemjeeminitialarabic;FEDF FEE4 FEA0 lammeemkhahinitialarabic;FEDF FEE4 FEA8 largecircle;25EF lbar;019A lbelt;026C lbopomofo;310C lcaron;013E lcedilla;013C lcircle;24DB lcircumflexbelow;1E3D lcommaaccent;013C ldot;0140 ldotaccent;0140 ldotbelow;1E37 ldotbelowmacron;1E39 leftangleabovecmb;031A lefttackbelowcmb;0318 less;003C lessequal;2264 lessequalorgreater;22DA lessmonospace;FF1C lessorequivalent;2272 lessorgreater;2276 lessoverequal;2266 lesssmall;FE64 lezh;026E lfblock;258C lhookretroflex;026D lira;20A4 liwnarmenian;056C lj;01C9 ljecyrillic;0459 ll;F6C0 lladeva;0933 llagujarati;0AB3 llinebelow;1E3B llladeva;0934 llvocalicbengali;09E1 llvocalicdeva;0961 llvocalicvowelsignbengali;09E3 llvocalicvowelsigndeva;0963 lmiddletilde;026B lmonospace;FF4C lmsquare;33D0 lochulathai;0E2C logicaland;2227 logicalnot;00AC logicalnotreversed;2310 logicalor;2228 lolingthai;0E25 longs;017F lowlinecenterline;FE4E lowlinecmb;0332 lowlinedashed;FE4D lozenge;25CA lparen;24A7 lslash;0142 lsquare;2113 lsuperior;F6EE ltshade;2591 luthai;0E26 lvocalicbengali;098C lvocalicdeva;090C lvocalicvowelsignbengali;09E2 lvocalicvowelsigndeva;0962 lxsquare;33D3 m;006D mabengali;09AE macron;00AF macronbelowcmb;0331 macroncmb;0304 macronlowmod;02CD macronmonospace;FFE3 macute;1E3F madeva;092E magujarati;0AAE magurmukhi;0A2E mahapakhhebrew;05A4 mahapakhlefthebrew;05A4 mahiragana;307E maichattawalowleftthai;F895 maichattawalowrightthai;F894 maichattawathai;0E4B maichattawaupperleftthai;F893 maieklowleftthai;F88C maieklowrightthai;F88B maiekthai;0E48 maiekupperleftthai;F88A maihanakatleftthai;F884 maihanakatthai;0E31 maitaikhuleftthai;F889 maitaikhuthai;0E47 maitholowleftthai;F88F maitholowrightthai;F88E maithothai;0E49 maithoupperleftthai;F88D maitrilowleftthai;F892 maitrilowrightthai;F891 maitrithai;0E4A maitriupperleftthai;F890 maiyamokthai;0E46 makatakana;30DE makatakanahalfwidth;FF8F male;2642 mansyonsquare;3347 maqafhebrew;05BE mars;2642 masoracirclehebrew;05AF masquare;3383 mbopomofo;3107 mbsquare;33D4 mcircle;24DC mcubedsquare;33A5 mdotaccent;1E41 mdotbelow;1E43 meemarabic;0645 meemfinalarabic;FEE2 meeminitialarabic;FEE3 meemmedialarabic;FEE4 meemmeeminitialarabic;FCD1 meemmeemisolatedarabic;FC48 meetorusquare;334D mehiragana;3081 meizierasquare;337E mekatakana;30E1 mekatakanahalfwidth;FF92 mem;05DE memdagesh;FB3E memdageshhebrew;FB3E memhebrew;05DE menarmenian;0574 merkhahebrew;05A5 merkhakefulahebrew;05A6 merkhakefulalefthebrew;05A6 merkhalefthebrew;05A5 mhook;0271 mhzsquare;3392 middledotkatakanahalfwidth;FF65 middot;00B7 mieumacirclekorean;3272 mieumaparenkorean;3212 mieumcirclekorean;3264 mieumkorean;3141 mieumpansioskorean;3170 mieumparenkorean;3204 mieumpieupkorean;316E mieumsioskorean;316F mihiragana;307F mikatakana;30DF mikatakanahalfwidth;FF90 minus;2212 minusbelowcmb;0320 minuscircle;2296 minusmod;02D7 minusplus;2213 minute;2032 miribaarusquare;334A mirisquare;3349 mlonglegturned;0270 mlsquare;3396 mmcubedsquare;33A3 mmonospace;FF4D mmsquaredsquare;339F mohiragana;3082 mohmsquare;33C1 mokatakana;30E2 mokatakanahalfwidth;FF93 molsquare;33D6 momathai;0E21 moverssquare;33A7 moverssquaredsquare;33A8 mparen;24A8 mpasquare;33AB mssquare;33B3 msuperior;F6EF mturned;026F mu;00B5 mu1;00B5 muasquare;3382 muchgreater;226B muchless;226A mufsquare;338C mugreek;03BC mugsquare;338D muhiragana;3080 mukatakana;30E0 mukatakanahalfwidth;FF91 mulsquare;3395 multiply;00D7 mumsquare;339B munahhebrew;05A3 munahlefthebrew;05A3 musicalnote;266A musicalnotedbl;266B musicflatsign;266D musicsharpsign;266F mussquare;33B2 muvsquare;33B6 muwsquare;33BC mvmegasquare;33B9 mvsquare;33B7 mwmegasquare;33BF mwsquare;33BD n;006E nabengali;09A8 nabla;2207 nacute;0144 nadeva;0928 nagujarati;0AA8 nagurmukhi;0A28 nahiragana;306A nakatakana;30CA nakatakanahalfwidth;FF85 napostrophe;0149 nasquare;3381 nbopomofo;310B nbspace;00A0 ncaron;0148 ncedilla;0146 ncircle;24DD ncircumflexbelow;1E4B ncommaaccent;0146 ndotaccent;1E45 ndotbelow;1E47 nehiragana;306D nekatakana;30CD nekatakanahalfwidth;FF88 newsheqelsign;20AA nfsquare;338B ngabengali;0999 ngadeva;0919 ngagujarati;0A99 ngagurmukhi;0A19 ngonguthai;0E07 nhiragana;3093 nhookleft;0272 nhookretroflex;0273 nieunacirclekorean;326F nieunaparenkorean;320F nieuncieuckorean;3135 nieuncirclekorean;3261 nieunhieuhkorean;3136 nieunkorean;3134 nieunpansioskorean;3168 nieunparenkorean;3201 nieunsioskorean;3167 nieuntikeutkorean;3166 nihiragana;306B nikatakana;30CB nikatakanahalfwidth;FF86 nikhahitleftthai;F899 nikhahitthai;0E4D nine;0039 ninearabic;0669 ninebengali;09EF ninecircle;2468 ninecircleinversesansserif;2792 ninedeva;096F ninegujarati;0AEF ninegurmukhi;0A6F ninehackarabic;0669 ninehangzhou;3029 nineideographicparen;3228 nineinferior;2089 ninemonospace;FF19 nineoldstyle;F739 nineparen;247C nineperiod;2490 ninepersian;06F9 nineroman;2178 ninesuperior;2079 nineteencircle;2472 nineteenparen;2486 nineteenperiod;249A ninethai;0E59 nj;01CC njecyrillic;045A nkatakana;30F3 nkatakanahalfwidth;FF9D nlegrightlong;019E nlinebelow;1E49 nmonospace;FF4E nmsquare;339A nnabengali;09A3 nnadeva;0923 nnagujarati;0AA3 nnagurmukhi;0A23 nnnadeva;0929 nohiragana;306E nokatakana;30CE nokatakanahalfwidth;FF89 nonbreakingspace;00A0 nonenthai;0E13 nonuthai;0E19 noonarabic;0646 noonfinalarabic;FEE6 noonghunnaarabic;06BA noonghunnafinalarabic;FB9F noonhehinitialarabic;FEE7 FEEC nooninitialarabic;FEE7 noonjeeminitialarabic;FCD2 noonjeemisolatedarabic;FC4B noonmedialarabic;FEE8 noonmeeminitialarabic;FCD5 noonmeemisolatedarabic;FC4E noonnoonfinalarabic;FC8D notcontains;220C notelement;2209 notelementof;2209 notequal;2260 notgreater;226F notgreaternorequal;2271 notgreaternorless;2279 notidentical;2262 notless;226E notlessnorequal;2270 notparallel;2226 notprecedes;2280 notsubset;2284 notsucceeds;2281 notsuperset;2285 nowarmenian;0576 nparen;24A9 nssquare;33B1 nsuperior;207F ntilde;00F1 nu;03BD nuhiragana;306C nukatakana;30CC nukatakanahalfwidth;FF87 nuktabengali;09BC nuktadeva;093C nuktagujarati;0ABC nuktagurmukhi;0A3C numbersign;0023 numbersignmonospace;FF03 numbersignsmall;FE5F numeralsigngreek;0374 numeralsignlowergreek;0375 numero;2116 nun;05E0 nundagesh;FB40 nundageshhebrew;FB40 nunhebrew;05E0 nvsquare;33B5 nwsquare;33BB nyabengali;099E nyadeva;091E nyagujarati;0A9E nyagurmukhi;0A1E o;006F oacute;00F3 oangthai;0E2D obarred;0275 obarredcyrillic;04E9 obarreddieresiscyrillic;04EB obengali;0993 obopomofo;311B obreve;014F ocandradeva;0911 ocandragujarati;0A91 ocandravowelsigndeva;0949 ocandravowelsigngujarati;0AC9 ocaron;01D2 ocircle;24DE ocircumflex;00F4 ocircumflexacute;1ED1 ocircumflexdotbelow;1ED9 ocircumflexgrave;1ED3 ocircumflexhookabove;1ED5 ocircumflextilde;1ED7 ocyrillic;043E odblacute;0151 odblgrave;020D odeva;0913 odieresis;00F6 odieresiscyrillic;04E7 odotbelow;1ECD oe;0153 oekorean;315A ogonek;02DB ogonekcmb;0328 ograve;00F2 ogujarati;0A93 oharmenian;0585 ohiragana;304A ohookabove;1ECF ohorn;01A1 ohornacute;1EDB ohorndotbelow;1EE3 ohorngrave;1EDD ohornhookabove;1EDF ohorntilde;1EE1 ohungarumlaut;0151 oi;01A3 oinvertedbreve;020F okatakana;30AA okatakanahalfwidth;FF75 okorean;3157 olehebrew;05AB omacron;014D omacronacute;1E53 omacrongrave;1E51 omdeva;0950 omega;03C9 omega1;03D6 omegacyrillic;0461 omegalatinclosed;0277 omegaroundcyrillic;047B omegatitlocyrillic;047D omegatonos;03CE omgujarati;0AD0 omicron;03BF omicrontonos;03CC omonospace;FF4F one;0031 onearabic;0661 onebengali;09E7 onecircle;2460 onecircleinversesansserif;278A onedeva;0967 onedotenleader;2024 oneeighth;215B onefitted;F6DC onegujarati;0AE7 onegurmukhi;0A67 onehackarabic;0661 onehalf;00BD onehangzhou;3021 oneideographicparen;3220 oneinferior;2081 onemonospace;FF11 onenumeratorbengali;09F4 oneoldstyle;F731 oneparen;2474 oneperiod;2488 onepersian;06F1 onequarter;00BC oneroman;2170 onesuperior;00B9 onethai;0E51 onethird;2153 oogonek;01EB oogonekmacron;01ED oogurmukhi;0A13 oomatragurmukhi;0A4B oopen;0254 oparen;24AA openbullet;25E6 option;2325 ordfeminine;00AA ordmasculine;00BA orthogonal;221F oshortdeva;0912 oshortvowelsigndeva;094A oslash;00F8 oslashacute;01FF osmallhiragana;3049 osmallkatakana;30A9 osmallkatakanahalfwidth;FF6B ostrokeacute;01FF osuperior;F6F0 otcyrillic;047F otilde;00F5 otildeacute;1E4D otildedieresis;1E4F oubopomofo;3121 overline;203E overlinecenterline;FE4A overlinecmb;0305 overlinedashed;FE49 overlinedblwavy;FE4C overlinewavy;FE4B overscore;00AF ovowelsignbengali;09CB ovowelsigndeva;094B ovowelsigngujarati;0ACB p;0070 paampssquare;3380 paasentosquare;332B pabengali;09AA pacute;1E55 padeva;092A pagedown;21DF pageup;21DE pagujarati;0AAA pagurmukhi;0A2A pahiragana;3071 paiyannoithai;0E2F pakatakana;30D1 palatalizationcyrilliccmb;0484 palochkacyrillic;04C0 pansioskorean;317F paragraph;00B6 parallel;2225 parenleft;0028 parenleftaltonearabic;FD3E parenleftbt;F8ED parenleftex;F8EC parenleftinferior;208D parenleftmonospace;FF08 parenleftsmall;FE59 parenleftsuperior;207D parenlefttp;F8EB parenleftvertical;FE35 parenright;0029 parenrightaltonearabic;FD3F parenrightbt;F8F8 parenrightex;F8F7 parenrightinferior;208E parenrightmonospace;FF09 parenrightsmall;FE5A parenrightsuperior;207E parenrighttp;F8F6 parenrightvertical;FE36 partialdiff;2202 paseqhebrew;05C0 pashtahebrew;0599 pasquare;33A9 patah;05B7 patah11;05B7 patah1d;05B7 patah2a;05B7 patahhebrew;05B7 patahnarrowhebrew;05B7 patahquarterhebrew;05B7 patahwidehebrew;05B7 pazerhebrew;05A1 pbopomofo;3106 pcircle;24DF pdotaccent;1E57 pe;05E4 pecyrillic;043F pedagesh;FB44 pedageshhebrew;FB44 peezisquare;333B pefinaldageshhebrew;FB43 peharabic;067E peharmenian;057A pehebrew;05E4 pehfinalarabic;FB57 pehinitialarabic;FB58 pehiragana;307A pehmedialarabic;FB59 pekatakana;30DA pemiddlehookcyrillic;04A7 perafehebrew;FB4E percent;0025 percentarabic;066A percentmonospace;FF05 percentsmall;FE6A period;002E periodarmenian;0589 periodcentered;00B7 periodhalfwidth;FF61 periodinferior;F6E7 periodmonospace;FF0E periodsmall;FE52 periodsuperior;F6E8 perispomenigreekcmb;0342 perpendicular;22A5 perthousand;2030 peseta;20A7 pfsquare;338A phabengali;09AB phadeva;092B phagujarati;0AAB phagurmukhi;0A2B phi;03C6 phi1;03D5 phieuphacirclekorean;327A phieuphaparenkorean;321A phieuphcirclekorean;326C phieuphkorean;314D phieuphparenkorean;320C philatin;0278 phinthuthai;0E3A phisymbolgreek;03D5 phook;01A5 phophanthai;0E1E phophungthai;0E1C phosamphaothai;0E20 pi;03C0 pieupacirclekorean;3273 pieupaparenkorean;3213 pieupcieuckorean;3176 pieupcirclekorean;3265 pieupkiyeokkorean;3172 pieupkorean;3142 pieupparenkorean;3205 pieupsioskiyeokkorean;3174 pieupsioskorean;3144 pieupsiostikeutkorean;3175 pieupthieuthkorean;3177 pieuptikeutkorean;3173 pihiragana;3074 pikatakana;30D4 pisymbolgreek;03D6 piwrarmenian;0583 plus;002B plusbelowcmb;031F pluscircle;2295 plusminus;00B1 plusmod;02D6 plusmonospace;FF0B plussmall;FE62 plussuperior;207A pmonospace;FF50 pmsquare;33D8 pohiragana;307D pointingindexdownwhite;261F pointingindexleftwhite;261C pointingindexrightwhite;261E pointingindexupwhite;261D pokatakana;30DD poplathai;0E1B postalmark;3012 postalmarkface;3020 pparen;24AB precedes;227A prescription;211E primemod;02B9 primereversed;2035 product;220F projective;2305 prolongedkana;30FC propellor;2318 propersubset;2282 propersuperset;2283 proportion;2237 proportional;221D psi;03C8 psicyrillic;0471 psilipneumatacyrilliccmb;0486 pssquare;33B0 puhiragana;3077 pukatakana;30D7 pvsquare;33B4 pwsquare;33BA q;0071 qadeva;0958 qadmahebrew;05A8 qafarabic;0642 qaffinalarabic;FED6 qafinitialarabic;FED7 qafmedialarabic;FED8 qamats;05B8 qamats10;05B8 qamats1a;05B8 qamats1c;05B8 qamats27;05B8 qamats29;05B8 qamats33;05B8 qamatsde;05B8 qamatshebrew;05B8 qamatsnarrowhebrew;05B8 qamatsqatanhebrew;05B8 qamatsqatannarrowhebrew;05B8 qamatsqatanquarterhebrew;05B8 qamatsqatanwidehebrew;05B8 qamatsquarterhebrew;05B8 qamatswidehebrew;05B8 qarneyparahebrew;059F qbopomofo;3111 qcircle;24E0 qhook;02A0 qmonospace;FF51 qof;05E7 qofdagesh;FB47 qofdageshhebrew;FB47 qofhatafpatah;05E7 05B2 qofhatafpatahhebrew;05E7 05B2 qofhatafsegol;05E7 05B1 qofhatafsegolhebrew;05E7 05B1 qofhebrew;05E7 qofhiriq;05E7 05B4 qofhiriqhebrew;05E7 05B4 qofholam;05E7 05B9 qofholamhebrew;05E7 05B9 qofpatah;05E7 05B7 qofpatahhebrew;05E7 05B7 qofqamats;05E7 05B8 qofqamatshebrew;05E7 05B8 qofqubuts;05E7 05BB qofqubutshebrew;05E7 05BB qofsegol;05E7 05B6 qofsegolhebrew;05E7 05B6 qofsheva;05E7 05B0 qofshevahebrew;05E7 05B0 qoftsere;05E7 05B5 qoftserehebrew;05E7 05B5 qparen;24AC quarternote;2669 qubuts;05BB qubuts18;05BB qubuts25;05BB qubuts31;05BB qubutshebrew;05BB qubutsnarrowhebrew;05BB qubutsquarterhebrew;05BB qubutswidehebrew;05BB question;003F questionarabic;061F questionarmenian;055E questiondown;00BF questiondownsmall;F7BF questiongreek;037E questionmonospace;FF1F questionsmall;F73F quotedbl;0022 quotedblbase;201E quotedblleft;201C quotedblmonospace;FF02 quotedblprime;301E quotedblprimereversed;301D quotedblright;201D quoteleft;2018 quoteleftreversed;201B quotereversed;201B quoteright;2019 quoterightn;0149 quotesinglbase;201A quotesingle;0027 quotesinglemonospace;FF07 r;0072 raarmenian;057C rabengali;09B0 racute;0155 radeva;0930 radical;221A radicalex;F8E5 radoverssquare;33AE radoverssquaredsquare;33AF radsquare;33AD rafe;05BF rafehebrew;05BF ragujarati;0AB0 ragurmukhi;0A30 rahiragana;3089 rakatakana;30E9 rakatakanahalfwidth;FF97 ralowerdiagonalbengali;09F1 ramiddlediagonalbengali;09F0 ramshorn;0264 ratio;2236 rbopomofo;3116 rcaron;0159 rcedilla;0157 rcircle;24E1 rcommaaccent;0157 rdblgrave;0211 rdotaccent;1E59 rdotbelow;1E5B rdotbelowmacron;1E5D referencemark;203B reflexsubset;2286 reflexsuperset;2287 registered;00AE registersans;F8E8 registerserif;F6DA reharabic;0631 reharmenian;0580 rehfinalarabic;FEAE rehiragana;308C rehyehaleflamarabic;0631 FEF3 FE8E 0644 rekatakana;30EC rekatakanahalfwidth;FF9A resh;05E8 reshdageshhebrew;FB48 reshhatafpatah;05E8 05B2 reshhatafpatahhebrew;05E8 05B2 reshhatafsegol;05E8 05B1 reshhatafsegolhebrew;05E8 05B1 reshhebrew;05E8 reshhiriq;05E8 05B4 reshhiriqhebrew;05E8 05B4 reshholam;05E8 05B9 reshholamhebrew;05E8 05B9 reshpatah;05E8 05B7 reshpatahhebrew;05E8 05B7 reshqamats;05E8 05B8 reshqamatshebrew;05E8 05B8 reshqubuts;05E8 05BB reshqubutshebrew;05E8 05BB reshsegol;05E8 05B6 reshsegolhebrew;05E8 05B6 reshsheva;05E8 05B0 reshshevahebrew;05E8 05B0 reshtsere;05E8 05B5 reshtserehebrew;05E8 05B5 reversedtilde;223D reviahebrew;0597 reviamugrashhebrew;0597 revlogicalnot;2310 rfishhook;027E rfishhookreversed;027F rhabengali;09DD rhadeva;095D rho;03C1 rhook;027D rhookturned;027B rhookturnedsuperior;02B5 rhosymbolgreek;03F1 rhotichookmod;02DE rieulacirclekorean;3271 rieulaparenkorean;3211 rieulcirclekorean;3263 rieulhieuhkorean;3140 rieulkiyeokkorean;313A rieulkiyeoksioskorean;3169 rieulkorean;3139 rieulmieumkorean;313B rieulpansioskorean;316C rieulparenkorean;3203 rieulphieuphkorean;313F rieulpieupkorean;313C rieulpieupsioskorean;316B rieulsioskorean;313D rieulthieuthkorean;313E rieultikeutkorean;316A rieulyeorinhieuhkorean;316D rightangle;221F righttackbelowcmb;0319 righttriangle;22BF rihiragana;308A rikatakana;30EA rikatakanahalfwidth;FF98 ring;02DA ringbelowcmb;0325 ringcmb;030A ringhalfleft;02BF ringhalfleftarmenian;0559 ringhalfleftbelowcmb;031C ringhalfleftcentered;02D3 ringhalfright;02BE ringhalfrightbelowcmb;0339 ringhalfrightcentered;02D2 rinvertedbreve;0213 rittorusquare;3351 rlinebelow;1E5F rlongleg;027C rlonglegturned;027A rmonospace;FF52 rohiragana;308D rokatakana;30ED rokatakanahalfwidth;FF9B roruathai;0E23 rparen;24AD rrabengali;09DC rradeva;0931 rragurmukhi;0A5C rreharabic;0691 rrehfinalarabic;FB8D rrvocalicbengali;09E0 rrvocalicdeva;0960 rrvocalicgujarati;0AE0 rrvocalicvowelsignbengali;09C4 rrvocalicvowelsigndeva;0944 rrvocalicvowelsigngujarati;0AC4 rsuperior;F6F1 rtblock;2590 rturned;0279 rturnedsuperior;02B4 ruhiragana;308B rukatakana;30EB rukatakanahalfwidth;FF99 rupeemarkbengali;09F2 rupeesignbengali;09F3 rupiah;F6DD ruthai;0E24 rvocalicbengali;098B rvocalicdeva;090B rvocalicgujarati;0A8B rvocalicvowelsignbengali;09C3 rvocalicvowelsigndeva;0943 rvocalicvowelsigngujarati;0AC3 s;0073 sabengali;09B8 sacute;015B sacutedotaccent;1E65 sadarabic;0635 sadeva;0938 sadfinalarabic;FEBA sadinitialarabic;FEBB sadmedialarabic;FEBC sagujarati;0AB8 sagurmukhi;0A38 sahiragana;3055 sakatakana;30B5 sakatakanahalfwidth;FF7B sallallahoualayhewasallamarabic;FDFA samekh;05E1 samekhdagesh;FB41 samekhdageshhebrew;FB41 samekhhebrew;05E1 saraaathai;0E32 saraaethai;0E41 saraaimaimalaithai;0E44 saraaimaimuanthai;0E43 saraamthai;0E33 saraathai;0E30 saraethai;0E40 saraiileftthai;F886 saraiithai;0E35 saraileftthai;F885 saraithai;0E34 saraothai;0E42 saraueeleftthai;F888 saraueethai;0E37 saraueleftthai;F887 sarauethai;0E36 sarauthai;0E38 sarauuthai;0E39 sbopomofo;3119 scaron;0161 scarondotaccent;1E67 scedilla;015F schwa;0259 schwacyrillic;04D9 schwadieresiscyrillic;04DB schwahook;025A scircle;24E2 scircumflex;015D scommaaccent;0219 sdotaccent;1E61 sdotbelow;1E63 sdotbelowdotaccent;1E69 seagullbelowcmb;033C second;2033 secondtonechinese;02CA section;00A7 seenarabic;0633 seenfinalarabic;FEB2 seeninitialarabic;FEB3 seenmedialarabic;FEB4 segol;05B6 segol13;05B6 segol1f;05B6 segol2c;05B6 segolhebrew;05B6 segolnarrowhebrew;05B6 segolquarterhebrew;05B6 segoltahebrew;0592 segolwidehebrew;05B6 seharmenian;057D sehiragana;305B sekatakana;30BB sekatakanahalfwidth;FF7E semicolon;003B semicolonarabic;061B semicolonmonospace;FF1B semicolonsmall;FE54 semivoicedmarkkana;309C semivoicedmarkkanahalfwidth;FF9F sentisquare;3322 sentosquare;3323 seven;0037 sevenarabic;0667 sevenbengali;09ED sevencircle;2466 sevencircleinversesansserif;2790 sevendeva;096D seveneighths;215E sevengujarati;0AED sevengurmukhi;0A6D sevenhackarabic;0667 sevenhangzhou;3027 sevenideographicparen;3226 seveninferior;2087 sevenmonospace;FF17 sevenoldstyle;F737 sevenparen;247A sevenperiod;248E sevenpersian;06F7 sevenroman;2176 sevensuperior;2077 seventeencircle;2470 seventeenparen;2484 seventeenperiod;2498 seventhai;0E57 sfthyphen;00AD shaarmenian;0577 shabengali;09B6 shacyrillic;0448 shaddaarabic;0651 shaddadammaarabic;FC61 shaddadammatanarabic;FC5E shaddafathaarabic;FC60 shaddafathatanarabic;0651 064B shaddakasraarabic;FC62 shaddakasratanarabic;FC5F shade;2592 shadedark;2593 shadelight;2591 shademedium;2592 shadeva;0936 shagujarati;0AB6 shagurmukhi;0A36 shalshelethebrew;0593 shbopomofo;3115 shchacyrillic;0449 sheenarabic;0634 sheenfinalarabic;FEB6 sheeninitialarabic;FEB7 sheenmedialarabic;FEB8 sheicoptic;03E3 sheqel;20AA sheqelhebrew;20AA sheva;05B0 sheva115;05B0 sheva15;05B0 sheva22;05B0 sheva2e;05B0 shevahebrew;05B0 shevanarrowhebrew;05B0 shevaquarterhebrew;05B0 shevawidehebrew;05B0 shhacyrillic;04BB shimacoptic;03ED shin;05E9 shindagesh;FB49 shindageshhebrew;FB49 shindageshshindot;FB2C shindageshshindothebrew;FB2C shindageshsindot;FB2D shindageshsindothebrew;FB2D shindothebrew;05C1 shinhebrew;05E9 shinshindot;FB2A shinshindothebrew;FB2A shinsindot;FB2B shinsindothebrew;FB2B shook;0282 sigma;03C3 sigma1;03C2 sigmafinal;03C2 sigmalunatesymbolgreek;03F2 sihiragana;3057 sikatakana;30B7 sikatakanahalfwidth;FF7C siluqhebrew;05BD siluqlefthebrew;05BD similar;223C sindothebrew;05C2 siosacirclekorean;3274 siosaparenkorean;3214 sioscieuckorean;317E sioscirclekorean;3266 sioskiyeokkorean;317A sioskorean;3145 siosnieunkorean;317B siosparenkorean;3206 siospieupkorean;317D siostikeutkorean;317C six;0036 sixarabic;0666 sixbengali;09EC sixcircle;2465 sixcircleinversesansserif;278F sixdeva;096C sixgujarati;0AEC sixgurmukhi;0A6C sixhackarabic;0666 sixhangzhou;3026 sixideographicparen;3225 sixinferior;2086 sixmonospace;FF16 sixoldstyle;F736 sixparen;2479 sixperiod;248D sixpersian;06F6 sixroman;2175 sixsuperior;2076 sixteencircle;246F sixteencurrencydenominatorbengali;09F9 sixteenparen;2483 sixteenperiod;2497 sixthai;0E56 slash;002F slashmonospace;FF0F slong;017F slongdotaccent;1E9B smileface;263A smonospace;FF53 sofpasuqhebrew;05C3 softhyphen;00AD softsigncyrillic;044C sohiragana;305D sokatakana;30BD sokatakanahalfwidth;FF7F soliduslongoverlaycmb;0338 solidusshortoverlaycmb;0337 sorusithai;0E29 sosalathai;0E28 sosothai;0E0B sosuathai;0E2A space;0020 spacehackarabic;0020 spade;2660 spadesuitblack;2660 spadesuitwhite;2664 sparen;24AE squarebelowcmb;033B squarecc;33C4 squarecm;339D squarediagonalcrosshatchfill;25A9 squarehorizontalfill;25A4 squarekg;338F squarekm;339E squarekmcapital;33CE squareln;33D1 squarelog;33D2 squaremg;338E squaremil;33D5 squaremm;339C squaremsquared;33A1 squareorthogonalcrosshatchfill;25A6 squareupperlefttolowerrightfill;25A7 squareupperrighttolowerleftfill;25A8 squareverticalfill;25A5 squarewhitewithsmallblack;25A3 srsquare;33DB ssabengali;09B7 ssadeva;0937 ssagujarati;0AB7 ssangcieuckorean;3149 ssanghieuhkorean;3185 ssangieungkorean;3180 ssangkiyeokkorean;3132 ssangnieunkorean;3165 ssangpieupkorean;3143 ssangsioskorean;3146 ssangtikeutkorean;3138 ssuperior;F6F2 sterling;00A3 sterlingmonospace;FFE1 strokelongoverlaycmb;0336 strokeshortoverlaycmb;0335 subset;2282 subsetnotequal;228A subsetorequal;2286 succeeds;227B suchthat;220B suhiragana;3059 sukatakana;30B9 sukatakanahalfwidth;FF7D sukunarabic;0652 summation;2211 sun;263C superset;2283 supersetnotequal;228B supersetorequal;2287 svsquare;33DC syouwaerasquare;337C t;0074 tabengali;09A4 tackdown;22A4 tackleft;22A3 tadeva;0924 tagujarati;0AA4 tagurmukhi;0A24 taharabic;0637 tahfinalarabic;FEC2 tahinitialarabic;FEC3 tahiragana;305F tahmedialarabic;FEC4 taisyouerasquare;337D takatakana;30BF takatakanahalfwidth;FF80 tatweelarabic;0640 tau;03C4 tav;05EA tavdages;FB4A tavdagesh;FB4A tavdageshhebrew;FB4A tavhebrew;05EA tbar;0167 tbopomofo;310A tcaron;0165 tccurl;02A8 tcedilla;0163 tcheharabic;0686 tchehfinalarabic;FB7B tchehinitialarabic;FB7C tchehmedialarabic;FB7D tchehmeeminitialarabic;FB7C FEE4 tcircle;24E3 tcircumflexbelow;1E71 tcommaaccent;0163 tdieresis;1E97 tdotaccent;1E6B tdotbelow;1E6D tecyrillic;0442 tedescendercyrillic;04AD teharabic;062A tehfinalarabic;FE96 tehhahinitialarabic;FCA2 tehhahisolatedarabic;FC0C tehinitialarabic;FE97 tehiragana;3066 tehjeeminitialarabic;FCA1 tehjeemisolatedarabic;FC0B tehmarbutaarabic;0629 tehmarbutafinalarabic;FE94 tehmedialarabic;FE98 tehmeeminitialarabic;FCA4 tehmeemisolatedarabic;FC0E tehnoonfinalarabic;FC73 tekatakana;30C6 tekatakanahalfwidth;FF83 telephone;2121 telephoneblack;260E telishagedolahebrew;05A0 telishaqetanahebrew;05A9 tencircle;2469 tenideographicparen;3229 tenparen;247D tenperiod;2491 tenroman;2179 tesh;02A7 tet;05D8 tetdagesh;FB38 tetdageshhebrew;FB38 tethebrew;05D8 tetsecyrillic;04B5 tevirhebrew;059B tevirlefthebrew;059B thabengali;09A5 thadeva;0925 thagujarati;0AA5 thagurmukhi;0A25 thalarabic;0630 thalfinalarabic;FEAC thanthakhatlowleftthai;F898 thanthakhatlowrightthai;F897 thanthakhatthai;0E4C thanthakhatupperleftthai;F896 theharabic;062B thehfinalarabic;FE9A thehinitialarabic;FE9B thehmedialarabic;FE9C thereexists;2203 therefore;2234 theta;03B8 theta1;03D1 thetasymbolgreek;03D1 thieuthacirclekorean;3279 thieuthaparenkorean;3219 thieuthcirclekorean;326B thieuthkorean;314C thieuthparenkorean;320B thirteencircle;246C thirteenparen;2480 thirteenperiod;2494 thonangmonthothai;0E11 thook;01AD thophuthaothai;0E12 thorn;00FE thothahanthai;0E17 thothanthai;0E10 thothongthai;0E18 thothungthai;0E16 thousandcyrillic;0482 thousandsseparatorarabic;066C thousandsseparatorpersian;066C three;0033 threearabic;0663 threebengali;09E9 threecircle;2462 threecircleinversesansserif;278C threedeva;0969 threeeighths;215C threegujarati;0AE9 threegurmukhi;0A69 threehackarabic;0663 threehangzhou;3023 threeideographicparen;3222 threeinferior;2083 threemonospace;FF13 threenumeratorbengali;09F6 threeoldstyle;F733 threeparen;2476 threeperiod;248A threepersian;06F3 threequarters;00BE threequartersemdash;F6DE threeroman;2172 threesuperior;00B3 threethai;0E53 thzsquare;3394 tihiragana;3061 tikatakana;30C1 tikatakanahalfwidth;FF81 tikeutacirclekorean;3270 tikeutaparenkorean;3210 tikeutcirclekorean;3262 tikeutkorean;3137 tikeutparenkorean;3202 tilde;02DC tildebelowcmb;0330 tildecmb;0303 tildecomb;0303 tildedoublecmb;0360 tildeoperator;223C tildeoverlaycmb;0334 tildeverticalcmb;033E timescircle;2297 tipehahebrew;0596 tipehalefthebrew;0596 tippigurmukhi;0A70 titlocyrilliccmb;0483 tiwnarmenian;057F tlinebelow;1E6F tmonospace;FF54 toarmenian;0569 tohiragana;3068 tokatakana;30C8 tokatakanahalfwidth;FF84 tonebarextrahighmod;02E5 tonebarextralowmod;02E9 tonebarhighmod;02E6 tonebarlowmod;02E8 tonebarmidmod;02E7 tonefive;01BD tonesix;0185 tonetwo;01A8 tonos;0384 tonsquare;3327 topatakthai;0E0F tortoiseshellbracketleft;3014 tortoiseshellbracketleftsmall;FE5D tortoiseshellbracketleftvertical;FE39 tortoiseshellbracketright;3015 tortoiseshellbracketrightsmall;FE5E tortoiseshellbracketrightvertical;FE3A totaothai;0E15 tpalatalhook;01AB tparen;24AF trademark;2122 trademarksans;F8EA trademarkserif;F6DB tretroflexhook;0288 triagdn;25BC triaglf;25C4 triagrt;25BA triagup;25B2 ts;02A6 tsadi;05E6 tsadidagesh;FB46 tsadidageshhebrew;FB46 tsadihebrew;05E6 tsecyrillic;0446 tsere;05B5 tsere12;05B5 tsere1e;05B5 tsere2b;05B5 tserehebrew;05B5 tserenarrowhebrew;05B5 tserequarterhebrew;05B5 tserewidehebrew;05B5 tshecyrillic;045B tsuperior;F6F3 ttabengali;099F ttadeva;091F ttagujarati;0A9F ttagurmukhi;0A1F tteharabic;0679 ttehfinalarabic;FB67 ttehinitialarabic;FB68 ttehmedialarabic;FB69 tthabengali;09A0 tthadeva;0920 tthagujarati;0AA0 tthagurmukhi;0A20 tturned;0287 tuhiragana;3064 tukatakana;30C4 tukatakanahalfwidth;FF82 tusmallhiragana;3063 tusmallkatakana;30C3 tusmallkatakanahalfwidth;FF6F twelvecircle;246B twelveparen;247F twelveperiod;2493 twelveroman;217B twentycircle;2473 twentyhangzhou;5344 twentyparen;2487 twentyperiod;249B two;0032 twoarabic;0662 twobengali;09E8 twocircle;2461 twocircleinversesansserif;278B twodeva;0968 twodotenleader;2025 twodotleader;2025 twodotleadervertical;FE30 twogujarati;0AE8 twogurmukhi;0A68 twohackarabic;0662 twohangzhou;3022 twoideographicparen;3221 twoinferior;2082 twomonospace;FF12 twonumeratorbengali;09F5 twooldstyle;F732 twoparen;2475 twoperiod;2489 twopersian;06F2 tworoman;2171 twostroke;01BB twosuperior;00B2 twothai;0E52 twothirds;2154 u;0075 uacute;00FA ubar;0289 ubengali;0989 ubopomofo;3128 ubreve;016D ucaron;01D4 ucircle;24E4 ucircumflex;00FB ucircumflexbelow;1E77 ucyrillic;0443 udattadeva;0951 udblacute;0171 udblgrave;0215 udeva;0909 udieresis;00FC udieresisacute;01D8 udieresisbelow;1E73 udieresiscaron;01DA udieresiscyrillic;04F1 udieresisgrave;01DC udieresismacron;01D6 udotbelow;1EE5 ugrave;00F9 ugujarati;0A89 ugurmukhi;0A09 uhiragana;3046 uhookabove;1EE7 uhorn;01B0 uhornacute;1EE9 uhorndotbelow;1EF1 uhorngrave;1EEB uhornhookabove;1EED uhorntilde;1EEF uhungarumlaut;0171 uhungarumlautcyrillic;04F3 uinvertedbreve;0217 ukatakana;30A6 ukatakanahalfwidth;FF73 ukcyrillic;0479 ukorean;315C umacron;016B umacroncyrillic;04EF umacrondieresis;1E7B umatragurmukhi;0A41 umonospace;FF55 underscore;005F underscoredbl;2017 underscoremonospace;FF3F underscorevertical;FE33 underscorewavy;FE4F union;222A universal;2200 uogonek;0173 uparen;24B0 upblock;2580 upperdothebrew;05C4 upsilon;03C5 upsilondieresis;03CB upsilondieresistonos;03B0 upsilonlatin;028A upsilontonos;03CD uptackbelowcmb;031D uptackmod;02D4 uragurmukhi;0A73 uring;016F ushortcyrillic;045E usmallhiragana;3045 usmallkatakana;30A5 usmallkatakanahalfwidth;FF69 ustraightcyrillic;04AF ustraightstrokecyrillic;04B1 utilde;0169 utildeacute;1E79 utildebelow;1E75 uubengali;098A uudeva;090A uugujarati;0A8A uugurmukhi;0A0A uumatragurmukhi;0A42 uuvowelsignbengali;09C2 uuvowelsigndeva;0942 uuvowelsigngujarati;0AC2 uvowelsignbengali;09C1 uvowelsigndeva;0941 uvowelsigngujarati;0AC1 v;0076 vadeva;0935 vagujarati;0AB5 vagurmukhi;0A35 vakatakana;30F7 vav;05D5 vavdagesh;FB35 vavdagesh65;FB35 vavdageshhebrew;FB35 vavhebrew;05D5 vavholam;FB4B vavholamhebrew;FB4B vavvavhebrew;05F0 vavyodhebrew;05F1 vcircle;24E5 vdotbelow;1E7F vecyrillic;0432 veharabic;06A4 vehfinalarabic;FB6B vehinitialarabic;FB6C vehmedialarabic;FB6D vekatakana;30F9 venus;2640 verticalbar;007C verticallineabovecmb;030D verticallinebelowcmb;0329 verticallinelowmod;02CC verticallinemod;02C8 vewarmenian;057E vhook;028B vikatakana;30F8 viramabengali;09CD viramadeva;094D viramagujarati;0ACD visargabengali;0983 visargadeva;0903 visargagujarati;0A83 vmonospace;FF56 voarmenian;0578 voicediterationhiragana;309E voicediterationkatakana;30FE voicedmarkkana;309B voicedmarkkanahalfwidth;FF9E vokatakana;30FA vparen;24B1 vtilde;1E7D vturned;028C vuhiragana;3094 vukatakana;30F4 w;0077 wacute;1E83 waekorean;3159 wahiragana;308F wakatakana;30EF wakatakanahalfwidth;FF9C wakorean;3158 wasmallhiragana;308E wasmallkatakana;30EE wattosquare;3357 wavedash;301C wavyunderscorevertical;FE34 wawarabic;0648 wawfinalarabic;FEEE wawhamzaabovearabic;0624 wawhamzaabovefinalarabic;FE86 wbsquare;33DD wcircle;24E6 wcircumflex;0175 wdieresis;1E85 wdotaccent;1E87 wdotbelow;1E89 wehiragana;3091 weierstrass;2118 wekatakana;30F1 wekorean;315E weokorean;315D wgrave;1E81 whitebullet;25E6 whitecircle;25CB whitecircleinverse;25D9 whitecornerbracketleft;300E whitecornerbracketleftvertical;FE43 whitecornerbracketright;300F whitecornerbracketrightvertical;FE44 whitediamond;25C7 whitediamondcontainingblacksmalldiamond;25C8 whitedownpointingsmalltriangle;25BF whitedownpointingtriangle;25BD whiteleftpointingsmalltriangle;25C3 whiteleftpointingtriangle;25C1 whitelenticularbracketleft;3016 whitelenticularbracketright;3017 whiterightpointingsmalltriangle;25B9 whiterightpointingtriangle;25B7 whitesmallsquare;25AB whitesmilingface;263A whitesquare;25A1 whitestar;2606 whitetelephone;260F whitetortoiseshellbracketleft;3018 whitetortoiseshellbracketright;3019 whiteuppointingsmalltriangle;25B5 whiteuppointingtriangle;25B3 wihiragana;3090 wikatakana;30F0 wikorean;315F wmonospace;FF57 wohiragana;3092 wokatakana;30F2 wokatakanahalfwidth;FF66 won;20A9 wonmonospace;FFE6 wowaenthai;0E27 wparen;24B2 wring;1E98 wsuperior;02B7 wturned;028D wynn;01BF x;0078 xabovecmb;033D xbopomofo;3112 xcircle;24E7 xdieresis;1E8D xdotaccent;1E8B xeharmenian;056D xi;03BE xmonospace;FF58 xparen;24B3 xsuperior;02E3 y;0079 yaadosquare;334E yabengali;09AF yacute;00FD yadeva;092F yaekorean;3152 yagujarati;0AAF yagurmukhi;0A2F yahiragana;3084 yakatakana;30E4 yakatakanahalfwidth;FF94 yakorean;3151 yamakkanthai;0E4E yasmallhiragana;3083 yasmallkatakana;30E3 yasmallkatakanahalfwidth;FF6C yatcyrillic;0463 ycircle;24E8 ycircumflex;0177 ydieresis;00FF ydotaccent;1E8F ydotbelow;1EF5 yeharabic;064A yehbarreearabic;06D2 yehbarreefinalarabic;FBAF yehfinalarabic;FEF2 yehhamzaabovearabic;0626 yehhamzaabovefinalarabic;FE8A yehhamzaaboveinitialarabic;FE8B yehhamzaabovemedialarabic;FE8C yehinitialarabic;FEF3 yehmedialarabic;FEF4 yehmeeminitialarabic;FCDD yehmeemisolatedarabic;FC58 yehnoonfinalarabic;FC94 yehthreedotsbelowarabic;06D1 yekorean;3156 yen;00A5 yenmonospace;FFE5 yeokorean;3155 yeorinhieuhkorean;3186 yerahbenyomohebrew;05AA yerahbenyomolefthebrew;05AA yericyrillic;044B yerudieresiscyrillic;04F9 yesieungkorean;3181 yesieungpansioskorean;3183 yesieungsioskorean;3182 yetivhebrew;059A ygrave;1EF3 yhook;01B4 yhookabove;1EF7 yiarmenian;0575 yicyrillic;0457 yikorean;3162 yinyang;262F yiwnarmenian;0582 ymonospace;FF59 yod;05D9 yoddagesh;FB39 yoddageshhebrew;FB39 yodhebrew;05D9 yodyodhebrew;05F2 yodyodpatahhebrew;FB1F yohiragana;3088 yoikorean;3189 yokatakana;30E8 yokatakanahalfwidth;FF96 yokorean;315B yosmallhiragana;3087 yosmallkatakana;30E7 yosmallkatakanahalfwidth;FF6E yotgreek;03F3 yoyaekorean;3188 yoyakorean;3187 yoyakthai;0E22 yoyingthai;0E0D yparen;24B4 ypogegrammeni;037A ypogegrammenigreekcmb;0345 yr;01A6 yring;1E99 ysuperior;02B8 ytilde;1EF9 yturned;028E yuhiragana;3086 yuikorean;318C yukatakana;30E6 yukatakanahalfwidth;FF95 yukorean;3160 yusbigcyrillic;046B yusbigiotifiedcyrillic;046D yuslittlecyrillic;0467 yuslittleiotifiedcyrillic;0469 yusmallhiragana;3085 yusmallkatakana;30E5 yusmallkatakanahalfwidth;FF6D yuyekorean;318B yuyeokorean;318A yyabengali;09DF yyadeva;095F z;007A zaarmenian;0566 zacute;017A zadeva;095B zagurmukhi;0A5B zaharabic;0638 zahfinalarabic;FEC6 zahinitialarabic;FEC7 zahiragana;3056 zahmedialarabic;FEC8 zainarabic;0632 zainfinalarabic;FEB0 zakatakana;30B6 zaqefgadolhebrew;0595 zaqefqatanhebrew;0594 zarqahebrew;0598 zayin;05D6 zayindagesh;FB36 zayindageshhebrew;FB36 zayinhebrew;05D6 zbopomofo;3117 zcaron;017E zcircle;24E9 zcircumflex;1E91 zcurl;0291 zdot;017C zdotaccent;017C zdotbelow;1E93 zecyrillic;0437 zedescendercyrillic;0499 zedieresiscyrillic;04DF zehiragana;305C zekatakana;30BC zero;0030 zeroarabic;0660 zerobengali;09E6 zerodeva;0966 zerogujarati;0AE6 zerogurmukhi;0A66 zerohackarabic;0660 zeroinferior;2080 zeromonospace;FF10 zerooldstyle;F730 zeropersian;06F0 zerosuperior;2070 zerothai;0E50 zerowidthjoiner;FEFF zerowidthnonjoiner;200C zerowidthspace;200B zeta;03B6 zhbopomofo;3113 zhearmenian;056A zhebrevecyrillic;04C2 zhecyrillic;0436 zhedescendercyrillic;0497 zhedieresiscyrillic;04DD zihiragana;3058 zikatakana;30B8 zinorhebrew;05AE zlinebelow;1E95 zmonospace;FF5A zohiragana;305E zokatakana;30BE zparen;24B5 zretroflexhook;0290 zstroke;01B6 zuhiragana;305A zukatakana;30BA """ # string table management # class StringTable: def __init__( self, name_list, master_table_name ): self.names = name_list self.master_table = master_table_name self.indices = {} index = 0 for name in name_list: self.indices[name] = index index += len( name ) + 1 self.total = index def dump( self, file ): write = file.write write( " static const char " + self.master_table + "[" + repr( self.total ) + "] =\n" ) write( " {\n" ) line = "" for name in self.names: line += " '" line += string.join( ( re.findall( ".", name ) ), "','" ) line += "', 0,\n" write( line + " };\n\n\n" ) def dump_sublist( self, file, table_name, macro_name, sublist ): write = file.write write( "#define " + macro_name + " " + repr( len( sublist ) ) + "\n\n" ) write( " /* Values are offsets into the `" + self.master_table + "' table */\n\n" ) write( " static const short " + table_name + "[" + macro_name + "] =\n" ) write( " {\n" ) line = " " comma = "" col = 0 for name in sublist: line += comma line += "%4d" % self.indices[name] col += 1 comma = "," if col == 14: col = 0 comma = ",\n " write( line + "\n };\n\n\n" ) # We now store the Adobe Glyph List in compressed form. The list is put # into a data structure called `trie' (because it has a tree-like # appearance). Consider, for example, that you want to store the # following name mapping: # # A => 1 # Aacute => 6 # Abalon => 2 # Abstract => 4 # # It is possible to store the entries as follows. # # A => 1 # | # +-acute => 6 # | # +-b # | # +-alon => 2 # | # +-stract => 4 # # We see that each node in the trie has: # # - one or more `letters' # - an optional value # - zero or more child nodes # # The first step is to call # # root = StringNode( "", 0 ) # for word in map.values(): # root.add( word, map[word] ) # # which creates a large trie where each node has only one children. # # Executing # # root = root.optimize() # # optimizes the trie by merging the letters of successive nodes whenever # possible. # # Each node of the trie is stored as follows. # # - First the node's letter, according to the following scheme. We # use the fact that in the AGL no name contains character codes > 127. # # name bitsize description # ---------------------------------------------------------------- # notlast 1 Set to 1 if this is not the last letter # in the word. # ascii 7 The letter's ASCII value. # # - The letter is followed by a children count and the value of the # current key (if any). Again we can do some optimization because all # AGL entries are from the BMP; this means that 16 bits are sufficient # to store its Unicode values. Additionally, no node has more than # 127 children. # # name bitsize description # ----------------------------------------- # hasvalue 1 Set to 1 if a 16-bit Unicode value follows. # num_children 7 Number of children. Can be 0 only if # `hasvalue' is set to 1. # value 16 Optional Unicode value. # # - A node is finished by a list of 16bit absolute offsets to the # children, which must be sorted in increasing order of their first # letter. # # For simplicity, all 16bit quantities are stored in big-endian order. # # The root node has first letter = 0, and no value. # class StringNode: def __init__( self, letter, value ): self.letter = letter self.value = value self.children = {} def __cmp__( self, other ): return ord( self.letter[0] ) - ord( other.letter[0] ) def add( self, word, value ): if len( word ) == 0: self.value = value return letter = word[0] word = word[1:] if self.children.has_key( letter ): child = self.children[letter] else: child = StringNode( letter, 0 ) self.children[letter] = child child.add( word, value ) def optimize( self ): # optimize all children first children = self.children.values() self.children = {} for child in children: self.children[child.letter[0]] = child.optimize() # don't optimize if there's a value, # if we don't have any child or if we # have more than one child if ( self.value != 0 ) or ( not children ) or len( children ) > 1: return self child = children[0] self.letter += child.letter self.value = child.value self.children = child.children return self def dump_debug( self, write, margin ): # this is used during debugging line = margin + "+-" if len( self.letter ) == 0: line += "<NOLETTER>" else: line += self.letter if self.value: line += " => " + repr( self.value ) write( line + "\n" ) if self.children: margin += "| " for child in self.children.values(): child.dump_debug( write, margin ) def locate( self, index ): self.index = index if len( self.letter ) > 0: index += len( self.letter ) + 1 else: index += 2 if self.value != 0: index += 2 children = self.children.values() children.sort() index += 2 * len( children ) for child in children: index = child.locate( index ) return index def store( self, storage ): # write the letters l = len( self.letter ) if l == 0: storage += struct.pack( "B", 0 ) else: for n in range( l ): val = ord( self.letter[n] ) if n < l - 1: val += 128 storage += struct.pack( "B", val ) # write the count children = self.children.values() children.sort() count = len( children ) if self.value != 0: storage += struct.pack( "!BH", count + 128, self.value ) else: storage += struct.pack( "B", count ) for child in children: storage += struct.pack( "!H", child.index ) for child in children: storage = child.store( storage ) return storage def adobe_glyph_values(): """return the list of glyph names and their unicode values""" lines = string.split( adobe_glyph_list, '\n' ) glyphs = [] values = [] for line in lines: if line: fields = string.split( line, ';' ) # print fields[1] + ' - ' + fields[0] subfields = string.split( fields[1], ' ' ) if len( subfields ) == 1: glyphs.append( fields[0] ) values.append( fields[1] ) return glyphs, values def filter_glyph_names( alist, filter ): """filter `alist' by taking _out_ all glyph names that are in `filter'""" count = 0 extras = [] for name in alist: try: filtered_index = filter.index( name ) except: extras.append( name ) return extras def dump_encoding( file, encoding_name, encoding_list ): """dump a given encoding""" write = file.write write( " /* the following are indices into the SID name table */\n" ) write( " static const unsigned short " + encoding_name + "[" + repr( len( encoding_list ) ) + "] =\n" ) write( " {\n" ) line = " " comma = "" col = 0 for value in encoding_list: line += comma line += "%3d" % value comma = "," col += 1 if col == 16: col = 0 comma = ",\n " write( line + "\n };\n\n\n" ) def dump_array( the_array, write, array_name ): """dumps a given encoding""" write( " static const unsigned char " + array_name + "[" + repr( len( the_array ) ) + "L] =\n" ) write( " {\n" ) line = "" comma = " " col = 0 for value in the_array: line += comma line += "%3d" % ord( value ) comma = "," col += 1 if col == 16: col = 0 comma = ",\n " if len( line ) > 1024: write( line ) line = "" write( line + "\n };\n\n\n" ) def main(): """main program body""" if len( sys.argv ) != 2: print __doc__ % sys.argv[0] sys.exit( 1 ) file = open( sys.argv[1], "w\n" ) write = file.write count_sid = len( sid_standard_names ) # `mac_extras' contains the list of glyph names in the Macintosh standard # encoding which are not in the SID Standard Names. # mac_extras = filter_glyph_names( mac_standard_names, sid_standard_names ) # `base_list' contains the names of our final glyph names table. # It consists of the `mac_extras' glyph names, followed by the SID # standard names. # mac_extras_count = len( mac_extras ) base_list = mac_extras + sid_standard_names write( "/***************************************************************************/\n" ) write( "/* */\n" ) write( "/* %-71s*/\n" % os.path.basename( sys.argv[1] ) ) write( "/* */\n" ) write( "/* PostScript glyph names. */\n" ) write( "/* */\n" ) write( "/* Copyright 2005, 2008 by */\n" ) write( "/* David Turner, Robert Wilhelm, and Werner Lemberg. */\n" ) write( "/* */\n" ) write( "/* This file is part of the FreeType project, and may only be used, */\n" ) write( "/* modified, and distributed under the terms of the FreeType project */\n" ) write( "/* license, LICENSE.TXT. By continuing to use, modify, or distribute */\n" ) write( "/* this file you indicate that you have read the license and */\n" ) write( "/* understand and accept it fully. */\n" ) write( "/* */\n" ) write( "/***************************************************************************/\n" ) write( "\n" ) write( "\n" ) write( " /* This file has been generated automatically -- do not edit! */\n" ) write( "\n" ) write( "\n" ) # dump final glyph list (mac extras + sid standard names) # st = StringTable( base_list, "ft_standard_glyph_names" ) st.dump( file ) st.dump_sublist( file, "ft_mac_names", "FT_NUM_MAC_NAMES", mac_standard_names ) st.dump_sublist( file, "ft_sid_names", "FT_NUM_SID_NAMES", sid_standard_names ) dump_encoding( file, "t1_standard_encoding", t1_standard_encoding ) dump_encoding( file, "t1_expert_encoding", t1_expert_encoding ) # dump the AGL in its compressed form # agl_glyphs, agl_values = adobe_glyph_values() dict = StringNode( "", 0 ) for g in range( len( agl_glyphs ) ): dict.add( agl_glyphs[g], eval( "0x" + agl_values[g] ) ) dict = dict.optimize() dict_len = dict.locate( 0 ) dict_array = dict.store( "" ) write( """\ /* * This table is a compressed version of the Adobe Glyph List (AGL), * optimized for efficient searching. It has been generated by the * `glnames.py' python script located in the `src/tools' directory. * * The lookup function to get the Unicode value for a given string * is defined below the table. */ #ifdef FT_CONFIG_OPTION_ADOBE_GLYPH_LIST """ ) dump_array( dict_array, write, "ft_adobe_glyph_list" ) # write the lookup routine now # write( """\ /* * This function searches the compressed table efficiently. */ static unsigned long ft_get_adobe_glyph_index( const char* name, const char* limit ) { int c = 0; int count, min, max; const unsigned char* p = ft_adobe_glyph_list; if ( name == 0 || name >= limit ) goto NotFound; c = *name++; count = p[1]; p += 2; min = 0; max = count; while ( min < max ) { int mid = ( min + max ) >> 1; const unsigned char* q = p + mid * 2; int c2; q = ft_adobe_glyph_list + ( ( (int)q[0] << 8 ) | q[1] ); c2 = q[0] & 127; if ( c2 == c ) { p = q; goto Found; } if ( c2 < c ) min = mid + 1; else max = mid; } goto NotFound; Found: for (;;) { /* assert (*p & 127) == c */ if ( name >= limit ) { if ( (p[0] & 128) == 0 && (p[1] & 128) != 0 ) return (unsigned long)( ( (int)p[2] << 8 ) | p[3] ); goto NotFound; } c = *name++; if ( p[0] & 128 ) { p++; if ( c != (p[0] & 127) ) goto NotFound; continue; } p++; count = p[0] & 127; if ( p[0] & 128 ) p += 2; p++; for ( ; count > 0; count--, p += 2 ) { int offset = ( (int)p[0] << 8 ) | p[1]; const unsigned char* q = ft_adobe_glyph_list + offset; if ( c == ( q[0] & 127 ) ) { p = q; goto NextIter; } } goto NotFound; NextIter: ; } NotFound: return 0; } #endif /* FT_CONFIG_OPTION_ADOBE_GLYPH_LIST */ """ ) if 0: # generate unit test, or don't # # now write the unit test to check that everything works OK # write( "#ifdef TEST\n\n" ) write( "static const char* const the_names[] = {\n" ) for name in agl_glyphs: write( ' "' + name + '",\n' ) write( " 0\n};\n" ) write( "static const unsigned long the_values[] = {\n" ) for val in agl_values: write( ' 0x' + val + ',\n' ) write( " 0\n};\n" ) write( """ #include <stdlib.h> #include <stdio.h> int main( void ) { int result = 0; const char* const* names = the_names; const unsigned long* values = the_values; for ( ; *names; names++, values++ ) { const char* name = *names; unsigned long reference = *values; unsigned long value; value = ft_get_adobe_glyph_index( name, name + strlen( name ) ); if ( value != reference ) { result = 1; fprintf( stderr, "name '%s' => %04x instead of %04x\\n", name, value, reference ); } } return result; } """ ) write( "#endif /* TEST */\n" ) write("\n/* END */\n") # Now run the main routine # main() # END
gpl-2.0
ep1cman/workload-automation
wlauto/instrumentation/daq/__init__.py
2
20324
# Copyright 2013-2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=W0613,E1101,access-member-before-definition,attribute-defined-outside-init from __future__ import division import os import sys import csv import shutil import tempfile from collections import OrderedDict, defaultdict from string import ascii_lowercase from multiprocessing import Process, Queue from wlauto import Instrument, Parameter from wlauto.core import signal from wlauto.exceptions import ConfigError, InstrumentError, DeviceError from wlauto.utils.misc import ensure_directory_exists as _d from wlauto.utils.types import list_of_ints, list_of_strs, boolean # pylint: disable=wrong-import-position,wrong-import-order daqpower_path = os.path.join(os.path.dirname(__file__), '..', '..', 'external', 'daq_server', 'src') sys.path.insert(0, daqpower_path) try: import daqpower.client as daq # pylint: disable=F0401 from daqpower.config import DeviceConfiguration, ServerConfiguration, ConfigurationError # pylint: disable=F0401 except ImportError, e: daq, DeviceConfiguration, ServerConfiguration, ConfigurationError = None, None, None, None import_error_mesg = e.message sys.path.pop(0) UNITS = { 'energy': 'Joules', 'power': 'Watts', 'voltage': 'Volts', } GPIO_ROOT = '/sys/class/gpio' TRACE_MARKER_PATH = '/sys/kernel/debug/tracing/trace_marker' def dict_or_bool(value): """ Ensures that either a dictionary or a boolean is used as a parameter. """ if isinstance(value, dict): return value return boolean(value) class Daq(Instrument): name = 'daq' description = """ DAQ instrument obtains the power consumption of the target device's core measured by National Instruments Data Acquisition(DAQ) device. WA communicates with a DAQ device server running on a Windows machine (Please refer to :ref:`daq_setup`) over a network. You must specify the IP address and port the server is listening on in the config file as follows :: daq_server_host = '10.1.197.176' daq_server_port = 45677 These values will be output by the server when you run it on Windows. You must also specify the values of resistors (in Ohms) across which the voltages are measured (Please refer to :ref:`daq_setup`). The values should be specified as a list with an entry for each resistor, e.g.:: daq_resistor_values = [0.005, 0.005] In addition to this mandatory configuration, you can also optionally specify the following:: :daq_labels: Labels to be used for ports. Defaults to ``'PORT_<pnum>'``, where 'pnum' is the number of the port. :daq_device_id: The ID under which the DAQ is registered with the driver. Defaults to ``'Dev1'``. :daq_v_range: Specifies the voltage range for the SOC voltage channel on the DAQ (please refer to :ref:`daq_setup` for details). Defaults to ``2.5``. :daq_dv_range: Specifies the voltage range for the resistor voltage channel on the DAQ (please refer to :ref:`daq_setup` for details). Defaults to ``0.2``. :daq_sampling_rate: DAQ sampling rate. DAQ will take this many samples each second. Please note that this maybe limitted by your DAQ model and then number of ports you're measuring (again, see :ref:`daq_setup`). Defaults to ``10000``. :daq_channel_map: Represents mapping from logical AI channel number to physical connector on the DAQ (varies between DAQ models). The default assumes DAQ 6363 and similar with AI channels on connectors 0-7 and 16-23. """ parameters = [ Parameter('server_host', kind=str, default='localhost', global_alias='daq_server_host', description='The host address of the machine that runs the daq Server which the ' 'instrument communicates with.'), Parameter('server_port', kind=int, default=45677, global_alias='daq_server_port', description='The port number for daq Server in which daq instrument communicates ' 'with.'), Parameter('device_id', kind=str, default='Dev1', global_alias='daq_device_id', description='The ID under which the DAQ is registered with the driver.'), Parameter('v_range', kind=float, default=2.5, global_alias='daq_v_range', description='Specifies the voltage range for the SOC voltage channel on the DAQ ' '(please refer to :ref:`daq_setup` for details).'), Parameter('dv_range', kind=float, default=0.2, global_alias='daq_dv_range', description='Specifies the voltage range for the resistor voltage channel on ' 'the DAQ (please refer to :ref:`daq_setup` for details).'), Parameter('sampling_rate', kind=int, default=10000, global_alias='daq_sampling_rate', description='DAQ sampling rate. DAQ will take this many samples each ' 'second. Please note that this maybe limitted by your DAQ model ' 'and then number of ports you\'re measuring (again, see ' ':ref:`daq_setup`)'), Parameter('resistor_values', kind=list, mandatory=True, global_alias='daq_resistor_values', description='The values of resistors (in Ohms) across which the voltages are measured on ' 'each port.'), Parameter('channel_map', kind=list_of_ints, default=(0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23), global_alias='daq_channel_map', description='Represents mapping from logical AI channel number to physical ' 'connector on the DAQ (varies between DAQ models). The default ' 'assumes DAQ 6363 and similar with AI channels on connectors ' '0-7 and 16-23.'), Parameter('labels', kind=list_of_strs, global_alias='daq_labels', description='List of port labels. If specified, the lenght of the list must match ' 'the length of ``resistor_values``. Defaults to "PORT_<pnum>", where ' '"pnum" is the number of the port.'), Parameter('negative_samples', default='keep', allowed_values=['keep', 'zero', 'drop', 'abs'], global_alias='daq_negative_samples', description=""" Specifies how negative power samples should be handled. The following methods are possible: :keep: keep them as they are :zero: turn negative values to zero :drop: drop samples if they contain negative values. *warning:* this may result in port files containing different numbers of samples :abs: take the absoulte value of negave samples """), Parameter('gpio_sync', kind=int, constraint=lambda x: x > 0, description=""" If specified, the instrument will simultaneously set the specified GPIO pin high and put a marker into ftrace. This is to facillitate syncing kernel trace events to DAQ power trace. """), Parameter('merge_channels', kind=dict_or_bool, default=False, description=""" If set to ``True``, channels with consecutive letter suffixes will be summed. e.g. If you have channels A7a, A7b, A7c, A15a, A15b they will be summed to A7, A15 You can also manually specify the name of channels to be merged and the name of the result like so: merge_channels: A15: [A15dvfs, A15ram] NonCPU: [GPU, RoS, Mem] In the above exaples the DAQ channels labeled A15a and A15b will be summed together with the results being saved as 'channel' ''a''. A7, GPU and RoS will be summed to 'c' """) ] def initialize(self, context): status, devices = self._execute_command('list_devices') if status == daq.Status.OK and not devices: raise InstrumentError('DAQ: server did not report any devices registered with the driver.') self._results = OrderedDict() self.gpio_path = None if self.gpio_sync: if not self.device.file_exists(GPIO_ROOT): raise InstrumentError('GPIO sysfs not enabled on the device.') try: export_path = self.device.path.join(GPIO_ROOT, 'export') self.device.set_sysfile_value(export_path, self.gpio_sync, verify=False) pin_root = self.device.path.join(GPIO_ROOT, 'gpio{}'.format(self.gpio_sync)) direction_path = self.device.path.join(pin_root, 'direction') self.device.set_sysfile_value(direction_path, 'out') self.gpio_path = self.device.path.join(pin_root, 'value') self.device.set_sysfile_value(self.gpio_path, 0, verify=False) signal.connect(self.insert_start_marker, signal.BEFORE_WORKLOAD_EXECUTION, priority=11) signal.connect(self.insert_stop_marker, signal.AFTER_WORKLOAD_EXECUTION, priority=11) except DeviceError as e: raise InstrumentError('Could not configure GPIO on device: {}'.format(e)) def setup(self, context): self.logger.debug('Initialising session.') self._execute_command('configure', config=self.device_config) def slow_start(self, context): self.logger.debug('Starting collecting measurements.') self._execute_command('start') def slow_stop(self, context): self.logger.debug('Stopping collecting measurements.') self._execute_command('stop') def update_result(self, context): # pylint: disable=R0914 self.logger.debug('Downloading data files.') output_directory = _d(os.path.join(context.output_directory, 'daq')) self._execute_command('get_data', output_directory=output_directory) if self.merge_channels: self._merge_channels(context) for entry in os.listdir(output_directory): context.add_iteration_artifact('DAQ_{}'.format(os.path.splitext(entry)[0]), path=os.path.join('daq', entry), kind='data', description='DAQ power measurments.') port = os.path.splitext(entry)[0] path = os.path.join(output_directory, entry) key = (context.spec.id, context.spec.label, context.current_iteration) if key not in self._results: self._results[key] = {} temp_file = os.path.join(tempfile.gettempdir(), entry) writer, wfh = None, None with open(path) as fh: if self.negative_samples != 'keep': wfh = open(temp_file, 'wb') writer = csv.writer(wfh) reader = csv.reader(fh) metrics = reader.next() if writer: writer.writerow(metrics) self._metrics |= set(metrics) rows = _get_rows(reader, writer, self.negative_samples) data = zip(*rows) if writer: wfh.close() shutil.move(temp_file, os.path.join(output_directory, entry)) n = len(data[0]) means = [s / n for s in map(sum, data)] for metric, value in zip(metrics, means): metric_name = '{}_{}'.format(port, metric) context.result.add_metric(metric_name, round(value, 3), UNITS[metric]) self._results[key][metric_name] = round(value, 3) energy = sum(data[metrics.index('power')]) * (self.sampling_rate / 1000000) context.result.add_metric('{}_energy'.format(port), round(energy, 3), UNITS['energy']) def teardown(self, context): self.logger.debug('Terminating session.') self._execute_command('close') def finalize(self, context): if self.gpio_path: unexport_path = self.device.path.join(GPIO_ROOT, 'unexport') self.device.set_sysfile_value(unexport_path, self.gpio_sync, verify=False) def validate(self): # pylint: disable=too-many-branches if not daq: raise ImportError(import_error_mesg) self._results = None self._metrics = set() if self.labels: if len(self.labels) != len(self.resistor_values): raise ConfigError('Number of DAQ port labels does not match the number of resistor values.') duplicates = set([x for x in self.labels if self.labels.count(x) > 1]) if len(duplicates) > 0: raise ConfigError('Duplicate labels: {}'.format(', '.join(duplicates))) else: self.labels = ['PORT_{}'.format(i) for i, _ in enumerate(self.resistor_values)] self.server_config = ServerConfiguration(host=self.server_host, port=self.server_port) self.device_config = DeviceConfiguration(device_id=self.device_id, v_range=self.v_range, dv_range=self.dv_range, sampling_rate=self.sampling_rate, resistor_values=self.resistor_values, channel_map=self.channel_map, labels=self.labels) try: self.server_config.validate() self.device_config.validate() except ConfigurationError, ex: raise ConfigError('DAQ configuration: ' + ex.message) # Re-raise as a WA error self.grouped_suffixes = defaultdict(str) if isinstance(self.merge_channels, bool): if self.merge_channels: # Create a dict of potential prefixes and a list of their suffixes grouped_suffixes = defaultdict(list) for label in sorted(self.labels): if len(label) > 1: grouped_suffixes[label[:-1]].append(label) # Only merge channels if more than one channel has the same prefix and the prefixes # are consecutive letters starting with 'a'. self.label_map = {} for channel, suffixes in grouped_suffixes.iteritems(): if len(suffixes) > 1: if "".join([s[-1] for s in suffixes]) in ascii_lowercase[:len(suffixes)]: self.label_map[channel] = suffixes elif isinstance(self.merge_channels, dict): # Check if given channel names match labels for old_names in self.merge_channels.values(): for name in old_names: if name not in self.labels: raise ConfigError("No channel with label {} specified".format(name)) self.label_map = self.merge_channels # pylint: disable=redefined-variable-type self.merge_channels = True else: # Should never reach here raise AssertionError("``merge_channels`` is of invalid type") def before_overall_results_processing(self, context): if self._results: headers = ['id', 'workload', 'iteration'] metrics = ['{}_{}'.format(p, m) for p in self.labels for m in sorted(self._metrics)] headers += metrics rows = [headers] for key, value in self._results.iteritems(): rows.append(list(key) + [value[m] for m in metrics]) outfile = os.path.join(context.output_directory, 'daq_power.csv') with open(outfile, 'wb') as fh: writer = csv.writer(fh) writer.writerows(rows) def insert_start_marker(self, context): if self.gpio_path: command = 'echo DAQ_START_MARKER > {}; echo 1 > {}'.format(TRACE_MARKER_PATH, self.gpio_path) self.device.execute(command, as_root=self.device.is_rooted) def insert_stop_marker(self, context): if self.gpio_path: command = 'echo DAQ_STOP_MARKER > {}; echo 0 > {}'.format(TRACE_MARKER_PATH, self.gpio_path) self.device.execute(command, as_root=self.device.is_rooted) def _execute_command(self, command, **kwargs): # pylint: disable=E1101 q = Queue() p = Process(target=_send_daq_command, args=(q, self.server_config, command), kwargs=kwargs) p.start() result = q.get() p.join() if result.status == daq.Status.OK: pass # all good elif result.status == daq.Status.OKISH: self.logger.debug(result.message) elif result.status == daq.Status.ERROR: raise InstrumentError('DAQ: {}'.format(result.message)) else: raise InstrumentError('DAQ: Unexpected result: {} - {}'.format(result.status, result.message)) return (result.status, result.data) def _merge_channels(self, context): # pylint: disable=r0914 output_directory = _d(os.path.join(context.output_directory, 'daq')) for name, labels in self.label_map.iteritems(): summed = None for label in labels: path = os.path.join(output_directory, "{}.csv".format(label)) with open(path) as fh: reader = csv.reader(fh) metrics = reader.next() rows = _get_rows(reader, None, self.negative_samples) if summed: summed = [[x + y for x, y in zip(a, b)] for a, b in zip(rows, summed)] else: summed = rows output_path = os.path.join(output_directory, "{}.csv".format(name)) with open(output_path, 'wb') as wfh: writer = csv.writer(wfh) writer.writerow(metrics) for row in summed: writer.writerow(row) def _send_daq_command(q, *args, **kwargs): result = daq.execute_command(*args, **kwargs) q.put(result) def _get_rows(reader, writer, negative_samples): rows = [] for row in reader: row = map(float, row) if negative_samples == 'keep': rows.append(row) elif negative_samples == 'zero': def nonneg(v): return v if v >= 0 else 0 rows.append([nonneg(v) for v in row]) elif negative_samples == 'drop': if all(v >= 0 for v in row): rows.append(row) elif negative_samples == 'abs': rows.append([abs(v) for v in row]) else: raise AssertionError(negative_samples) # should never get here if writer: writer.writerow(row) return rows
apache-2.0
danielchalef/gensim
gensim/corpora/bleicorpus.py
68
4496
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Blei's LDA-C format. """ from __future__ import with_statement from os import path import logging from gensim import interfaces, utils from gensim.corpora import IndexedCorpus from six.moves import xrange logger = logging.getLogger('gensim.corpora.bleicorpus') class BleiCorpus(IndexedCorpus): """ Corpus in Blei's LDA-C format. The corpus is represented as two files: one describing the documents, and another describing the mapping between words and their ids. Each document is one line:: N fieldId1:fieldValue1 fieldId2:fieldValue2 ... fieldIdN:fieldValueN The vocabulary is a file with words, one word per line; word at line K has an implicit ``id=K``. """ def __init__(self, fname, fname_vocab=None): """ Initialize the corpus from a file. `fname_vocab` is the file with vocabulary; if not specified, it defaults to `fname.vocab`. """ IndexedCorpus.__init__(self, fname) logger.info("loading corpus from %s" % fname) if fname_vocab is None: fname_base, _ = path.splitext(fname) fname_dir = path.dirname(fname) for fname_vocab in [ utils.smart_extension(fname, '.vocab'), utils.smart_extension(fname, '/vocab.txt'), utils.smart_extension(fname_base, '.vocab'), utils.smart_extension(fname_dir, '/vocab.txt'), ]: if path.exists(fname_vocab): break else: raise IOError('BleiCorpus: could not find vocabulary file') self.fname = fname with utils.smart_open(fname_vocab) as fin: words = [utils.to_unicode(word).rstrip() for word in fin] self.id2word = dict(enumerate(words)) def __iter__(self): """ Iterate over the corpus, returning one sparse vector at a time. """ lineno = -1 with utils.smart_open(self.fname) as fin: for lineno, line in enumerate(fin): yield self.line2doc(line) self.length = lineno + 1 def line2doc(self, line): parts = utils.to_unicode(line).split() if int(parts[0]) != len(parts) - 1: raise ValueError("invalid format in %s: %s" % (self.fname, repr(line))) doc = [part.rsplit(':', 1) for part in parts[1:]] doc = [(int(p1), float(p2)) for p1, p2 in doc] return doc @staticmethod def save_corpus(fname, corpus, id2word=None, metadata=False): """ Save a corpus in the LDA-C format. There are actually two files saved: `fname` and `fname.vocab`, where `fname.vocab` is the vocabulary file. This function is automatically called by `BleiCorpus.serialize`; don't call it directly, call `serialize` instead. """ if id2word is None: logger.info("no word id mapping provided; initializing from corpus") id2word = utils.dict_from_corpus(corpus) num_terms = len(id2word) else: num_terms = 1 + max([-1] + id2word.keys()) logger.info("storing corpus in Blei's LDA-C format into %s" % fname) with utils.smart_open(fname, 'wb') as fout: offsets = [] for doc in corpus: doc = list(doc) offsets.append(fout.tell()) parts = ["%i:%g" % p for p in doc if abs(p[1]) > 1e-7] fout.write(utils.to_utf8("%i %s\n" % (len(doc), ' '.join(parts)))) # write out vocabulary, in a format compatible with Blei's topics.py script fname_vocab = utils.smart_extension(fname, '.vocab') logger.info("saving vocabulary of %i words to %s" % (num_terms, fname_vocab)) with utils.smart_open(fname_vocab, 'wb') as fout: for featureid in xrange(num_terms): fout.write(utils.to_utf8("%s\n" % id2word.get(featureid, '---'))) return offsets def docbyoffset(self, offset): """ Return the document stored at file position `offset`. """ with utils.smart_open(self.fname) as f: f.seek(offset) return self.line2doc(f.readline()) # endclass BleiCorpus
gpl-3.0
40223220/2015cd_midterm
static/Brython3.1.1-20150328-091302/Lib/site-packages/pygame/draw.py
603
6456
from javascript import console from browser import timer import math class Queue: def __init__(self): self._list=[] def empty(self): return len(self._list) == 0 def put(self, element): self._list.append(element) def get(self): if len(self._list) == 0: raise BaseError _element=self._list[0] if len(self._list) == 1: self._list=[] else: self._list=self._list[1:] return _element dm={} def aaline(canvas, color, startpos, endpos, width, outline, blend=1): #console.log("aaline") if canvas not in dm: dm[canvas]=DrawManager(canvas) dm[canvas].process() _dl=DrawLine(startpos[0], startpos[1], endpos[0], endpos[1], color, width, outline, speed=10) dm[canvas].add_line(_dl) #color, startpos, endpos, width, outline) def aapolygon(canvas, color, coordinates, width, outline, blend=1): #console.log("aapolygon") if canvas not in dm: dm[canvas]=DrawManager(canvas) dm[canvas].process() _dp=DrawPolygon(coordinates, color, width, outline, speed=10) dm[canvas].add_polygon(_dp) def aapolygon_bg(canvas, shape): if canvas not in dm: dm[canvas]=DrawManager(canvas) dm[canvas].process() dm[canvas].add_polygon_bg(shape) class DrawPolygon: def __init__(self, coordinates, color, width, outline, speed=10): self.moveTo=coordinates[0] self.segments=coordinates[1:] self.color=color self.width=width self.outline=outline class DrawLine: def __init__(self, x0, y0, x1, y1, color, width, outline, speed=None): self._type='LINE' self._x0=x0 self._x1=x1 self._y0=y0 self._y1=y1 self._speed=speed self._color=color self._width=width self._outline=outline def get_segments(self): if self._speed==0: #no animate since speed is 0 (return one segment) return [{'type': self._type, 'x0':self._x0, 'y0': self._y0, 'x1': self._x1, 'y1': self._y1, 'color': self._color}] #need to figure out how to translate speed into pixels, etc #maybe speed is pixels per ms? 10 = 10 pixels per millisecond? _x=(self._x1 - self._x0) _x*=_x _y=(self._y1 - self._y0) _y*=_y _distance=math.sqrt(_x + _y) if _distance < self._speed: # we can do this in one segment return [{'type': self._type, 'x0':self._x0, 'y0': self._y0, 'x1': self._x1, 'y1': self._y1, 'color': self._color}] _segments=[] _num_segments=math.floor(_distance/self._speed) _pos_x=self._x0 _pos_y=self._y0 _x_diff=self._x1 - self._x0 _y_diff=self._y1 - self._y0 for _i in range(1,_num_segments+1): _x=self._x0 + _i/_num_segments * _x_diff _y=self._y0 + _i/_num_segments * _y_diff _segments.append({'type': 'LINE': 'x0': _pos_x, 'y0': _pos_y, 'x1': _x, 'y1': _y, 'color': self._color}) _pos_x=_x _pos_y=_y if _pos_x != self._x1 or _pos_y != self._y1: _segments.append({'type': 'LINE': 'x0': _pos_x, 'y0': _pos_y, 'x1': _x, 'y1': _y, 'color': self._color}) return _segments class DrawManager: def __init__(self, canvas): self._queue=Queue() self._canvas=canvas self._ctx=canvas.getContext('2d') self._interval=None self._bg=None #used to capture bg before polygon is drawn def __del__(self): if self._interval is not None: timer.clear_Interval(self._interval) self._interval=None del self._queue def rect_from_shape(self, points): _width=self._canvas.width _height=self._canvas.height _min_x=_width _max_x=0 _min_y=_height _max_y=0 for _point in points: _x, _y = _point _min_x=min(_min_x, _x) _min_y=min(_min_y, _y) _max_x=max(_max_x, _x) _max_y=max(_max_y, _y) _w2=_width/2 _h2=_height/2 return math.floor(_min_x-0.5)+_w2, math.floor(_min_y-0.5+_h2), \ math.ceil(_max_x+0.5)+_w2, math.ceil(_max_y+0.5+_h2) def __interval(self): if not self._queue.empty(): _dict=self._queue.get() if _dict['type'] == 'LINE': self._ctx.beginPath() self._ctx.moveTo(_dict['x0'], _dict['y0']) self._ctx.lineTo(_dict['x1'], _dict['y1']) #if _dict['outline'] is not None: # self._ctx.strokeStyle=_dict['outline'] #set line color if _dict['color'] is not None: self._ctx.fillStyle=_dict['color'] self._ctx.stroke() elif _dict['type'] == 'POLYGON': if self._bg is not None: self._ctx.putImageData(self._bg[0], self._bg[1], self._bg[2]) console.log(self._bg[0]) self._bg=None self._ctx.beginPath() _moveTo=_dict['moveTo'] self._ctx.moveTo(_moveTo[0], _moveTo[1]) for _segment in _dict['segments']: self._ctx.lineTo(_segment[0], _segment[1]) if _dict['width']: self._ctx.lineWidth=_dict['width'] if _dict['outline']: self._ctx.strokeStyle=_dict['outline'] if _dict['color']: self._ctx.fillStyle=_dict['color'] self._ctx.fill() self._ctx.closePath() self._ctx.stroke() elif _dict['type'] == 'POLYGON_BG': _x0,_y0,_x1,_y1=self.rect_from_shape(_dict['shape']) console.log(_x0,_y0,_x1, _y1) self._bg=[] self._bg.append(self._ctx.getImageData(_x0,_y0,abs(_x1)-abs(_x0),abs(_y1)-abs(_y0))) self._bg.append(_x0) self._bg.append(_y0) def process(self): self._interval=timer.set_interval(self.__interval, 10) def add_line(self, dl): #color, startpos, endpos, width, outline, speed=None): for _segment in dl.get_segments(): self._queue.put(_segment) def add_polygon(self, dp): self._queue.put({'type': 'POLYGON', 'moveTo': dp.moveTo, 'segments': dp.segments, 'color': dp.color, 'outline': dp.outline, 'width': dp.width}) def add_polygon_bg(self, shape): self._queue.put({'type': 'POLYGON_BG', 'shape': shape})
gpl-3.0
BadDNA/anolis
web/env/lib/python2.6/site-packages/pip-0.7.2-py2.6.egg/pip/locations.py
3
1508
"""Locations where we look for configs, install stuff, etc""" import sys import os from distutils import sysconfig if getattr(sys, 'real_prefix', None): ## FIXME: is build/ a good name? build_prefix = os.path.join(sys.prefix, 'build') src_prefix = os.path.join(sys.prefix, 'src') else: ## FIXME: this isn't a very good default build_prefix = os.path.join(os.getcwd(), 'build') src_prefix = os.path.join(os.getcwd(), 'src') # FIXME doesn't account for venv linked to global site-packages site_packages = sysconfig.get_python_lib() user_dir = os.path.expanduser('~') if sys.platform == 'win32': bin_py = os.path.join(sys.prefix, 'Scripts') # buildout uses 'bin' on Windows too? if not os.path.exists(bin_py): bin_py = os.path.join(sys.prefix, 'bin') user_dir = os.environ.get('APPDATA', user_dir) # Use %APPDATA% for roaming default_storage_dir = os.path.join(user_dir, 'pip') default_config_file = os.path.join(default_storage_dir, 'pip.ini') default_log_file = os.path.join(default_storage_dir, 'pip.log') else: bin_py = os.path.join(sys.prefix, 'bin') default_storage_dir = os.path.join(user_dir, '.pip') default_config_file = os.path.join(default_storage_dir, 'pip.conf') default_log_file = os.path.join(default_storage_dir, 'pip.log') # Forcing to use /usr/local/bin for standard Mac OS X framework installs if sys.platform[:6] == 'darwin' and sys.prefix[:16] == '/System/Library/': bin_py = '/usr/local/bin'
bsd-3-clause
bgris/ODL_bgris
lib/python3.5/site-packages/qtconsole/mainwindow.py
7
31388
"""The Qt MainWindow for the QtConsole This is a tabbed pseudo-terminal of Jupyter sessions, with a menu bar for common actions. """ # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import sys import webbrowser from threading import Thread from qtconsole.qt import QtGui,QtCore from qtconsole.usage import gui_reference def background(f): """call a function in a simple thread, to prevent blocking""" t = Thread(target=f) t.start() return t class MainWindow(QtGui.QMainWindow): #--------------------------------------------------------------------------- # 'object' interface #--------------------------------------------------------------------------- def __init__(self, app, confirm_exit=True, new_frontend_factory=None, slave_frontend_factory=None, ): """ Create a tabbed MainWindow for managing FrontendWidgets Parameters ---------- app : reference to QApplication parent confirm_exit : bool, optional Whether we should prompt on close of tabs new_frontend_factory : callable A callable that returns a new JupyterWidget instance, attached to its own running kernel. slave_frontend_factory : callable A callable that takes an existing JupyterWidget, and returns a new JupyterWidget instance, attached to the same kernel. """ super(MainWindow, self).__init__() self._kernel_counter = 0 self._app = app self.confirm_exit = confirm_exit self.new_frontend_factory = new_frontend_factory self.slave_frontend_factory = slave_frontend_factory self.tab_widget = QtGui.QTabWidget(self) self.tab_widget.setDocumentMode(True) self.tab_widget.setTabsClosable(True) self.tab_widget.tabCloseRequested[int].connect(self.close_tab) self.setCentralWidget(self.tab_widget) # hide tab bar at first, since we have no tabs: self.tab_widget.tabBar().setVisible(False) # prevent focus in tab bar self.tab_widget.setFocusPolicy(QtCore.Qt.NoFocus) def update_tab_bar_visibility(self): """ update visibility of the tabBar depending of the number of tab 0 or 1 tab, tabBar hidden 2+ tabs, tabBar visible send a self.close if number of tab ==0 need to be called explicitly, or be connected to tabInserted/tabRemoved """ if self.tab_widget.count() <= 1: self.tab_widget.tabBar().setVisible(False) else: self.tab_widget.tabBar().setVisible(True) if self.tab_widget.count()==0 : self.close() @property def next_kernel_id(self): """constantly increasing counter for kernel IDs""" c = self._kernel_counter self._kernel_counter += 1 return c @property def active_frontend(self): return self.tab_widget.currentWidget() def create_tab_with_new_frontend(self): """create a new frontend and attach it to a new tab""" widget = self.new_frontend_factory() self.add_tab_with_frontend(widget) def create_tab_with_current_kernel(self): """create a new frontend attached to the same kernel as the current tab""" current_widget = self.tab_widget.currentWidget() current_widget_index = self.tab_widget.indexOf(current_widget) current_widget_name = self.tab_widget.tabText(current_widget_index) widget = self.slave_frontend_factory(current_widget) if 'slave' in current_widget_name: # don't keep stacking slaves name = current_widget_name else: name = '(%s) slave' % current_widget_name self.add_tab_with_frontend(widget,name=name) def close_tab(self,current_tab): """ Called when you need to try to close a tab. It takes the number of the tab to be closed as argument, or a reference to the widget inside this tab """ # let's be sure "tab" and "closing widget" are respectively the index # of the tab to close and a reference to the frontend to close if type(current_tab) is not int : current_tab = self.tab_widget.indexOf(current_tab) closing_widget=self.tab_widget.widget(current_tab) # when trying to be closed, widget might re-send a request to be # closed again, but will be deleted when event will be processed. So # need to check that widget still exists and skip if not. One example # of this is when 'exit' is sent in a slave tab. 'exit' will be # re-sent by this function on the master widget, which ask all slave # widgets to exit if closing_widget is None: return #get a list of all slave widgets on the same kernel. slave_tabs = self.find_slave_widgets(closing_widget) keepkernel = None #Use the prompt by default if hasattr(closing_widget,'_keep_kernel_on_exit'): #set by exit magic keepkernel = closing_widget._keep_kernel_on_exit # If signal sent by exit magic (_keep_kernel_on_exit, exist and not None) # we set local slave tabs._hidden to True to avoid prompting for kernel # restart when they get the signal. and then "forward" the 'exit' # to the main window if keepkernel is not None: for tab in slave_tabs: tab._hidden = True if closing_widget in slave_tabs: try : self.find_master_tab(closing_widget).execute('exit') except AttributeError: self.log.info("Master already closed or not local, closing only current tab") self.tab_widget.removeTab(current_tab) self.update_tab_bar_visibility() return kernel_client = closing_widget.kernel_client kernel_manager = closing_widget.kernel_manager if keepkernel is None and not closing_widget._confirm_exit: # don't prompt, just terminate the kernel if we own it # or leave it alone if we don't keepkernel = closing_widget._existing if keepkernel is None: #show prompt if kernel_client and kernel_client.channels_running: title = self.window().windowTitle() cancel = QtGui.QMessageBox.Cancel okay = QtGui.QMessageBox.Ok if closing_widget._may_close: msg = "You are closing the tab : "+'"'+self.tab_widget.tabText(current_tab)+'"' info = "Would you like to quit the Kernel and close all attached Consoles as well?" justthis = QtGui.QPushButton("&No, just this Tab", self) justthis.setShortcut('N') closeall = QtGui.QPushButton("&Yes, close all", self) closeall.setShortcut('Y') # allow ctrl-d ctrl-d exit, like in terminal closeall.setShortcut('Ctrl+D') box = QtGui.QMessageBox(QtGui.QMessageBox.Question, title, msg) box.setInformativeText(info) box.addButton(cancel) box.addButton(justthis, QtGui.QMessageBox.NoRole) box.addButton(closeall, QtGui.QMessageBox.YesRole) box.setDefaultButton(closeall) box.setEscapeButton(cancel) pixmap = QtGui.QPixmap(self._app.icon.pixmap(QtCore.QSize(64,64))) box.setIconPixmap(pixmap) reply = box.exec_() if reply == 1: # close All for slave in slave_tabs: background(slave.kernel_client.stop_channels) self.tab_widget.removeTab(self.tab_widget.indexOf(slave)) kernel_manager.shutdown_kernel() self.tab_widget.removeTab(current_tab) background(kernel_client.stop_channels) elif reply == 0: # close Console if not closing_widget._existing: # Have kernel: don't quit, just close the tab closing_widget.execute("exit True") self.tab_widget.removeTab(current_tab) background(kernel_client.stop_channels) else: reply = QtGui.QMessageBox.question(self, title, "Are you sure you want to close this Console?"+ "\nThe Kernel and other Consoles will remain active.", okay|cancel, defaultButton=okay ) if reply == okay: self.tab_widget.removeTab(current_tab) elif keepkernel: #close console but leave kernel running (no prompt) self.tab_widget.removeTab(current_tab) background(kernel_client.stop_channels) else: #close console and kernel (no prompt) self.tab_widget.removeTab(current_tab) if kernel_client and kernel_client.channels_running: for slave in slave_tabs: background(slave.kernel_client.stop_channels) self.tab_widget.removeTab(self.tab_widget.indexOf(slave)) if kernel_manager: kernel_manager.shutdown_kernel() background(kernel_client.stop_channels) self.update_tab_bar_visibility() def add_tab_with_frontend(self,frontend,name=None): """ insert a tab with a given frontend in the tab bar, and give it a name """ if not name: name = 'kernel %i' % self.next_kernel_id self.tab_widget.addTab(frontend,name) self.update_tab_bar_visibility() self.make_frontend_visible(frontend) frontend.exit_requested.connect(self.close_tab) def next_tab(self): self.tab_widget.setCurrentIndex((self.tab_widget.currentIndex()+1)) def prev_tab(self): self.tab_widget.setCurrentIndex((self.tab_widget.currentIndex()-1)) def make_frontend_visible(self,frontend): widget_index=self.tab_widget.indexOf(frontend) if widget_index > 0 : self.tab_widget.setCurrentIndex(widget_index) def find_master_tab(self,tab,as_list=False): """ Try to return the frontend that owns the kernel attached to the given widget/tab. Only finds frontend owned by the current application. Selection based on port of the kernel might be inaccurate if several kernel on different ip use same port number. This function does the conversion tabNumber/widget if needed. Might return None if no master widget (non local kernel) Will crash if more than 1 masterWidget When asList set to True, always return a list of widget(s) owning the kernel. The list might be empty or containing several Widget. """ #convert from/to int/richIpythonWidget if needed if isinstance(tab, int): tab = self.tab_widget.widget(tab) km=tab.kernel_client #build list of all widgets widget_list = [self.tab_widget.widget(i) for i in range(self.tab_widget.count())] # widget that are candidate to be the owner of the kernel does have all the same port of the curent widget # And should have a _may_close attribute filtered_widget_list = [ widget for widget in widget_list if widget.kernel_client.connection_file == km.connection_file and hasattr(widget,'_may_close') ] # the master widget is the one that may close the kernel master_widget= [ widget for widget in filtered_widget_list if widget._may_close] if as_list: return master_widget assert(len(master_widget)<=1 ) if len(master_widget)==0: return None return master_widget[0] def find_slave_widgets(self,tab): """return all the frontends that do not own the kernel attached to the given widget/tab. Only find frontends owned by the current application. Selection based on connection file of the kernel. This function does the conversion tabNumber/widget if needed. """ #convert from/to int/richIpythonWidget if needed if isinstance(tab, int): tab = self.tab_widget.widget(tab) km=tab.kernel_client #build list of all widgets widget_list = [self.tab_widget.widget(i) for i in range(self.tab_widget.count())] # widget that are candidate not to be the owner of the kernel does have all the same port of the curent widget filtered_widget_list = ( widget for widget in widget_list if widget.kernel_client.connection_file == km.connection_file) # Get a list of all widget owning the same kernel and removed it from # the previous cadidate. (better using sets ?) master_widget_list = self.find_master_tab(tab, as_list=True) slave_list = [widget for widget in filtered_widget_list if widget not in master_widget_list] return slave_list # Populate the menu bar with common actions and shortcuts def add_menu_action(self, menu, action, defer_shortcut=False): """Add action to menu as well as self So that when the menu bar is invisible, its actions are still available. If defer_shortcut is True, set the shortcut context to widget-only, where it will avoid conflict with shortcuts already bound to the widgets themselves. """ menu.addAction(action) self.addAction(action) if defer_shortcut: action.setShortcutContext(QtCore.Qt.WidgetShortcut) def init_menu_bar(self): #create menu in the order they should appear in the menu bar self.init_file_menu() self.init_edit_menu() self.init_view_menu() self.init_kernel_menu() self.init_window_menu() self.init_help_menu() def init_file_menu(self): self.file_menu = self.menuBar().addMenu("&File") self.new_kernel_tab_act = QtGui.QAction("New Tab with &New kernel", self, shortcut="Ctrl+T", triggered=self.create_tab_with_new_frontend) self.add_menu_action(self.file_menu, self.new_kernel_tab_act) self.slave_kernel_tab_act = QtGui.QAction("New Tab with Sa&me kernel", self, shortcut="Ctrl+Shift+T", triggered=self.create_tab_with_current_kernel) self.add_menu_action(self.file_menu, self.slave_kernel_tab_act) self.file_menu.addSeparator() self.close_action=QtGui.QAction("&Close Tab", self, shortcut=QtGui.QKeySequence.Close, triggered=self.close_active_frontend ) self.add_menu_action(self.file_menu, self.close_action) self.export_action=QtGui.QAction("&Save to HTML/XHTML", self, shortcut=QtGui.QKeySequence.Save, triggered=self.export_action_active_frontend ) self.add_menu_action(self.file_menu, self.export_action, True) self.file_menu.addSeparator() printkey = QtGui.QKeySequence(QtGui.QKeySequence.Print) if printkey.matches("Ctrl+P") and sys.platform != 'darwin': # Only override the default if there is a collision. # Qt ctrl = cmd on OSX, so the match gets a false positive on OSX. printkey = "Ctrl+Shift+P" self.print_action = QtGui.QAction("&Print", self, shortcut=printkey, triggered=self.print_action_active_frontend) self.add_menu_action(self.file_menu, self.print_action, True) if sys.platform != 'darwin': # OSX always has Quit in the Application menu, only add it # to the File menu elsewhere. self.file_menu.addSeparator() self.quit_action = QtGui.QAction("&Quit", self, shortcut=QtGui.QKeySequence.Quit, triggered=self.close, ) self.add_menu_action(self.file_menu, self.quit_action) def init_edit_menu(self): self.edit_menu = self.menuBar().addMenu("&Edit") self.undo_action = QtGui.QAction("&Undo", self, shortcut=QtGui.QKeySequence.Undo, statusTip="Undo last action if possible", triggered=self.undo_active_frontend ) self.add_menu_action(self.edit_menu, self.undo_action) self.redo_action = QtGui.QAction("&Redo", self, shortcut=QtGui.QKeySequence.Redo, statusTip="Redo last action if possible", triggered=self.redo_active_frontend) self.add_menu_action(self.edit_menu, self.redo_action) self.edit_menu.addSeparator() self.cut_action = QtGui.QAction("&Cut", self, shortcut=QtGui.QKeySequence.Cut, triggered=self.cut_active_frontend ) self.add_menu_action(self.edit_menu, self.cut_action, True) self.copy_action = QtGui.QAction("&Copy", self, shortcut=QtGui.QKeySequence.Copy, triggered=self.copy_active_frontend ) self.add_menu_action(self.edit_menu, self.copy_action, True) self.copy_raw_action = QtGui.QAction("Copy (&Raw Text)", self, shortcut="Ctrl+Shift+C", triggered=self.copy_raw_active_frontend ) self.add_menu_action(self.edit_menu, self.copy_raw_action, True) self.paste_action = QtGui.QAction("&Paste", self, shortcut=QtGui.QKeySequence.Paste, triggered=self.paste_active_frontend ) self.add_menu_action(self.edit_menu, self.paste_action, True) self.edit_menu.addSeparator() selectall = QtGui.QKeySequence(QtGui.QKeySequence.SelectAll) if selectall.matches("Ctrl+A") and sys.platform != 'darwin': # Only override the default if there is a collision. # Qt ctrl = cmd on OSX, so the match gets a false positive on OSX. selectall = "Ctrl+Shift+A" self.select_all_action = QtGui.QAction("Select &All", self, shortcut=selectall, triggered=self.select_all_active_frontend ) self.add_menu_action(self.edit_menu, self.select_all_action, True) def init_view_menu(self): self.view_menu = self.menuBar().addMenu("&View") if sys.platform != 'darwin': # disable on OSX, where there is always a menu bar self.toggle_menu_bar_act = QtGui.QAction("Toggle &Menu Bar", self, shortcut="Ctrl+Shift+M", statusTip="Toggle visibility of menubar", triggered=self.toggle_menu_bar) self.add_menu_action(self.view_menu, self.toggle_menu_bar_act) fs_key = "Ctrl+Meta+F" if sys.platform == 'darwin' else "F11" self.full_screen_act = QtGui.QAction("&Full Screen", self, shortcut=fs_key, statusTip="Toggle between Fullscreen and Normal Size", triggered=self.toggleFullScreen) self.add_menu_action(self.view_menu, self.full_screen_act) self.view_menu.addSeparator() self.increase_font_size = QtGui.QAction("Zoom &In", self, shortcut=QtGui.QKeySequence.ZoomIn, triggered=self.increase_font_size_active_frontend ) self.add_menu_action(self.view_menu, self.increase_font_size, True) self.decrease_font_size = QtGui.QAction("Zoom &Out", self, shortcut=QtGui.QKeySequence.ZoomOut, triggered=self.decrease_font_size_active_frontend ) self.add_menu_action(self.view_menu, self.decrease_font_size, True) self.reset_font_size = QtGui.QAction("Zoom &Reset", self, shortcut="Ctrl+0", triggered=self.reset_font_size_active_frontend ) self.add_menu_action(self.view_menu, self.reset_font_size, True) self.view_menu.addSeparator() self.clear_action = QtGui.QAction("&Clear Screen", self, shortcut='Ctrl+L', statusTip="Clear the console", triggered=self.clear_active_frontend) self.add_menu_action(self.view_menu, self.clear_action) self.pager_menu = self.view_menu.addMenu("&Pager") hsplit_action = QtGui.QAction(".. &Horizontal Split", self, triggered=lambda: self.set_paging_active_frontend('hsplit')) vsplit_action = QtGui.QAction(" : &Vertical Split", self, triggered=lambda: self.set_paging_active_frontend('vsplit')) inside_action = QtGui.QAction(" &Inside Pager", self, triggered=lambda: self.set_paging_active_frontend('inside')) self.pager_menu.addAction(hsplit_action) self.pager_menu.addAction(vsplit_action) self.pager_menu.addAction(inside_action) def init_kernel_menu(self): self.kernel_menu = self.menuBar().addMenu("&Kernel") # Qt on OSX maps Ctrl to Cmd, and Meta to Ctrl # keep the signal shortcuts to ctrl, rather than # platform-default like we do elsewhere. ctrl = "Meta" if sys.platform == 'darwin' else "Ctrl" self.interrupt_kernel_action = QtGui.QAction("&Interrupt current Kernel", self, triggered=self.interrupt_kernel_active_frontend, shortcut=ctrl+"+C", ) self.add_menu_action(self.kernel_menu, self.interrupt_kernel_action) self.restart_kernel_action = QtGui.QAction("&Restart current Kernel", self, triggered=self.restart_kernel_active_frontend, shortcut=ctrl+"+.", ) self.add_menu_action(self.kernel_menu, self.restart_kernel_action) self.kernel_menu.addSeparator() self.confirm_restart_kernel_action = QtGui.QAction("&Confirm kernel restart", self, checkable=True, checked=self.active_frontend.confirm_restart, triggered=self.toggle_confirm_restart_active_frontend ) self.add_menu_action(self.kernel_menu, self.confirm_restart_kernel_action) self.tab_widget.currentChanged.connect(self.update_restart_checkbox) def init_window_menu(self): self.window_menu = self.menuBar().addMenu("&Window") if sys.platform == 'darwin': # add min/maximize actions to OSX, which lacks default bindings. self.minimizeAct = QtGui.QAction("Mini&mize", self, shortcut="Ctrl+m", statusTip="Minimize the window/Restore Normal Size", triggered=self.toggleMinimized) # maximize is called 'Zoom' on OSX for some reason self.maximizeAct = QtGui.QAction("&Zoom", self, shortcut="Ctrl+Shift+M", statusTip="Maximize the window/Restore Normal Size", triggered=self.toggleMaximized) self.add_menu_action(self.window_menu, self.minimizeAct) self.add_menu_action(self.window_menu, self.maximizeAct) self.window_menu.addSeparator() prev_key = "Ctrl+Shift+Left" if sys.platform == 'darwin' else "Ctrl+PgUp" self.prev_tab_act = QtGui.QAction("Pre&vious Tab", self, shortcut=prev_key, statusTip="Select previous tab", triggered=self.prev_tab) self.add_menu_action(self.window_menu, self.prev_tab_act) next_key = "Ctrl+Shift+Right" if sys.platform == 'darwin' else "Ctrl+PgDown" self.next_tab_act = QtGui.QAction("Ne&xt Tab", self, shortcut=next_key, statusTip="Select next tab", triggered=self.next_tab) self.add_menu_action(self.window_menu, self.next_tab_act) def init_help_menu(self): # please keep the Help menu in Mac Os even if empty. It will # automatically contain a search field to search inside menus and # please keep it spelled in English, as long as Qt Doesn't support # a QAction.MenuRole like HelpMenuRole otherwise it will lose # this search field functionality self.help_menu = self.menuBar().addMenu("&Help") # Help Menu self.help_action = QtGui.QAction("Show &QtConsole help", self, triggered=self._show_help) self.online_help_action = QtGui.QAction("Open online &help", self, triggered=self._open_online_help) self.add_menu_action(self.help_menu, self.help_action) self.add_menu_action(self.help_menu, self.online_help_action) def _set_active_frontend_focus(self): # this is a hack, self.active_frontend._control seems to be # a private member. Unfortunately this is the only method # to set focus reliably QtCore.QTimer.singleShot(200, self.active_frontend._control.setFocus) # minimize/maximize/fullscreen actions: def toggle_menu_bar(self): menu_bar = self.menuBar() if menu_bar.isVisible(): menu_bar.setVisible(False) else: menu_bar.setVisible(True) def toggleMinimized(self): if not self.isMinimized(): self.showMinimized() else: self.showNormal() def _show_help(self): self.active_frontend._page(gui_reference) def _open_online_help(self): filename="http://ipython.org/ipython-doc/stable/index.html" webbrowser.open(filename, new=1, autoraise=True) def toggleMaximized(self): if not self.isMaximized(): self.showMaximized() else: self.showNormal() # Min/Max imizing while in full screen give a bug # when going out of full screen, at least on OSX def toggleFullScreen(self): if not self.isFullScreen(): self.showFullScreen() if sys.platform == 'darwin': self.maximizeAct.setEnabled(False) self.minimizeAct.setEnabled(False) else: self.showNormal() if sys.platform == 'darwin': self.maximizeAct.setEnabled(True) self.minimizeAct.setEnabled(True) def set_paging_active_frontend(self, paging): self.active_frontend._set_paging(paging) def close_active_frontend(self): self.close_tab(self.active_frontend) def restart_kernel_active_frontend(self): self.active_frontend.request_restart_kernel() def interrupt_kernel_active_frontend(self): self.active_frontend.request_interrupt_kernel() def toggle_confirm_restart_active_frontend(self): widget = self.active_frontend widget.confirm_restart = not widget.confirm_restart self.confirm_restart_kernel_action.setChecked(widget.confirm_restart) def update_restart_checkbox(self): if self.active_frontend is None: return widget = self.active_frontend self.confirm_restart_kernel_action.setChecked(widget.confirm_restart) def clear_active_frontend(self): self.active_frontend.clear() def cut_active_frontend(self): widget = self.active_frontend if widget.can_cut(): widget.cut() def copy_active_frontend(self): widget = self.active_frontend widget.copy() def copy_raw_active_frontend(self): self.active_frontend._copy_raw_action.trigger() def paste_active_frontend(self): widget = self.active_frontend if widget.can_paste(): widget.paste() def undo_active_frontend(self): self.active_frontend.undo() def redo_active_frontend(self): self.active_frontend.redo() def print_action_active_frontend(self): self.active_frontend.print_action.trigger() def export_action_active_frontend(self): self.active_frontend.export_action.trigger() def select_all_active_frontend(self): self.active_frontend.select_all_action.trigger() def increase_font_size_active_frontend(self): self.active_frontend.increase_font_size.trigger() def decrease_font_size_active_frontend(self): self.active_frontend.decrease_font_size.trigger() def reset_font_size_active_frontend(self): self.active_frontend.reset_font_size.trigger() #--------------------------------------------------------------------------- # QWidget interface #--------------------------------------------------------------------------- def closeEvent(self, event): """ Forward the close event to every tabs contained by the windows """ if self.tab_widget.count() == 0: # no tabs, just close event.accept() return # Do Not loop on the widget count as it change while closing title = self.window().windowTitle() cancel = QtGui.QMessageBox.Cancel okay = QtGui.QMessageBox.Ok accept_role = QtGui.QMessageBox.AcceptRole if self.confirm_exit: if self.tab_widget.count() > 1: msg = "Close all tabs, stop all kernels, and Quit?" else: msg = "Close console, stop kernel, and Quit?" info = "Kernels not started here (e.g. notebooks) will be left alone." closeall = QtGui.QPushButton("&Quit", self) closeall.setShortcut('Q') box = QtGui.QMessageBox(QtGui.QMessageBox.Question, title, msg) box.setInformativeText(info) box.addButton(cancel) box.addButton(closeall, QtGui.QMessageBox.YesRole) box.setDefaultButton(closeall) box.setEscapeButton(cancel) pixmap = QtGui.QPixmap(self._app.icon.pixmap(QtCore.QSize(64,64))) box.setIconPixmap(pixmap) reply = box.exec_() else: reply = okay if reply == cancel: event.ignore() return if reply == okay or reply == accept_role: while self.tab_widget.count() >= 1: # prevent further confirmations: widget = self.active_frontend widget._confirm_exit = False self.close_tab(widget) event.accept()
gpl-3.0
CSC-ORG/Dynamic-Dashboard-2015
engine/lib/python2.7/site-packages/django/contrib/contenttypes/tests/tests.py
12
10973
from __future__ import unicode_literals from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes.views import shortcut from django.contrib.sites.shortcuts import get_current_site from django.core.management import call_command from django.http import HttpRequest, Http404 from django.test import TestCase, override_settings, skipUnlessDBFeature from django.test.utils import override_system_checks from django.utils import six from .models import ConcreteModel, ProxyModel, FooWithoutUrl, FooWithUrl, FooWithBrokenAbsoluteUrl class ContentTypesTests(TestCase): def setUp(self): ContentType.objects.clear_cache() def tearDown(self): ContentType.objects.clear_cache() def test_lookup_cache(self): """ Make sure that the content type cache (see ContentTypeManager) works correctly. Lookups for a particular content type -- by model, ID or natural key -- should hit the database only on the first lookup. """ # At this point, a lookup for a ContentType should hit the DB with self.assertNumQueries(1): ContentType.objects.get_for_model(ContentType) # A second hit, though, won't hit the DB, nor will a lookup by ID # or natural key with self.assertNumQueries(0): ct = ContentType.objects.get_for_model(ContentType) with self.assertNumQueries(0): ContentType.objects.get_for_id(ct.id) with self.assertNumQueries(0): ContentType.objects.get_by_natural_key('contenttypes', 'contenttype') # Once we clear the cache, another lookup will again hit the DB ContentType.objects.clear_cache() with self.assertNumQueries(1): ContentType.objects.get_for_model(ContentType) # The same should happen with a lookup by natural key ContentType.objects.clear_cache() with self.assertNumQueries(1): ContentType.objects.get_by_natural_key('contenttypes', 'contenttype') # And a second hit shouldn't hit the DB with self.assertNumQueries(0): ContentType.objects.get_by_natural_key('contenttypes', 'contenttype') def test_get_for_models_empty_cache(self): # Empty cache. with self.assertNumQueries(1): cts = ContentType.objects.get_for_models(ContentType, FooWithUrl) self.assertEqual(cts, { ContentType: ContentType.objects.get_for_model(ContentType), FooWithUrl: ContentType.objects.get_for_model(FooWithUrl), }) def test_get_for_models_partial_cache(self): # Partial cache ContentType.objects.get_for_model(ContentType) with self.assertNumQueries(1): cts = ContentType.objects.get_for_models(ContentType, FooWithUrl) self.assertEqual(cts, { ContentType: ContentType.objects.get_for_model(ContentType), FooWithUrl: ContentType.objects.get_for_model(FooWithUrl), }) def test_get_for_models_full_cache(self): # Full cache ContentType.objects.get_for_model(ContentType) ContentType.objects.get_for_model(FooWithUrl) with self.assertNumQueries(0): cts = ContentType.objects.get_for_models(ContentType, FooWithUrl) self.assertEqual(cts, { ContentType: ContentType.objects.get_for_model(ContentType), FooWithUrl: ContentType.objects.get_for_model(FooWithUrl), }) def test_get_for_concrete_model(self): """ Make sure the `for_concrete_model` kwarg correctly works with concrete, proxy and deferred models """ concrete_model_ct = ContentType.objects.get_for_model(ConcreteModel) self.assertEqual(concrete_model_ct, ContentType.objects.get_for_model(ProxyModel)) self.assertEqual(concrete_model_ct, ContentType.objects.get_for_model(ConcreteModel, for_concrete_model=False)) proxy_model_ct = ContentType.objects.get_for_model(ProxyModel, for_concrete_model=False) self.assertNotEqual(concrete_model_ct, proxy_model_ct) # Make sure deferred model are correctly handled ConcreteModel.objects.create(name="Concrete") DeferredConcreteModel = ConcreteModel.objects.only('pk').get().__class__ DeferredProxyModel = ProxyModel.objects.only('pk').get().__class__ self.assertEqual(concrete_model_ct, ContentType.objects.get_for_model(DeferredConcreteModel)) self.assertEqual(concrete_model_ct, ContentType.objects.get_for_model(DeferredConcreteModel, for_concrete_model=False)) self.assertEqual(concrete_model_ct, ContentType.objects.get_for_model(DeferredProxyModel)) self.assertEqual(proxy_model_ct, ContentType.objects.get_for_model(DeferredProxyModel, for_concrete_model=False)) def test_get_for_concrete_models(self): """ Make sure the `for_concrete_models` kwarg correctly works with concrete, proxy and deferred models. """ concrete_model_ct = ContentType.objects.get_for_model(ConcreteModel) cts = ContentType.objects.get_for_models(ConcreteModel, ProxyModel) self.assertEqual(cts, { ConcreteModel: concrete_model_ct, ProxyModel: concrete_model_ct, }) proxy_model_ct = ContentType.objects.get_for_model(ProxyModel, for_concrete_model=False) cts = ContentType.objects.get_for_models(ConcreteModel, ProxyModel, for_concrete_models=False) self.assertEqual(cts, { ConcreteModel: concrete_model_ct, ProxyModel: proxy_model_ct, }) # Make sure deferred model are correctly handled ConcreteModel.objects.create(name="Concrete") DeferredConcreteModel = ConcreteModel.objects.only('pk').get().__class__ DeferredProxyModel = ProxyModel.objects.only('pk').get().__class__ cts = ContentType.objects.get_for_models(DeferredConcreteModel, DeferredProxyModel) self.assertEqual(cts, { DeferredConcreteModel: concrete_model_ct, DeferredProxyModel: concrete_model_ct, }) cts = ContentType.objects.get_for_models(DeferredConcreteModel, DeferredProxyModel, for_concrete_models=False) self.assertEqual(cts, { DeferredConcreteModel: concrete_model_ct, DeferredProxyModel: proxy_model_ct, }) @override_settings(ALLOWED_HOSTS=['example.com']) def test_shortcut_view(self): """ Check that the shortcut view (used for the admin "view on site" functionality) returns a complete URL regardless of whether the sites framework is installed """ request = HttpRequest() request.META = { "SERVER_NAME": "Example.com", "SERVER_PORT": "80", } user_ct = ContentType.objects.get_for_model(FooWithUrl) obj = FooWithUrl.objects.create(name="john") with self.modify_settings(INSTALLED_APPS={'append': 'django.contrib.sites'}): response = shortcut(request, user_ct.id, obj.id) self.assertEqual("http://%s/users/john/" % get_current_site(request).domain, response._headers.get("location")[1]) with self.modify_settings(INSTALLED_APPS={'remove': 'django.contrib.sites'}): response = shortcut(request, user_ct.id, obj.id) self.assertEqual("http://Example.com/users/john/", response._headers.get("location")[1]) def test_shortcut_view_without_get_absolute_url(self): """ Check that the shortcut view (used for the admin "view on site" functionality) returns 404 when get_absolute_url is not defined. """ request = HttpRequest() request.META = { "SERVER_NAME": "Example.com", "SERVER_PORT": "80", } user_ct = ContentType.objects.get_for_model(FooWithoutUrl) obj = FooWithoutUrl.objects.create(name="john") self.assertRaises(Http404, shortcut, request, user_ct.id, obj.id) def test_shortcut_view_with_broken_get_absolute_url(self): """ Check that the shortcut view does not catch an AttributeError raised by the model's get_absolute_url method. Refs #8997. """ request = HttpRequest() request.META = { "SERVER_NAME": "Example.com", "SERVER_PORT": "80", } user_ct = ContentType.objects.get_for_model(FooWithBrokenAbsoluteUrl) obj = FooWithBrokenAbsoluteUrl.objects.create(name="john") self.assertRaises(AttributeError, shortcut, request, user_ct.id, obj.id) def test_missing_model(self): """ Ensures that displaying content types in admin (or anywhere) doesn't break on leftover content type records in the DB for which no model is defined anymore. """ ct = ContentType.objects.create( name='Old model', app_label='contenttypes', model='OldModel', ) self.assertEqual(six.text_type(ct), 'Old model') self.assertIsNone(ct.model_class()) # Make sure stale ContentTypes can be fetched like any other object. # Before Django 1.6 this caused a NoneType error in the caching mechanism. # Instead, just return the ContentType object and let the app detect stale states. ct_fetched = ContentType.objects.get_for_id(ct.pk) self.assertIsNone(ct_fetched.model_class()) class MigrateTests(TestCase): @skipUnlessDBFeature('can_rollback_ddl') @override_system_checks([]) def test_unmigrating_first_migration_post_migrate_signal(self): """ #24075 - When unmigrating an app before its first migration, post_migrate signal handler must be aware of the missing tables. """ try: with override_settings( INSTALLED_APPS=["django.contrib.contenttypes"], MIGRATION_MODULES={'contenttypes': 'django.contrib.contenttypes.migrations'}, ): call_command("migrate", "contenttypes", "zero", verbosity=0) finally: call_command("migrate", verbosity=0)
mit
koichi626/hadoop-gpu
hadoop-gpu-0.20.1/build/contrib/hod/testing/testModule.py
182
2187
#Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest, os, sys, re, threading, time myDirectory = os.path.realpath(sys.argv[0]) rootDirectory = re.sub("/testing/.*", "", myDirectory) sys.path.append(rootDirectory) from testing.lib import BaseTestSuite excludes = ['test_MINITEST3'] # All test-case classes should have the naming convention test_.* class test_MINITEST1(unittest.TestCase): def setUp(self): pass # All testMethods have to have their names start with 'test' def testSuccess(self): pass def testFailure(self): pass def tearDown(self): pass class test_MINITEST2(unittest.TestCase): def setUp(self): pass # All testMethods have to have their names start with 'test' def testSuccess(self): pass def testFailure(self): pass def tearDown(self): pass class test_MINITEST3(unittest.TestCase): def setUp(self): pass # All testMethods have to have their names start with 'test' def testSuccess(self): pass def testFailure(self): pass def tearDown(self): pass class ModuleTestSuite(BaseTestSuite): def __init__(self): # suite setup BaseTestSuite.__init__(self, __name__, excludes) pass def cleanUp(self): # suite tearDown pass def RunModuleTests(): # modulename_suite suite = ModuleTestSuite() testResult = suite.runTests() suite.cleanUp() return testResult if __name__ == "__main__": RunModuleTests()
apache-2.0
sonnyhu/numpy
numpy/lib/info.py
61
6353
""" Basic functions used by several sub-packages and useful to have in the main name-space. Type Handling ------------- ================ =================== iscomplexobj Test for complex object, scalar result isrealobj Test for real object, scalar result iscomplex Test for complex elements, array result isreal Test for real elements, array result imag Imaginary part real Real part real_if_close Turns complex number with tiny imaginary part to real isneginf Tests for negative infinity, array result isposinf Tests for positive infinity, array result isnan Tests for nans, array result isinf Tests for infinity, array result isfinite Tests for finite numbers, array result isscalar True if argument is a scalar nan_to_num Replaces NaN's with 0 and infinities with large numbers cast Dictionary of functions to force cast to each type common_type Determine the minimum common type code for a group of arrays mintypecode Return minimal allowed common typecode. ================ =================== Index Tricks ------------ ================ =================== mgrid Method which allows easy construction of N-d 'mesh-grids' ``r_`` Append and construct arrays: turns slice objects into ranges and concatenates them, for 2d arrays appends rows. index_exp Konrad Hinsen's index_expression class instance which can be useful for building complicated slicing syntax. ================ =================== Useful Functions ---------------- ================ =================== select Extension of where to multiple conditions and choices extract Extract 1d array from flattened array according to mask insert Insert 1d array of values into Nd array according to mask linspace Evenly spaced samples in linear space logspace Evenly spaced samples in logarithmic space fix Round x to nearest integer towards zero mod Modulo mod(x,y) = x % y except keeps sign of y amax Array maximum along axis amin Array minimum along axis ptp Array max-min along axis cumsum Cumulative sum along axis prod Product of elements along axis cumprod Cumluative product along axis diff Discrete differences along axis angle Returns angle of complex argument unwrap Unwrap phase along given axis (1-d algorithm) sort_complex Sort a complex-array (based on real, then imaginary) trim_zeros Trim the leading and trailing zeros from 1D array. vectorize A class that wraps a Python function taking scalar arguments into a generalized function which can handle arrays of arguments using the broadcast rules of numerix Python. ================ =================== Shape Manipulation ------------------ ================ =================== squeeze Return a with length-one dimensions removed. atleast_1d Force arrays to be > 1D atleast_2d Force arrays to be > 2D atleast_3d Force arrays to be > 3D vstack Stack arrays vertically (row on row) hstack Stack arrays horizontally (column on column) column_stack Stack 1D arrays as columns into 2D array dstack Stack arrays depthwise (along third dimension) stack Stack arrays along a new axis split Divide array into a list of sub-arrays hsplit Split into columns vsplit Split into rows dsplit Split along third dimension ================ =================== Matrix (2D Array) Manipulations ------------------------------- ================ =================== fliplr 2D array with columns flipped flipud 2D array with rows flipped rot90 Rotate a 2D array a multiple of 90 degrees eye Return a 2D array with ones down a given diagonal diag Construct a 2D array from a vector, or return a given diagonal from a 2D array. mat Construct a Matrix bmat Build a Matrix from blocks ================ =================== Polynomials ----------- ================ =================== poly1d A one-dimensional polynomial class poly Return polynomial coefficients from roots roots Find roots of polynomial given coefficients polyint Integrate polynomial polyder Differentiate polynomial polyadd Add polynomials polysub Substract polynomials polymul Multiply polynomials polydiv Divide polynomials polyval Evaluate polynomial at given argument ================ =================== Import Tricks ------------- ================ =================== ppimport Postpone module import until trying to use it ppimport_attr Postpone module import until trying to use its attribute ppresolve Import postponed module and return it. ================ =================== Machine Arithmetics ------------------- ================ =================== machar_single Single precision floating point arithmetic parameters machar_double Double precision floating point arithmetic parameters ================ =================== Threading Tricks ---------------- ================ =================== ParallelExec Execute commands in parallel thread. ================ =================== 1D Array Set Operations ----------------------- Set operations for 1D numeric arrays based on sort() function. ================ =================== ediff1d Array difference (auxiliary function). unique Unique elements of an array. intersect1d Intersection of 1D arrays with unique elements. setxor1d Set exclusive-or of 1D arrays with unique elements. in1d Test whether elements in a 1D array are also present in another array. union1d Union of 1D arrays with unique elements. setdiff1d Set difference of 1D arrays with unique elements. ================ =================== """ from __future__ import division, absolute_import, print_function depends = ['core', 'testing'] global_symbols = ['*']
bsd-3-clause
fillycheezstake/MissionPlanner
ExtLibs/Mavlink/mavgen.py
34
3007
#!/usr/bin/env python ''' parse a MAVLink protocol XML file and generate a python implementation Copyright Andrew Tridgell 2011 Released under GNU GPL version 3 or later ''' def mavgen(opts, args) : """Generate mavlink message formatters and parsers (C and Python ) using options and args where args are a list of xml files. This function allows python scripts under Windows to control mavgen using the same interface as shell scripts under Unix""" import sys, textwrap, os import mavparse import mavgen_python import mavgen_c import mavgen_csharp xml = [] for fname in args: print("Parsing %s" % fname) xml.append(mavparse.MAVXML(fname, opts.wire_protocol)) # expand includes for x in xml[:]: for i in x.include: fname = os.path.join(os.path.dirname(x.filename), i) print("Parsing %s" % fname) xml.append(mavparse.MAVXML(fname, opts.wire_protocol)) # include message lengths and CRCs too for idx in range(0, 256): if x.message_lengths[idx] == 0: x.message_lengths[idx] = xml[-1].message_lengths[idx] x.message_crcs[idx] = xml[-1].message_crcs[idx] x.message_names[idx] = xml[-1].message_names[idx] # work out max payload size across all includes largest_payload = 0 for x in xml: if x.largest_payload > largest_payload: largest_payload = x.largest_payload for x in xml: x.largest_payload = largest_payload if mavparse.check_duplicates(xml): sys.exit(1) print("Found %u MAVLink message types in %u XML files" % ( mavparse.total_msgs(xml), len(xml))) if opts.language == 'python': mavgen_python.generate(opts.output, xml) elif opts.language == 'C': mavgen_c.generate(opts.output, xml) elif opts.language == 'csharp': mavgen_csharp.generate(opts.output, xml) else: print("Unsupported language %s" % opts.language) if __name__=="__main__": import sys, textwrap, os from optparse import OptionParser # allow import from the parent directory, where mavutil.py is sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')) import mavparse import mavgen_python import mavgen_c parser = OptionParser("mavgen.py [options] <XML files>") parser.add_option("-o", "--output", dest="output", default="mavlink", help="output base name") parser.add_option("--lang", dest="language", default="python", help="language to generate") parser.add_option("--wire-protocol", dest="wire_protocol", default=mavparse.PROTOCOL_0_9, help="wire protocol version") (opts, args) = parser.parse_args() if len(args) < 1: parser.error("You must supply at least one MAVLink XML protocol definition") mavgen(opts, args)
gpl-3.0
SebastianLloret/Clever-Bot
libpasteurize/fixes/fix_kwargs.py
61
6008
u""" Fixer for Python 3 function parameter syntax This fixer is rather sensitive to incorrect py3k syntax. """ # Note: "relevant" parameters are parameters following the first STAR in the list. from lib2to3 import fixer_base from lib2to3.fixer_util import token, String, Newline, Comma, Name from libfuturize.fixer_util import indentation, suitify, DoubleStar _assign_template = u"%(name)s = %(kwargs)s['%(name)s']; del %(kwargs)s['%(name)s']" _if_template = u"if '%(name)s' in %(kwargs)s: %(assign)s" _else_template = u"else: %(name)s = %(default)s" _kwargs_default_name = u"_3to2kwargs" def gen_params(raw_params): u""" Generator that yields tuples of (name, default_value) for each parameter in the list If no default is given, then it is default_value is None (not Leaf(token.NAME, 'None')) """ assert raw_params[0].type == token.STAR and len(raw_params) > 2 curr_idx = 2 # the first place a keyword-only parameter name can be is index 2 max_idx = len(raw_params) while curr_idx < max_idx: curr_item = raw_params[curr_idx] prev_item = curr_item.prev_sibling if curr_item.type != token.NAME: curr_idx += 1 continue if prev_item is not None and prev_item.type == token.DOUBLESTAR: break name = curr_item.value nxt = curr_item.next_sibling if nxt is not None and nxt.type == token.EQUAL: default_value = nxt.next_sibling curr_idx += 2 else: default_value = None yield (name, default_value) curr_idx += 1 def remove_params(raw_params, kwargs_default=_kwargs_default_name): u""" Removes all keyword-only args from the params list and a bare star, if any. Does not add the kwargs dict if needed. Returns True if more action is needed, False if not (more action is needed if no kwargs dict exists) """ assert raw_params[0].type == token.STAR if raw_params[1].type == token.COMMA: raw_params[0].remove() raw_params[1].remove() kw_params = raw_params[2:] else: kw_params = raw_params[3:] for param in kw_params: if param.type != token.DOUBLESTAR: param.remove() else: return False else: return True def needs_fixing(raw_params, kwargs_default=_kwargs_default_name): u""" Returns string with the name of the kwargs dict if the params after the first star need fixing Otherwise returns empty string """ found_kwargs = False needs_fix = False for t in raw_params[2:]: if t.type == token.COMMA: # Commas are irrelevant at this stage. continue elif t.type == token.NAME and not found_kwargs: # Keyword-only argument: definitely need to fix. needs_fix = True elif t.type == token.NAME and found_kwargs: # Return 'foobar' of **foobar, if needed. return t.value if needs_fix else u'' elif t.type == token.DOUBLESTAR: # Found either '*' from **foobar. found_kwargs = True else: # Never found **foobar. Return a synthetic name, if needed. return kwargs_default if needs_fix else u'' class FixKwargs(fixer_base.BaseFix): run_order = 7 # Run after function annotations are removed PATTERN = u"funcdef< 'def' NAME parameters< '(' arglist=typedargslist< params=any* > ')' > ':' suite=any >" def transform(self, node, results): params_rawlist = results[u"params"] for i, item in enumerate(params_rawlist): if item.type == token.STAR: params_rawlist = params_rawlist[i:] break else: return # params is guaranteed to be a list starting with *. # if fixing is needed, there will be at least 3 items in this list: # [STAR, COMMA, NAME] is the minimum that we need to worry about. new_kwargs = needs_fixing(params_rawlist) # new_kwargs is the name of the kwargs dictionary. if not new_kwargs: return suitify(node) # At this point, params_rawlist is guaranteed to be a list # beginning with a star that includes at least one keyword-only param # e.g., [STAR, NAME, COMMA, NAME, COMMA, DOUBLESTAR, NAME] or # [STAR, COMMA, NAME], or [STAR, COMMA, NAME, COMMA, DOUBLESTAR, NAME] # Anatomy of a funcdef: ['def', 'name', parameters, ':', suite] # Anatomy of that suite: [NEWLINE, INDENT, first_stmt, all_other_stmts] # We need to insert our new stuff before the first_stmt and change the # first_stmt's prefix. suite = node.children[4] first_stmt = suite.children[2] ident = indentation(first_stmt) for name, default_value in gen_params(params_rawlist): if default_value is None: suite.insert_child(2, Newline()) suite.insert_child(2, String(_assign_template %{u'name':name, u'kwargs':new_kwargs}, prefix=ident)) else: suite.insert_child(2, Newline()) suite.insert_child(2, String(_else_template %{u'name':name, u'default':default_value}, prefix=ident)) suite.insert_child(2, Newline()) suite.insert_child(2, String(_if_template %{u'assign':_assign_template %{u'name':name, u'kwargs':new_kwargs}, u'name':name, u'kwargs':new_kwargs}, prefix=ident)) first_stmt.prefix = ident suite.children[2].prefix = u"" # Now, we need to fix up the list of params. must_add_kwargs = remove_params(params_rawlist) if must_add_kwargs: arglist = results[u'arglist'] if len(arglist.children) > 0 and arglist.children[-1].type != token.COMMA: arglist.append_child(Comma()) arglist.append_child(DoubleStar(prefix=u" ")) arglist.append_child(Name(new_kwargs))
gpl-3.0
jazkarta/edx-platform
common/lib/xmodule/xmodule/vertical_block.py
56
5689
""" VerticalBlock - an XBlock which renders its children in a column. """ import logging from copy import copy from lxml import etree from xblock.core import XBlock from xblock.fragment import Fragment from xmodule.mako_module import MakoTemplateBlockBase from xmodule.progress import Progress from xmodule.seq_module import SequenceFields from xmodule.studio_editable import StudioEditableBlock from xmodule.x_module import STUDENT_VIEW, XModuleFields from xmodule.xml_module import XmlParserMixin log = logging.getLogger(__name__) # HACK: This shouldn't be hard-coded to two types # OBSOLETE: This obsoletes 'type' CLASS_PRIORITY = ['video', 'problem'] class VerticalBlock(SequenceFields, XModuleFields, StudioEditableBlock, XmlParserMixin, MakoTemplateBlockBase, XBlock): """ Layout XBlock for rendering subblocks vertically. """ mako_template = 'widgets/sequence-edit.html' js_module_name = "VerticalBlock" has_children = True show_in_read_only_mode = True def student_view(self, context): """ Renders the student view of the block in the LMS. """ fragment = Fragment() contents = [] child_context = {} if not context else copy(context) child_context['child_of_vertical'] = True # pylint: disable=no-member for child in self.get_display_items(): rendered_child = child.render(STUDENT_VIEW, child_context) fragment.add_frag_resources(rendered_child) contents.append({ 'id': child.location.to_deprecated_string(), 'content': rendered_child.content }) fragment.add_content(self.system.render_template('vert_module.html', { 'items': contents, 'xblock_context': context, })) return fragment def author_view(self, context): """ Renders the Studio preview view, which supports drag and drop. """ fragment = Fragment() root_xblock = context.get('root_xblock') is_root = root_xblock and root_xblock.location == self.location # pylint: disable=no-member # For the container page we want the full drag-and-drop, but for unit pages we want # a more concise version that appears alongside the "View =>" link-- unless it is # the unit page and the vertical being rendered is itself the unit vertical (is_root == True). if is_root or not context.get('is_unit_page'): self.render_children(context, fragment, can_reorder=True, can_add=True) return fragment def get_progress(self): """ Returns the progress on this block and all children. """ # TODO: Cache progress or children array? children = self.get_children() progresses = [child.get_progress() for child in children] progress = reduce(Progress.add_counts, progresses, None) return progress def get_icon_class(self): """ Returns the highest priority icon class. """ child_classes = set(child.get_icon_class() for child in self.get_children()) new_class = 'other' for higher_class in CLASS_PRIORITY: if higher_class in child_classes: new_class = higher_class return new_class @classmethod def definition_from_xml(cls, xml_object, system): children = [] for child in xml_object: try: child_block = system.process_xml(etree.tostring(child, encoding='unicode')) # pylint: disable=no-member children.append(child_block.scope_ids.usage_id) except Exception as exc: # pylint: disable=broad-except log.exception("Unable to load child when parsing Vertical. Continuing...") if system.error_tracker is not None: system.error_tracker(u"ERROR: {0}".format(exc)) continue return {}, children def definition_to_xml(self, resource_fs): xml_object = etree.Element('vertical') # pylint: disable=no-member for child in self.get_children(): self.runtime.add_block_as_child_node(child, xml_object) return xml_object @property def non_editable_metadata_fields(self): """ Gather all fields which can't be edited. """ non_editable_fields = super(VerticalBlock, self).non_editable_metadata_fields non_editable_fields.extend([ self.fields['due'], ]) return non_editable_fields def studio_view(self, context): fragment = super(VerticalBlock, self).studio_view(context) # This continues to use the old XModuleDescriptor javascript code to enabled studio editing. # TODO: Remove this when studio better supports editing of pure XBlocks. fragment.add_javascript('VerticalBlock = XModule.Descriptor;') return fragment def index_dictionary(self): """ Return dictionary prepared with module content and type for indexing. """ # return key/value fields in a Python dict object # values may be numeric / string or dict # default implementation is an empty dict xblock_body = super(VerticalBlock, self).index_dictionary() index_body = { "display_name": self.display_name, } if "content" in xblock_body: xblock_body["content"].update(index_body) else: xblock_body["content"] = index_body # We use "Sequence" for sequentials and verticals xblock_body["content_type"] = "Sequence" return xblock_body
agpl-3.0
jonathonwalz/ansible
lib/ansible/modules/storage/zfs/zpool_facts.py
69
6653
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2016, Adam Števko <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: zpool_facts short_description: Gather facts about ZFS pools. description: - Gather facts from ZFS pool properties. version_added: "2.3" author: Adam Števko (@xen0l) options: name: description: - ZFS pool name. aliases: [ "pool", "zpool" ] required: false parsable: description: - Specifies if property values should be displayed in machine friendly format. type: bool default: False required: false properties: description: - Specifies which dataset properties should be queried in comma-separated format. For more information about dataset properties, check zpool(1M) man page. aliases: [ "props" ] default: all required: false ''' EXAMPLES = ''' # Gather facts about ZFS pool rpool zpool_facts: pool=rpool # Gather space usage about all imported ZFS pools zpool_facts: properties='free,size' debug: msg='ZFS pool {{ item.name }} has {{ item.free }} free space out of {{ item.size }}.' with_items: '{{ ansible_zfs_pools }}' ''' RETURN = ''' name: description: ZFS pool name returned: always type: string sample: rpool parsable: description: if parsable output should be provided in machine friendly format. returned: if 'parsable' is set to True type: boolean sample: True zfs_pools: description: ZFS pool facts returned: always type: string sample: { "allocated": "3.46G", "altroot": "-", "autoexpand": "off", "autoreplace": "off", "bootfs": "rpool/ROOT/openindiana", "cachefile": "-", "capacity": "6%", "comment": "-", "dedupditto": "0", "dedupratio": "1.00x", "delegation": "on", "expandsize": "-", "failmode": "wait", "feature@async_destroy": "enabled", "feature@bookmarks": "enabled", "feature@edonr": "enabled", "feature@embedded_data": "active", "feature@empty_bpobj": "active", "feature@enabled_txg": "active", "feature@extensible_dataset": "enabled", "feature@filesystem_limits": "enabled", "feature@hole_birth": "active", "feature@large_blocks": "enabled", "feature@lz4_compress": "active", "feature@multi_vdev_crash_dump": "enabled", "feature@sha512": "enabled", "feature@skein": "enabled", "feature@spacemap_histogram": "active", "fragmentation": "3%", "free": "46.3G", "freeing": "0", "guid": "15729052870819522408", "health": "ONLINE", "leaked": "0", "listsnapshots": "off", "name": "rpool", "readonly": "off", "size": "49.8G", "version": "-" } ''' import os from collections import defaultdict from ansible.module_utils.six import iteritems from ansible.module_utils.basic import AnsibleModule class ZPoolFacts(object): def __init__(self, module): self.module = module self.name = module.params['name'] self.parsable = module.params['parsable'] self.properties = module.params['properties'] self._pools = defaultdict(dict) self.facts = [] def pool_exists(self): cmd = [self.module.get_bin_path('zpool')] cmd.append('list') cmd.append(self.name) (rc, out, err) = self.module.run_command(cmd) if rc == 0: return True else: return False def get_facts(self): cmd = [self.module.get_bin_path('zpool')] cmd.append('get') cmd.append('-H') if self.parsable: cmd.append('-p') cmd.append('-o') cmd.append('name,property,value') cmd.append(self.properties) if self.name: cmd.append(self.name) (rc, out, err) = self.module.run_command(cmd) if rc == 0: for line in out.splitlines(): pool, property, value = line.split('\t') self._pools[pool].update({property: value}) for k, v in iteritems(self._pools): v.update({'name': k}) self.facts.append(v) return {'ansible_zfs_pools': self.facts} else: self.module.fail_json(msg='Error while trying to get facts about ZFS pool: %s' % self.name, stderr=err, rc=rc) def main(): module = AnsibleModule( argument_spec=dict( name=dict(required=False, aliases=['pool', 'zpool'], type='str'), parsable=dict(required=False, default=False, type='bool'), properties=dict(required=False, default='all', type='str'), ), supports_check_mode=True ) zpool_facts = ZPoolFacts(module) result = {} result['changed'] = False result['name'] = zpool_facts.name if zpool_facts.parsable: result['parsable'] = zpool_facts.parsable if zpool_facts.name is not None: if zpool_facts.pool_exists(): result['ansible_facts'] = zpool_facts.get_facts() else: module.fail_json(msg='ZFS pool %s does not exist!' % zpool_facts.name) else: result['ansible_facts'] = zpool_facts.get_facts() module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
zzicewind/nova
nova/tests/unit/objects/test_virt_cpu_topology.py
94
1397
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova import objects from nova.tests.unit.objects import test_objects _top_dict = { 'sockets': 2, 'cores': 4, 'threads': 8 } class _TestVirtCPUTopologyObject(object): def test_object_from_dict(self): top_obj = objects.VirtCPUTopology.from_dict(_top_dict) self.compare_obj(top_obj, _top_dict) def test_object_to_dict(self): top_obj = objects.VirtCPUTopology() top_obj.sockets = 2 top_obj.cores = 4 top_obj.threads = 8 spec = top_obj.to_dict() self.assertEqual(_top_dict, spec) class TestVirtCPUTopologyObject(test_objects._LocalTest, _TestVirtCPUTopologyObject): pass class TestRemoteVirtCPUTopologyObject(test_objects._RemoteTest, _TestVirtCPUTopologyObject): pass
apache-2.0
ChristianKniep/QNIB
serverfiles/usr/local/lib/networkx-1.6/build/lib/networkx/algorithms/tests/test_product.py
3
10011
import networkx as nx from networkx import tensor_product,cartesian_product,lexicographic_product,strong_product from nose.tools import assert_raises, assert_true, assert_equal def test_tensor_product_raises(): G = nx.DiGraph() H = nx.Graph() assert_raises(nx.NetworkXError,tensor_product,G,H) def test_tensor_product_null(): null=nx.null_graph() empty10=nx.empty_graph(10) K3=nx.complete_graph(3) K10=nx.complete_graph(10) P3=nx.path_graph(3) P10=nx.path_graph(10) # null graph G=tensor_product(null,null) assert_true(nx.is_isomorphic(G,null)) # null_graph X anything = null_graph and v.v. G=tensor_product(null,empty10) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(null,K3) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(null,K10) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(null,P3) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(null,P10) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(empty10,null) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(K3,null) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(K10,null) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(P3,null) assert_true(nx.is_isomorphic(G,null)) G=tensor_product(P10,null) assert_true(nx.is_isomorphic(G,null)) def test_tensor_product_size(): P5 = nx.path_graph(5) K3 = nx.complete_graph(3) K5 = nx.complete_graph(5) G=tensor_product(P5,K3) assert_equal(nx.number_of_nodes(G),5*3) G=tensor_product(K3,K5) assert_equal(nx.number_of_nodes(G),3*5) def test_tensor_product_classic_result(): K2 = nx.complete_graph(2) G = nx.petersen_graph() G = tensor_product(G,K2) assert_true(nx.is_isomorphic(G,nx.desargues_graph())) G = nx.cycle_graph(5) G = tensor_product(G,K2) assert_true(nx.is_isomorphic(G,nx.cycle_graph(10))) G = nx.tetrahedral_graph() G = tensor_product(G,K2) assert_true(nx.is_isomorphic(G,nx.cubical_graph())) def test_tensor_product_random(): G = nx.erdos_renyi_graph(10,2/10.) H = nx.erdos_renyi_graph(10,2/10.) GH = tensor_product(G,H) for (u_G,u_H) in GH.nodes_iter(): for (v_G,v_H) in GH.nodes_iter(): if H.has_edge(u_H,v_H) and G.has_edge(u_G,v_G): assert_true(GH.has_edge((u_G,u_H),(v_G,v_H))) else: assert_true(not GH.has_edge((u_G,u_H),(v_G,v_H))) def test_cartesian_product_multigraph(): G=nx.MultiGraph() G.add_edge(1,2,key=0) G.add_edge(1,2,key=1) H=nx.MultiGraph() H.add_edge(3,4,key=0) H.add_edge(3,4,key=1) GH=cartesian_product(G,H) assert_equal( set(GH) , set([(1, 3), (2, 3), (2, 4), (1, 4)])) assert_equal( set(GH.edges(keys=True)) , set([((1, 3), (2, 3), 0), ((1, 3), (2, 3), 1), ((1, 3), (1, 4), 0), ((1, 3), (1, 4), 1), ((2, 3), (2, 4), 0), ((2, 3), (2, 4), 1), ((2, 4), (1, 4), 0), ((2, 4), (1, 4), 1)])) def test_cartesian_product_raises(): G = nx.DiGraph() H = nx.Graph() assert_raises(nx.NetworkXError,cartesian_product,G,H) def test_cartesian_product_null(): null=nx.null_graph() empty10=nx.empty_graph(10) K3=nx.complete_graph(3) K10=nx.complete_graph(10) P3=nx.path_graph(3) P10=nx.path_graph(10) # null graph G=cartesian_product(null,null) assert_true(nx.is_isomorphic(G,null)) # null_graph X anything = null_graph and v.v. G=cartesian_product(null,empty10) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(null,K3) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(null,K10) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(null,P3) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(null,P10) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(empty10,null) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(K3,null) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(K10,null) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(P3,null) assert_true(nx.is_isomorphic(G,null)) G=cartesian_product(P10,null) assert_true(nx.is_isomorphic(G,null)) def test_cartesian_product_size(): # order(GXH)=order(G)*order(H) K5=nx.complete_graph(5) P5=nx.path_graph(5) K3=nx.complete_graph(3) G=cartesian_product(P5,K3) assert_equal(nx.number_of_nodes(G),5*3) assert_equal(nx.number_of_edges(G), nx.number_of_edges(P5)*nx.number_of_nodes(K3)+ nx.number_of_edges(K3)*nx.number_of_nodes(P5)) G=cartesian_product(K3,K5) assert_equal(nx.number_of_nodes(G),3*5) assert_equal(nx.number_of_edges(G), nx.number_of_edges(K5)*nx.number_of_nodes(K3)+ nx.number_of_edges(K3)*nx.number_of_nodes(K5)) def test_cartesian_product_classic(): # test some classic product graphs P2 = nx.path_graph(2) P3 = nx.path_graph(3) # cube = 2-path X 2-path G=cartesian_product(P2,P2) G=cartesian_product(P2,G) assert_true(nx.is_isomorphic(G,nx.cubical_graph())) # 3x3 grid G=cartesian_product(P3,P3) assert_true(nx.is_isomorphic(G,nx.grid_2d_graph(3,3))) def test_cartesian_product_random(): G = nx.erdos_renyi_graph(10,2/10.) H = nx.erdos_renyi_graph(10,2/10.) GH = cartesian_product(G,H) for (u_G,u_H) in GH.nodes_iter(): for (v_G,v_H) in GH.nodes_iter(): if (u_G==v_G and H.has_edge(u_H,v_H)) or \ (u_H==v_H and G.has_edge(u_G,v_G)): assert_true(GH.has_edge((u_G,u_H),(v_G,v_H))) else: assert_true(not GH.has_edge((u_G,u_H),(v_G,v_H))) def test_lexicographic_product_raises(): G = nx.DiGraph() H = nx.Graph() assert_raises(nx.NetworkXError,lexicographic_product,G,H) def test_lexicographic_product_null(): null=nx.null_graph() empty10=nx.empty_graph(10) K3=nx.complete_graph(3) K10=nx.complete_graph(10) P3=nx.path_graph(3) P10=nx.path_graph(10) # null graph G=lexicographic_product(null,null) assert_true(nx.is_isomorphic(G,null)) # null_graph X anything = null_graph and v.v. G=lexicographic_product(null,empty10) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(null,K3) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(null,K10) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(null,P3) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(null,P10) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(empty10,null) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(K3,null) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(K10,null) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(P3,null) assert_true(nx.is_isomorphic(G,null)) G=lexicographic_product(P10,null) assert_true(nx.is_isomorphic(G,null)) def test_lexicographic_product_size(): K5=nx.complete_graph(5) P5=nx.path_graph(5) K3=nx.complete_graph(3) G=lexicographic_product(P5,K3) assert_equal(nx.number_of_nodes(G),5*3) G=lexicographic_product(K3,K5) assert_equal(nx.number_of_nodes(G),3*5) #No classic easily found classic results for lexicographic product def test_lexicographic_product_random(): G = nx.erdos_renyi_graph(10,2/10.) H = nx.erdos_renyi_graph(10,2/10.) GH = lexicographic_product(G,H) for (u_G,u_H) in GH.nodes_iter(): for (v_G,v_H) in GH.nodes_iter(): if G.has_edge(u_G,v_G) or (u_G==v_G and H.has_edge(u_H,v_H)): assert_true(GH.has_edge((u_G,u_H),(v_G,v_H))) else: assert_true(not GH.has_edge((u_G,u_H),(v_G,v_H))) def test_strong_product_raises(): G = nx.DiGraph() H = nx.Graph() assert_raises(nx.NetworkXError,strong_product,G,H) def test_strong_product_null(): null=nx.null_graph() empty10=nx.empty_graph(10) K3=nx.complete_graph(3) K10=nx.complete_graph(10) P3=nx.path_graph(3) P10=nx.path_graph(10) # null graph G=strong_product(null,null) assert_true(nx.is_isomorphic(G,null)) # null_graph X anything = null_graph and v.v. G=strong_product(null,empty10) assert_true(nx.is_isomorphic(G,null)) G=strong_product(null,K3) assert_true(nx.is_isomorphic(G,null)) G=strong_product(null,K10) assert_true(nx.is_isomorphic(G,null)) G=strong_product(null,P3) assert_true(nx.is_isomorphic(G,null)) G=strong_product(null,P10) assert_true(nx.is_isomorphic(G,null)) G=strong_product(empty10,null) assert_true(nx.is_isomorphic(G,null)) G=strong_product(K3,null) assert_true(nx.is_isomorphic(G,null)) G=strong_product(K10,null) assert_true(nx.is_isomorphic(G,null)) G=strong_product(P3,null) assert_true(nx.is_isomorphic(G,null)) G=strong_product(P10,null) assert_true(nx.is_isomorphic(G,null)) def test_strong_product_size(): K5=nx.complete_graph(5) P5=nx.path_graph(5) K3 = nx.complete_graph(3) G=strong_product(P5,K3) assert_equal(nx.number_of_nodes(G),5*3) G=strong_product(K3,K5) assert_equal(nx.number_of_nodes(G),3*5) #No classic easily found classic results for strong product def test_strong_product_random(): G = nx.erdos_renyi_graph(10,2/10.) H = nx.erdos_renyi_graph(10,2/10.) GH = strong_product(G,H) for (u_G,u_H) in GH.nodes_iter(): for (v_G,v_H) in GH.nodes_iter(): if (u_G==v_G and H.has_edge(u_H,v_H)) or \ (u_H==v_H and G.has_edge(u_G,v_G)) or \ (G.has_edge(u_G,v_G) and H.has_edge(u_H,v_H)): assert_true(GH.has_edge((u_G,u_H),(v_G,v_H))) else: assert_true(not GH.has_edge((u_G,u_H),(v_G,v_H)))
gpl-2.0
tafaRU/odoo
addons/l10n_multilang/__init__.py
438
1082
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import account import l10n_multilang # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
shiora/The-Perfect-Pokemon-Team-Balancer
libs/env/Lib/site-packages/whoosh/lang/porter2.py
117
8314
"""An implementation of the Porter2 stemming algorithm. See http://snowball.tartarus.org/algorithms/english/stemmer.html Adapted from pyporter2 by Michael Dirolf. This algorithm is more correct but (at least in this implementation) several times slower than the original porter algorithm as implemented in stemming.porter. """ import re r_exp = re.compile(r"[^aeiouy]*[aeiouy]+[^aeiouy](\w*)") ewss_exp1 = re.compile(r"^[aeiouy][^aeiouy]$") ewss_exp2 = re.compile(r".*[^aeiouy][aeiouy][^aeiouywxY]$") ccy_exp = re.compile(r"([aeiouy])y") s1a_exp = re.compile(r"[aeiouy].") s1b_exp = re.compile(r"[aeiouy]") def get_r1(word): # exceptional forms if word.startswith('gener') or word.startswith('arsen'): return 5 if word.startswith('commun'): return 6 # normal form match = r_exp.match(word) if match: return match.start(1) return len(word) def get_r2(word): match = r_exp.match(word, get_r1(word)) if match: return match.start(1) return len(word) def ends_with_short_syllable(word): if len(word) == 2: if ewss_exp1.match(word): return True if ewss_exp2.match(word): return True return False def is_short_word(word): if ends_with_short_syllable(word): if get_r1(word) == len(word): return True return False def remove_initial_apostrophe(word): if word.startswith("'"): return word[1:] return word def capitalize_consonant_ys(word): if word.startswith('y'): word = 'Y' + word[1:] return ccy_exp.sub('\g<1>Y', word) def step_0(word): if word.endswith("'s'"): return word[:-3] if word.endswith("'s"): return word[:-2] if word.endswith("'"): return word[:-1] return word def step_1a(word): if word.endswith('sses'): return word[:-4] + 'ss' if word.endswith('ied') or word.endswith('ies'): if len(word) > 4: return word[:-3] + 'i' else: return word[:-3] + 'ie' if word.endswith('us') or word.endswith('ss'): return word if word.endswith('s'): preceding = word[:-1] if s1a_exp.search(preceding): return preceding return word return word doubles = ('bb', 'dd', 'ff', 'gg', 'mm', 'nn', 'pp', 'rr', 'tt') def ends_with_double(word): for double in doubles: if word.endswith(double): return True return False def step_1b_helper(word): if word.endswith('at') or word.endswith('bl') or word.endswith('iz'): return word + 'e' if ends_with_double(word): return word[:-1] if is_short_word(word): return word + 'e' return word s1b_suffixes = ('ed', 'edly', 'ing', 'ingly') def step_1b(word, r1): if word.endswith('eedly'): if len(word) - 5 >= r1: return word[:-3] return word if word.endswith('eed'): if len(word) - 3 >= r1: return word[:-1] return word for suffix in s1b_suffixes: if word.endswith(suffix): preceding = word[:-len(suffix)] if s1b_exp.search(preceding): return step_1b_helper(preceding) return word return word def step_1c(word): if word.endswith('y') or word.endswith('Y') and len(word) > 1: if word[-2] not in 'aeiouy': if len(word) > 2: return word[:-1] + 'i' return word def step_2_helper(word, r1, end, repl, prev): if word.endswith(end): if len(word) - len(end) >= r1: if prev == []: return word[:-len(end)] + repl for p in prev: if word[:-len(end)].endswith(p): return word[:-len(end)] + repl return word return None s2_triples = (('ization', 'ize', []), ('ational', 'ate', []), ('fulness', 'ful', []), ('ousness', 'ous', []), ('iveness', 'ive', []), ('tional', 'tion', []), ('biliti', 'ble', []), ('lessli', 'less', []), ('entli', 'ent', []), ('ation', 'ate', []), ('alism', 'al', []), ('aliti', 'al', []), ('ousli', 'ous', []), ('iviti', 'ive', []), ('fulli', 'ful', []), ('enci', 'ence', []), ('anci', 'ance', []), ('abli', 'able', []), ('izer', 'ize', []), ('ator', 'ate', []), ('alli', 'al', []), ('bli', 'ble', []), ('ogi', 'og', ['l']), ('li', '', ['c', 'd', 'e', 'g', 'h', 'k', 'm', 'n', 'r', 't'])) def step_2(word, r1): for trip in s2_triples: attempt = step_2_helper(word, r1, trip[0], trip[1], trip[2]) if attempt: return attempt return word def step_3_helper(word, r1, r2, end, repl, r2_necessary): if word.endswith(end): if len(word) - len(end) >= r1: if not r2_necessary: return word[:-len(end)] + repl else: if len(word) - len(end) >= r2: return word[:-len(end)] + repl return word return None s3_triples = (('ational', 'ate', False), ('tional', 'tion', False), ('alize', 'al', False), ('icate', 'ic', False), ('iciti', 'ic', False), ('ative', '', True), ('ical', 'ic', False), ('ness', '', False), ('ful', '', False)) def step_3(word, r1, r2): for trip in s3_triples: attempt = step_3_helper(word, r1, r2, trip[0], trip[1], trip[2]) if attempt: return attempt return word s4_delete_list = ('al', 'ance', 'ence', 'er', 'ic', 'able', 'ible', 'ant', 'ement', 'ment', 'ent', 'ism', 'ate', 'iti', 'ous', 'ive', 'ize') def step_4(word, r2): for end in s4_delete_list: if word.endswith(end): if len(word) - len(end) >= r2: return word[:-len(end)] return word if word.endswith('sion') or word.endswith('tion'): if len(word) - 3 >= r2: return word[:-3] return word def step_5(word, r1, r2): if word.endswith('l'): if len(word) - 1 >= r2 and word[-2] == 'l': return word[:-1] return word if word.endswith('e'): if len(word) - 1 >= r2: return word[:-1] if len(word) - 1 >= r1 and not ends_with_short_syllable(word[:-1]): return word[:-1] return word def normalize_ys(word): return word.replace('Y', 'y') exceptional_forms = {'skis': 'ski', 'skies': 'sky', 'dying': 'die', 'lying': 'lie', 'tying': 'tie', 'idly': 'idl', 'gently': 'gentl', 'ugly': 'ugli', 'early': 'earli', 'only': 'onli', 'singly': 'singl', 'sky': 'sky', 'news': 'news', 'howe': 'howe', 'atlas': 'atlas', 'cosmos': 'cosmos', 'bias': 'bias', 'andes': 'andes'} exceptional_early_exit_post_1a = frozenset(['inning', 'outing', 'canning', 'herring', 'earring', 'proceed', 'exceed', 'succeed']) def stem(word): if len(word) <= 2: return word word = remove_initial_apostrophe(word) # handle some exceptional forms if word in exceptional_forms: return exceptional_forms[word] word = capitalize_consonant_ys(word) r1 = get_r1(word) r2 = get_r2(word) word = step_0(word) word = step_1a(word) # handle some more exceptional forms if word in exceptional_early_exit_post_1a: return word word = step_1b(word, r1) word = step_1c(word) word = step_2(word, r1) word = step_3(word, r1, r2) word = step_4(word, r2) word = step_5(word, r1, r2) word = normalize_ys(word) return word
gpl-2.0
nxnfufunezn/servo
tests/wpt/harness/wptrunner/wptmanifest/tests/test_static.py
139
2863
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. import unittest from cStringIO import StringIO from ..backends import static # There aren't many tests here because it turns out to be way more convenient to # use test_serializer for the majority of cases class TestStatic(unittest.TestCase): def parse(self, input_str): return self.parser.parse(StringIO(input_str)) def compile(self, input_text, input_data): return static.compile(input_text, input_data) def test_get_0(self): data = """ key: value [Heading 1] other_key: if a == 1: value_1 if a == 2: value_2 value_3 """ manifest = self.compile(data, {"a": 2}) self.assertEquals(manifest.get("key"), "value") children = list(item for item in manifest.iterchildren()) self.assertEquals(len(children), 1) section = children[0] self.assertEquals(section.name, "Heading 1") self.assertEquals(section.get("other_key"), "value_2") self.assertEquals(section.get("key"), "value") def test_get_1(self): data = """ key: value [Heading 1] other_key: if a == 1: value_1 if a == 2: value_2 value_3 """ manifest = self.compile(data, {"a": 3}) children = list(item for item in manifest.iterchildren()) section = children[0] self.assertEquals(section.get("other_key"), "value_3") def test_get_3(self): data = """key: if a == "1": value_1 if a[0] == "ab"[0]: value_2 """ manifest = self.compile(data, {"a": "1"}) self.assertEquals(manifest.get("key"), "value_1") manifest = self.compile(data, {"a": "ac"}) self.assertEquals(manifest.get("key"), "value_2") def test_get_4(self): data = """key: if not a: value_1 value_2 """ manifest = self.compile(data, {"a": True}) self.assertEquals(manifest.get("key"), "value_2") manifest = self.compile(data, {"a": False}) self.assertEquals(manifest.get("key"), "value_1") def test_api(self): data = """key: if a == 1.5: value_1 value_2 key_1: other_value """ manifest = self.compile(data, {"a": 1.5}) self.assertFalse(manifest.is_empty) self.assertEquals(manifest.root, manifest) self.assertTrue(manifest.has_key("key_1")) self.assertFalse(manifest.has_key("key_2")) self.assertEquals(set(manifest.iterkeys()), set(["key", "key_1"])) self.assertEquals(set(manifest.itervalues()), set(["value_1", "other_value"])) def test_is_empty_1(self): data = """ [Section] [Subsection] """ manifest = self.compile(data, {}) self.assertTrue(manifest.is_empty)
mpl-2.0
Azure/azure-sdk-for-python
sdk/databoxedge/azure-mgmt-databoxedge/tests/test_cli_mgmt_databoxedge.py
1
16519
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- # TEST SCENARIO COVERAGE # ---------------------- # Methods Total : 49 # Methods Covered : 49 # Examples Total : 49 # Examples Tested : 49 # Coverage % : 100 # ---------------------- import unittest import azure.mgmt.databoxedge from devtools_testutils import AzureMgmtTestCase, ResourceGroupPreparer AZURE_LOCATION = 'eastus' class MgmtDataBoxEdgeTest(AzureMgmtTestCase): def setUp(self): super(MgmtDataBoxEdgeTest, self).setUp() self.mgmt_client = self.create_mgmt_client( azure.mgmt.databoxedge.DataBoxEdgeManagementClient ) @unittest.skip("skip test") @ResourceGroupPreparer(location=AZURE_LOCATION) def test_databoxedge(self, resource_group): SERVICE_NAME = "myapimrndxyz" DATA_BOX_EDGE_DEVICE_NAME = "mydivicename" USER_NAME = "username" ROLE_NAME = "rolename" SHARE_NAME = "sharename" ORDER_NAME = "ordername" TRIGGER_NAME = "triggername" STORAGE_ACCOUNT_NAME = "storageaccountname" STORAGE_ACCOUNT_CREDENTIAL_NAME = "storageaccountcredentialname" BANDWIDTH_SCHEDULE_NAME = "bandwidthschedulename" CONTAINER_NAME = "containername" OPERATIONS_STATUS_NAME = "operationsstatusname" NETWORK_SETTING_NAME = "networksettingname" UPDATE_SUMMARY_NAME = "updatesummaryname" ALERT_NAME = "alertname" JOB_NAME = "jobname" SECURITY_SETTING_NAME = "securitysettingname" # DataBoxEdgeDevicePut[put] BODY = { "location": "eastus", "sku": { "name": "Edge", "tier": "Standard" } } result = self.mgmt_client.devices.create_or_update(DATA_BOX_EDGE_DEVICE_NAME, BODY, resource_group.name) result = result.result() """ # UserPut[put] BODY = { "encrypted_password": { "value": "Password@1", "encryption_algorithm": "None", "encryption_cert_thumbprint": "blah" }, "share_access_rights": [] } result = self.mgmt_client.users.create_or_update(DATA_BOX_EDGE_DEVICE_NAME, USER_NAME, BODY, resource_group.name) result = result.result() # RolePut[put] BODY = { "kind": "IOT", "host_platform": "Linux", "io_tdevice_details": { "device_id": "iotdevice", "io_thost_hub": "iothub.azure-devices.net", "authentication": { "symmetric_key": { "connection_string": { "value": "Encrypted<<HostName=iothub.azure-devices.net;DeviceId=iotDevice;SharedAccessKey=2C750FscEas3JmQ8Bnui5yQWZPyml0/UiRt1bQwd8=>>", "encryption_cert_thumbprint": "348586569999244", "encryption_algorithm": "AES256" } } } }, "io_tedge_device_details": { "device_id": "iotEdge", "io_thost_hub": "iothub.azure-devices.net", "authentication": { "symmetric_key": { "connection_string": { "value": "Encrypted<<HostName=iothub.azure-devices.net;DeviceId=iotEdge;SharedAccessKey=2C750FscEas3JmQ8Bnui5yQWZPyml0/UiRt1bQwd8=>>", "encryption_cert_thumbprint": "1245475856069999244", "encryption_algorithm": "AES256" } } } }, "share_mappings": [], "role_status": "Enabled" } result = self.mgmt_client.roles.create_or_update(DATA_BOX_EDGE_DEVICE_NAME, ROLE_NAME, BODY, resource_group.name) result = result.result() # SharePut[put] BODY = { "description": "", "share_status": "Online", "monitoring_status": "Enabled", "azure_container_info": { "storage_account_credential_id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.DataBoxEdge/dataBoxEdgeDevices/" + DATA_BOX_EDGE_DEVICE_NAME + "/storageAccountCredentials/" + STORAGE_ACCOUNT_CREDENTIAL_NAME + "", "container_name": "testContainerSMB", "data_format": "BlockBlob" }, "access_protocol": "SMB", "user_access_rights": [ { "user_id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + resource_group.name + "/providers/Microsoft.DataBoxEdge/dataBoxEdgeDevices/" + DATA_BOX_EDGE_DEVICE_NAME + "/users/" + USER_NAME + "", "access_type": "Change" } ], "data_policy": "Cloud" } result = self.mgmt_client.shares.create_or_update(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, SHARE_NAME, BODY) result = result.result() # OrderPut[put] BODY = { "contact_information": { "contact_person": "John Mcclane", "company_name": "Microsoft", "phone": "(800) 426-9400", "email_list": [ "[email protected]" ] }, "shipping_address": { "address_line1": "Microsoft Corporation", "address_line2": "One Microsoft Way", "address_line3": "Redmond", "postal_code": "98052", "city": "WA", "state": "WA", "country": "USA" } } result = self.mgmt_client.orders.create_or_update(DATA_BOX_EDGE_DEVICE_NAME, BODY, resource_group.name) result = result.result() # TriggerPut[put] BODY = { "properties": { "custom_context_tag": "CustomContextTags-1235346475", "source_info": { "share_id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.DataBoxEdge/dataBoxEdgeDevices/" + DATA_BOX_EDGE_DEVICE_NAME + "/shares/" + SHARE_NAME + "" }, "sink_info": { "role_id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.DataBoxEdge/dataBoxEdgeDevices/" + DATA_BOX_EDGE_DEVICE_NAME + "/roles/" + ROLE_NAME + "" } }, "kind": "FileEvent" } result = self.mgmt_client.triggers.create_or_update(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, TRIGGER_NAME, BODY) result = result.result() # BandwidthSchedulePut[put] BODY = { "start": "0:0:0", "stop": "13:59:0", "rate_in_mbps": "100", "days": [ "Sunday", "Monday" ] } result = self.mgmt_client.bandwidth_schedules.create_or_update(DATA_BOX_EDGE_DEVICE_NAME, BANDWIDTH_SCHEDULE_NAME, BODY, resource_group.name) result = result.result() # SACPut[put] BODY = { "properties": { "alias": "sac1", "user_name": "cisbvt", "account_key": { "value": "lAeZEYi6rNP1/EyNaVUYmTSZEYyaIaWmwUsGwek0+xiZj54GM9Ue9/UA2ed/ClC03wuSit2XzM/cLRU5eYiFBwks23rGwiQOr3sruEL2a74EjPD050xYjA6M1I2hu/w2yjVHhn5j+DbXS4Xzi+rHHNZK3DgfDO3PkbECjPck+PbpSBjy9+6Mrjcld5DIZhUAeMlMHrFlg+WKRKB14o/og56u5/xX6WKlrMLEQ+y6E18dUwvWs2elTNoVO8PBE8SM/CfooX4AMNvaNdSObNBPdP+F6Lzc556nFNWXrBLRt0vC7s9qTiVRO4x/qCNaK/B4y7IqXMllwQFf4Np9UQ2ECA==", "encryption_cert_thumbprint": "2A9D8D6BE51574B5461230AEF02F162C5F01AD31", "encryption_algorithm": "AES256" }, "ssl_status": "Disabled", "account_type": "BlobStorage" } } result = self.mgmt_client.storage_account_credentials.create_or_update(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, STORAGE_ACCOUNT_CREDENTIAL_NAME, BODY) result = result.result() # SACGet[get] result = self.mgmt_client.storage_account_credentials.get(DATA_BOX_EDGE_DEVICE_NAME, STORAGE_ACCOUNT_CREDENTIAL_NAME, resource_group.name) # BandwidthScheduleGet[get] result = self.mgmt_client.bandwidth_schedules.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, BANDWIDTH_SCHEDULE_NAME) # OperationsStatusGet[get] result = self.mgmt_client.operations_status.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, OPERATIONS_STATUS_NAME) # NetworkSettingsGet[get] result = self.mgmt_client.devices.get_network_settings(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, NETWORK_SETTING_NAME) # UpdateSummaryGet[get] result = self.mgmt_client.devices.get_update_summary(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, UPDATE_SUMMARY_NAME) # TriggerGet[get] result = self.mgmt_client.triggers.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, TRIGGER_NAME) # SACGetAllInDevice[get] result = self.mgmt_client.storage_account_credentials.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # AlertGet[get] result = self.mgmt_client.alerts.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, ALERT_NAME) # ShareGet[get] result = self.mgmt_client.shares.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, SHARE_NAME) # OrderGet[get] result = self.mgmt_client.orders.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, ORDER_NAME) # UserGet[get] result = self.mgmt_client.users.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, USER_NAME) # RoleGet[get] result = self.mgmt_client.roles.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, ROLE_NAME) # JobsGet[get] result = self.mgmt_client.jobs.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, JOB_NAME) # BandwidthScheduleGetAllInDevice[get] result = self.mgmt_client.bandwidth_schedules.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # TriggerGetAllInDevice[get] result = self.mgmt_client.triggers.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # OrderGetAllInDevice[get] result = self.mgmt_client.orders.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # AlertGetAllInDevice[get] result = self.mgmt_client.alerts.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # ShareGetAllInDevice[get] result = self.mgmt_client.shares.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # NodesGetAllInDevice[get] result = self.mgmt_client.nodes.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # RoleGetAllInDevice[get] result = self.mgmt_client.roles.list_by_data_box_edge_device(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # DataBoxEdgeDeviceGetByName[get] result = self.mgmt_client.devices.get(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # DataBoxEdgeDeviceGetByResourceGroup[get] result = self.mgmt_client.devices.list_by_resource_group(resource_group.name) # DataBoxEdgeDeviceGetBySubscription[get] result = self.mgmt_client.devices.list_by_subscription() # OperationsGet[get] result = self.mgmt_client.operations.list() # CreateOrUpdateSecuritySettings[post] BODY = { "properties": { "device_admin_password": { "value": "jJ5MvXa/AEWvwxviS92uCjatCXeyLYTy8jx/k105MjQRXT7i6Do8qpEcQ8d+OBbwmQTnwKW0CYyzzVRCc0uZcPCf6PsWtP4l6wvcKGAP66PwK68eEkTUOmp+wUHc4hk02kWmTWeAjBZkuDBP3xK1RnZo95g2RE4i1UgKNP5BEKCLd71O104DW3AWW41mh9XLWNOaxw+VjQY7wmvlE6XkvpkMhcGuha2u7lx8zi9ZkcMvJVYDYK36Fb/K3KhBAmDjjDmVq04jtBlcSTXQObt0nlj4BwGGtdrpeIpr67zqr5i3cPm6e6AleIaIhp6sI/uyGSMiT3oev2eg49u2ii7kVA==", "encryption_algorithm": "AES256", "encryption_cert_thumbprint": "7DCBDFC44ED968D232C9A998FC105B5C70E84BE0" } } } result = self.mgmt_client.devices.create_or_update_security_settings(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, SECURITY_SETTING_NAME, BODY) result = result.result() # ShareRefreshPost[post] result = self.mgmt_client.shares.refresh(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, SHARE_NAME) result = result.result() # ExtendedInfoPost[post] result = self.mgmt_client.devices.get_extended_information(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) # UploadCertificatePost[post] BODY = { "properties": { "certificate": "MIIC9DCCAdygAwIBAgIQWJae7GNjiI9Mcv/gJyrOPTANBgkqhkiG9w0BAQUFADASMRAwDgYDVQQDDAdXaW5kb3dzMB4XDTE4MTEyNzAwMTA0NVoXDTIxMTEyODAwMTA0NVowEjEQMA4GA1UEAwwHV2luZG93czCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAKxkRExqxf0qH1avnyORptIbRC2yQwqe3EIbJ2FPKr5jtAppGeX/dGKrFSnX+7/0HFr77aJHafdpEAtOiLyJ4zCAVs0obZCCIq4qJdmjYUTU0UXH/w/YzXfQA0d9Zh9AN+NJBX9xj05NzgsT24fkgsK2v6mWJQXT7YcWAsl5sEYPnx1e+MrupNyVSL/RUJmrS+etJSysHtFeWRhsUhVAs1DD5ExJvBLU3WH0IsojEvpXcjrutB5/MDQNrd/StGI6WovoSSPH7FyT9tgERx+q+Yg3YUGzfaIPCctlrRGehcdtzdNoKd0rsX62yCq0U6POoSfwe22NJu41oAUMd7e6R8cCAwEAAaNGMEQwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0OBBYEFDd0VxnS3LnMIfwc7xW4b4IZWG5GMA4GA1UdDwEB/wQEAwIFIDANBgkqhkiG9w0BAQUFAAOCAQEAPQRby2u9celvtvL/DLEb5Vt3/tPStRQC5MyTD62L5RT/q8E6EMCXVZNkXF5WlWucLJi/18tY+9PNgP9xWLJh7kpSWlWdi9KPtwMqKDlEH8L2TnQdjimt9XuiCrTnoFy/1X2BGLY/rCaUJNSd15QCkz2xeW+Z+YSk2GwAc/A/4YfNpqSIMfNuPrT76o02VdD9WmJUA3fS/HY0sU9qgQRS/3F5/0EPS+HYQ0SvXCK9tggcCd4O050ytNBMJC9qMOJ7yE0iOrFfOJSCfDAuPhn/rHFh79Kn1moF+/CE+nc0/2RPiLC8r54/rt5dYyyxJDfXg0a3VrrX39W69WZGW5OXiw==" } } result = self.mgmt_client.devices.upload_certificate(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, BODY) # DownloadUpdatesPost[post] result = self.mgmt_client.devices.download_updates(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) result = result.result() # ScanForUpdatesPost[post] result = self.mgmt_client.devices.scan_for_updates(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) result = result.result() # InstallUpdatesPost[post] result = self.mgmt_client.devices.install_updates(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME) result = result.result() """ # DataBoxEdgeDevicePatch[patch] BODY = { "tags": { "key1": "value1", "key2": "value2" } } result = self.mgmt_client.devices.update(DATA_BOX_EDGE_DEVICE_NAME, BODY, resource_group.name) """ # SACDelete[delete] result = self.mgmt_client.storage_account_credentials.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, STORAGE_ACCOUNT_CREDENTIAL_NAME) result = result.result() # BandwidthScheduleDelete[delete] result = self.mgmt_client.bandwidth_schedules.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, BANDWIDTH_SCHEDULE_NAME) result = result.result() # TriggerDelete[delete] result = self.mgmt_client.triggers.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, TRIGGER_NAME) result = result.result() # ShareDelete[delete] result = self.mgmt_client.shares.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, SHARE_NAME) result = result.result() # OrderDelete[delete] result = self.mgmt_client.orders.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, ORDER_NAME) result = result.result() # UserDelete[delete] result = self.mgmt_client.users.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, USER_NAME) result = result.result() # RoleDelete[delete] result = self.mgmt_client.roles.delete(resource_group.name, DATA_BOX_EDGE_DEVICE_NAME, ROLE_NAME) result = result.result() """ # DataBoxEdgeDeviceDelete[delete] result = self.mgmt_client.devices.delete(DATA_BOX_EDGE_DEVICE_NAME, resource_group.name) result = result.result() #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
mit
dmacvicar/spacewalk
client/solaris/smartpm/smart/channels/rpm_md_info.py
6
1125
# # Copyright (c) 2004 Conectiva, Inc. # # Written by Gustavo Niemeyer <[email protected]> # # This file is part of Smart Package Manager. # # Smart Package Manager is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as published # by the Free Software Foundation; either version 2 of the License, or (at # your option) any later version. # # Smart Package Manager is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Smart Package Manager; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # from smart import _ kind = "package" name = _("RPM MetaData") description = _(""" Repository created with the rpm-metadata project. """) fields = [("baseurl", _("Base URL"), str, None, _("URL where repodata/ subdirectory is found"))]
gpl-2.0
nicolargo/intellij-community
python/helpers/docutils/parsers/rst/languages/sv.py
57
3988
# $Id: sv.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: Adam Chodorowski <[email protected]> # Copyright: This module has been placed in the public domain. # New language mappings are welcome. Before doing a new translation, please # read <http://docutils.sf.net/docs/howto/i18n.html>. Two files must be # translated for each language: one in docutils/languages, the other in # docutils/parsers/rst/languages. """ Swedish language mappings for language-dependent features of reStructuredText. """ __docformat__ = 'reStructuredText' directives = { u'observera': 'attention', u'caution (translation required)': 'caution', u'fara': 'danger', u'fel': 'error', u'v\u00e4gledning': 'hint', u'viktigt': 'important', u'notera': 'note', u'tips': 'tip', u'varning': 'warning', u'admonition (translation required)': 'admonition', u'sidebar (translation required)': 'sidebar', u'\u00e4mne': 'topic', u'line-block (translation required)': 'line-block', u'parsed-literal (translation required)': 'parsed-literal', u'mellanrubrik': 'rubric', u'epigraph (translation required)': 'epigraph', u'highlights (translation required)': 'highlights', u'pull-quote (translation required)': 'pull-quote', u'compound (translation required)': 'compound', u'container (translation required)': 'container', # u'fr\u00e5gor': 'questions', # NOTE: A bit long, but recommended by http://www.nada.kth.se/dataterm/: # u'fr\u00e5gor-och-svar': 'questions', # u'vanliga-fr\u00e5gor': 'questions', u'table (translation required)': 'table', u'csv-table (translation required)': 'csv-table', u'list-table (translation required)': 'list-table', u'meta': 'meta', # u'bildkarta': 'imagemap', # FIXME: Translation might be too literal. u'bild': 'image', u'figur': 'figure', u'inkludera': 'include', u'r\u00e5': 'raw', # FIXME: Translation might be too literal. u'ers\u00e4tt': 'replace', u'unicode': 'unicode', u'datum': 'date', u'class (translation required)': 'class', u'role (translation required)': 'role', u'default-role (translation required)': 'default-role', u'title (translation required)': 'title', u'inneh\u00e5ll': 'contents', u'sektionsnumrering': 'sectnum', u'target-notes (translation required)': 'target-notes', u'header (translation required)': 'header', u'footer (translation required)': 'footer', # u'fotnoter': 'footnotes', # u'citeringar': 'citations', } """Swedish name to registered (in directives/__init__.py) directive name mapping.""" roles = { u'abbreviation (translation required)': 'abbreviation', u'acronym (translation required)': 'acronym', u'index (translation required)': 'index', u'subscript (translation required)': 'subscript', u'superscript (translation required)': 'superscript', u'title-reference (translation required)': 'title-reference', u'pep-reference (translation required)': 'pep-reference', u'rfc-reference (translation required)': 'rfc-reference', u'emphasis (translation required)': 'emphasis', u'strong (translation required)': 'strong', u'literal (translation required)': 'literal', u'named-reference (translation required)': 'named-reference', u'anonymous-reference (translation required)': 'anonymous-reference', u'footnote-reference (translation required)': 'footnote-reference', u'citation-reference (translation required)': 'citation-reference', u'substitution-reference (translation required)': 'substitution-reference', u'target (translation required)': 'target', u'uri-reference (translation required)': 'uri-reference', u'r\u00e5': 'raw',} """Mapping of Swedish role names to canonical role names for interpreted text. """
apache-2.0
MrLoick/python-for-android
python-build/python-libs/gdata/src/gdata/tlslite/integration/POP3_TLS.py
271
5466
"""TLS Lite + poplib.""" import socket from poplib import POP3 from gdata.tlslite.TLSConnection import TLSConnection from gdata.tlslite.integration.ClientHelper import ClientHelper # POP TLS PORT POP3_TLS_PORT = 995 class POP3_TLS(POP3, ClientHelper): """This class extends L{poplib.POP3} with TLS support.""" def __init__(self, host, port = POP3_TLS_PORT, username=None, password=None, sharedKey=None, certChain=None, privateKey=None, cryptoID=None, protocol=None, x509Fingerprint=None, x509TrustList=None, x509CommonName=None, settings=None): """Create a new POP3_TLS. For client authentication, use one of these argument combinations: - username, password (SRP) - username, sharedKey (shared-key) - certChain, privateKey (certificate) For server authentication, you can either rely on the implicit mutual authentication performed by SRP or shared-keys, or you can do certificate-based server authentication with one of these argument combinations: - cryptoID[, protocol] (requires cryptoIDlib) - x509Fingerprint - x509TrustList[, x509CommonName] (requires cryptlib_py) Certificate-based server authentication is compatible with SRP or certificate-based client authentication. It is not compatible with shared-keys. The caller should be prepared to handle TLS-specific exceptions. See the client handshake functions in L{tlslite.TLSConnection.TLSConnection} for details on which exceptions might be raised. @type host: str @param host: Server to connect to. @type port: int @param port: Port to connect to. @type username: str @param username: SRP or shared-key username. Requires the 'password' or 'sharedKey' argument. @type password: str @param password: SRP password for mutual authentication. Requires the 'username' argument. @type sharedKey: str @param sharedKey: Shared key for mutual authentication. Requires the 'username' argument. @type certChain: L{tlslite.X509CertChain.X509CertChain} or L{cryptoIDlib.CertChain.CertChain} @param certChain: Certificate chain for client authentication. Requires the 'privateKey' argument. Excludes the SRP or shared-key related arguments. @type privateKey: L{tlslite.utils.RSAKey.RSAKey} @param privateKey: Private key for client authentication. Requires the 'certChain' argument. Excludes the SRP or shared-key related arguments. @type cryptoID: str @param cryptoID: cryptoID for server authentication. Mutually exclusive with the 'x509...' arguments. @type protocol: str @param protocol: cryptoID protocol URI for server authentication. Requires the 'cryptoID' argument. @type x509Fingerprint: str @param x509Fingerprint: Hex-encoded X.509 fingerprint for server authentication. Mutually exclusive with the 'cryptoID' and 'x509TrustList' arguments. @type x509TrustList: list of L{tlslite.X509.X509} @param x509TrustList: A list of trusted root certificates. The other party must present a certificate chain which extends to one of these root certificates. The cryptlib_py module must be installed to use this parameter. Mutually exclusive with the 'cryptoID' and 'x509Fingerprint' arguments. @type x509CommonName: str @param x509CommonName: The end-entity certificate's 'CN' field must match this value. For a web server, this is typically a server name such as 'www.amazon.com'. Mutually exclusive with the 'cryptoID' and 'x509Fingerprint' arguments. Requires the 'x509TrustList' argument. @type settings: L{tlslite.HandshakeSettings.HandshakeSettings} @param settings: Various settings which can be used to control the ciphersuites, certificate types, and SSL/TLS versions offered by the client. """ self.host = host self.port = port msg = "getaddrinfo returns an empty list" self.sock = None for res in socket.getaddrinfo(self.host, self.port, 0, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: self.sock = socket.socket(af, socktype, proto) self.sock.connect(sa) except socket.error, msg: if self.sock: self.sock.close() self.sock = None continue break if not self.sock: raise socket.error, msg ### New code below (all else copied from poplib) ClientHelper.__init__(self, username, password, sharedKey, certChain, privateKey, cryptoID, protocol, x509Fingerprint, x509TrustList, x509CommonName, settings) self.sock = TLSConnection(self.sock) self.sock.closeSocket = True ClientHelper._handshake(self, self.sock) ### self.file = self.sock.makefile('rb') self._debugging = 0 self.welcome = self._getresp()
apache-2.0
hkemmel/tal
affichage.py
1
2209
# -*- coding: utf-8 -*- """ Created on Tue Apr 25 14:34:25 2017 @author: manfred.madelaine """ import time def affStart(): msg1 = "*** Binvenue dans i-Opinion ou Opinion Way ***" msg2 = "Le logiciel d'analyse et de classification des revues cinématographiques !" listMsg = [] listMsg.append("") listMsg.append(msg1) listMsg.append("") listMsg.append(msg2) listMsg.append("") print(affBox(listMsg, 1, 1, len(msg2))) delai() def affEnd(): msg1 = "*** Opinion Way vous remercie de votre viste, à bientôt ! ***" msg = [] msg.append(msg1) box = affBox(msg, 1, 1, len(msg1)-1) print(box) def affMessage(msg): deb = "\n\t--- " fin = " ---\n\n" print(deb + msg + fin) delai() def delai(): time.sleep(0.8) """ Affiche un message dans une boite msg : message à afficher x : décalage horizontal y : décalage vertical L : largeur de la boite """ def affBox(msg, x, y, L): box = "" #décalage vertical box += multChaine("\n", y) indiceLine = 0 #gestion d'une ligne for txt in msg: #bord suppérieur if(indiceLine == 0): #décalage horizontal box += "\n" + multChaine("\t", x) box += multChaine("-", L+3) #décalage horizontal box += "\n" + multChaine("\t", x) esp = "" mult = 1 #message if(len(txt) < L ): esp = " " mult = (L - len(txt)) / 2 box += "| " + multChaine(esp, mult) + txt + multChaine(esp, mult) + " |" #bord inférieur if(indiceLine == len(msg) - 1 ): #décalage horizontal box += "\n" + multChaine("\t", x) box += multChaine("-", L+3) indiceLine += 1 box+="\n" return(box) def affErr(): affMessage("Votre réponse est incorrecte !") def multChaine(chaine, mult): i = 0 msg = "" while i < mult: msg += chaine i += 1 return msg
gpl-3.0
wangyikai/linux
tools/perf/scripts/python/net_dropmonitor.py
1812
1749
# Monitor the system for dropped packets and proudce a report of drop locations and counts import os import sys sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from Util import * drop_log = {} kallsyms = [] def get_kallsyms_table(): global kallsyms try: f = open("/proc/kallsyms", "r") except: return for line in f: loc = int(line.split()[0], 16) name = line.split()[2] kallsyms.append((loc, name)) kallsyms.sort() def get_sym(sloc): loc = int(sloc) # Invariant: kallsyms[i][0] <= loc for all 0 <= i <= start # kallsyms[i][0] > loc for all end <= i < len(kallsyms) start, end = -1, len(kallsyms) while end != start + 1: pivot = (start + end) // 2 if loc < kallsyms[pivot][0]: end = pivot else: start = pivot # Now (start == -1 or kallsyms[start][0] <= loc) # and (start == len(kallsyms) - 1 or loc < kallsyms[start + 1][0]) if start >= 0: symloc, name = kallsyms[start] return (name, loc - symloc) else: return (None, 0) def print_drop_table(): print "%25s %25s %25s" % ("LOCATION", "OFFSET", "COUNT") for i in drop_log.keys(): (sym, off) = get_sym(i) if sym == None: sym = i print "%25s %25s %25s" % (sym, off, drop_log[i]) def trace_begin(): print "Starting trace (Ctrl-C to dump results)" def trace_end(): print "Gathering kallsyms data" get_kallsyms_table() print_drop_table() # called from perf, when it finds a correspoinding event def skb__kfree_skb(name, context, cpu, sec, nsec, pid, comm, callchain, skbaddr, location, protocol): slocation = str(location) try: drop_log[slocation] = drop_log[slocation] + 1 except: drop_log[slocation] = 1
gpl-2.0
LuizGsa21/p4-conference-central
models.py
1
7226
#!/usr/bin/env python """models.py Udacity conference server-side Python App Engine data & ProtoRPC models $Id: models.py,v 1.1 2014/05/24 22:01:10 wesc Exp $ created/forked from conferences.py by wesc on 2014 may 24 """ __author__ = '[email protected] (Wesley Chun)' import httplib import endpoints from protorpc import messages from google.appengine.ext import ndb import datetime class ConflictException(endpoints.ServiceException): """ConflictException -- exception mapped to HTTP 409 response""" http_status = httplib.CONFLICT class StringMessage(messages.Message): """StringMessage-- outbound (single) string message""" data = messages.StringField(1, required=True) class BooleanMessage(messages.Message): """BooleanMessage-- outbound Boolean value message""" data = messages.BooleanField(1) class TeeShirtSize(messages.Enum): """TeeShirtSize -- t-shirt size enumeration value""" NOT_SPECIFIED = 1 XS_M = 2 XS_W = 3 S_M = 4 S_W = 5 M_M = 6 M_W = 7 L_M = 8 L_W = 9 XL_M = 10 XL_W = 11 XXL_M = 12 XXL_W = 13 XXXL_M = 14 XXXL_W = 15 class Profile(ndb.Model): """Profile -- User profile object""" displayName = ndb.StringProperty(default='') mainEmail = ndb.StringProperty() teeShirtSize = ndb.StringProperty(default='NOT_SPECIFIED') conferenceKeysToAttend = ndb.KeyProperty(kind='Conference', repeated=True) wishList = ndb.KeyProperty(kind='Session', repeated=True) def toForm(self): form = ProfileForm( displayName=self.displayName, mainEmail=self.mainEmail, teeShirtSize=getattr(TeeShirtSize, self.teeShirtSize), conferenceKeysToAttend=[key.urlsafe() for key in self.conferenceKeysToAttend] ) form.check_initialized() return form def toMiniForm(self): form = ProfileMiniForm( displayName=self.displayName, teeShirtSize=getattr(TeeShirtSize, self.teeShirtSize) ) form.check_initialized() return form class ProfileMiniForm(messages.Message): """ProfileMiniForm -- update Profile form message""" displayName = messages.StringField(1) teeShirtSize = messages.EnumField('TeeShirtSize', 2) class ProfileForm(messages.Message): """ProfileForm -- Profile outbound form message""" displayName = messages.StringField(1) mainEmail = messages.StringField(2) teeShirtSize = messages.EnumField('TeeShirtSize', 3) conferenceKeysToAttend = messages.StringField(4, repeated=True) class Conference(ndb.Model): """Conference -- Conference object""" required_fields_schema = ('name', 'organizerUserId', 'startDate', 'endDate') name = ndb.StringProperty(required=True) description = ndb.StringProperty() organizerUserId = ndb.StringProperty(required=True) topics = ndb.StringProperty(repeated=True) city = ndb.StringProperty() startDate = ndb.DateProperty(required=True) month = ndb.IntegerProperty() endDate = ndb.DateProperty(required=True) maxAttendees = ndb.IntegerProperty() seatsAvailable = ndb.IntegerProperty() @property def sessions(self): return Session.query(ancestor=self.key) def toForm(self, display_name=''): form = ConferenceForm( websafeKey=self.key.urlsafe(), name=self.name, description=self.description, organizerUserId=self.organizerUserId, topics=self.topics, city=self.city, startDate=self.startDate.strftime('%Y-%m-%d'), month=self.month, endDate=self.endDate.strftime('%Y-%m-%d'), maxAttendees=self.maxAttendees, seatsAvailable=self.seatsAvailable, organizerDisplayName=display_name ) form.check_initialized() return form class ConferenceForm(messages.Message): """ConferenceForm -- Conference outbound form message""" name = messages.StringField(1) description = messages.StringField(2) organizerUserId = messages.StringField(3) topics = messages.StringField(4, repeated=True) city = messages.StringField(5) startDate = messages.StringField(6) # DateTimeField() month = messages.IntegerField(7) maxAttendees = messages.IntegerField(8) seatsAvailable = messages.IntegerField(9) endDate = messages.StringField(10) # DateTimeField() websafeKey = messages.StringField(11) organizerDisplayName = messages.StringField(12) class ConferenceForms(messages.Message): """ConferenceForms -- multiple Conference outbound form message""" items = messages.MessageField(ConferenceForm, 1, repeated=True) class ConferenceQueryForm(messages.Message): """ConferenceQueryForm -- Conference query inbound form message""" field = messages.StringField(1) operator = messages.StringField(2) value = messages.StringField(3) class ConferenceQueryForms(messages.Message): """ConferenceQueryForms -- multiple ConferenceQueryForm inbound form message""" filters = messages.MessageField(ConferenceQueryForm, 1, repeated=True) class Speaker(ndb.Model): """Speaker -- Speaker object""" name = ndb.StringProperty(required=True) class Session(ndb.Model): """Session -- Session object""" required_fields_schema = ('name', 'speaker', 'duration', 'typeOfSession', 'date', 'startTime') name = ndb.StringProperty(required=True) highlights = ndb.StringProperty() speaker = ndb.StructuredProperty(modelclass=Speaker, required=True) duration = ndb.IntegerProperty(required=True) typeOfSession = ndb.StringProperty(required=True) date = ndb.DateProperty(required=True) startTime = ndb.TimeProperty(required=True) def toForm(self): form = SessionForm( websafeKey=self.key.urlsafe(), name=self.name, highlights=self.highlights, speaker=self.speaker.name, duration=self.duration, typeOfSession=self.typeOfSession, date=self.date.strftime('%Y-%m-%d'), startTime=self.startTime.strftime('%H:%M') ) form.check_initialized() return form class SessionForm(messages.Message): """SessionForm -- Session outbound form message""" websafeKey = messages.StringField(1) name = messages.StringField(2) highlights = messages.StringField(3) speaker = messages.StringField(4) duration = messages.IntegerField(5) typeOfSession = messages.StringField(6) date = messages.StringField(7) startTime = messages.StringField(8) class SessionForms(messages.Message): """SessionForm -- multiple SessionForm outbound form message""" items = messages.MessageField(SessionForm, 1, repeated=True) class SessionQueryForm(messages.Message): """SessionQueryForm -- Session query inbound form message""" field = messages.StringField(1) operator = messages.StringField(2) value = messages.StringField(3) class SessionQueryForms(messages.Message): """SessionQueryForms -- multiple SessionQueryForm inbound form message""" filters = messages.MessageField(SessionQueryForm, 1, repeated=True)
apache-2.0
tequa/ammisoft
ammimain/WinPython-64bit-2.7.13.1Zero/python-2.7.13.amd64/Lib/site-packages/matplotlib/axis.py
4
85084
""" Classes for the ticks and x and y axis """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib import rcParams import matplotlib.artist as artist from matplotlib.artist import allow_rasterization import matplotlib.cbook as cbook import matplotlib.font_manager as font_manager import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.scale as mscale import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.units as munits import numpy as np import warnings GRIDLINE_INTERPOLATION_STEPS = 180 class Tick(artist.Artist): """ Abstract base class for the axis ticks, grid lines and labels 1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for xticks and the right for yticks Publicly accessible attributes: :attr:`tick1line` a Line2D instance :attr:`tick2line` a Line2D instance :attr:`gridline` a Line2D instance :attr:`label1` a Text instance :attr:`label2` a Text instance :attr:`gridOn` a boolean which determines whether to draw the tickline :attr:`tick1On` a boolean which determines whether to draw the 1st tickline :attr:`tick2On` a boolean which determines whether to draw the 2nd tickline :attr:`label1On` a boolean which determines whether to draw tick label :attr:`label2On` a boolean which determines whether to draw tick label """ def __init__(self, axes, loc, label, size=None, # points width=None, color=None, tickdir=None, pad=None, labelsize=None, labelcolor=None, zorder=None, gridOn=None, # defaults to axes.grid depending on # axes.grid.which tick1On=True, tick2On=True, label1On=True, label2On=False, major=True, ): """ bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords size is the tick size in points """ artist.Artist.__init__(self) if gridOn is None: if major and (rcParams['axes.grid.which'] in ('both', 'major')): gridOn = rcParams['axes.grid'] elif (not major) and (rcParams['axes.grid.which'] in ('both', 'minor')): gridOn = rcParams['axes.grid'] else: gridOn = False self.set_figure(axes.figure) self.axes = axes name = self.__name__.lower() self._name = name self._loc = loc if size is None: if major: size = rcParams['%s.major.size' % name] else: size = rcParams['%s.minor.size' % name] self._size = size if width is None: if major: width = rcParams['%s.major.width' % name] else: width = rcParams['%s.minor.width' % name] self._width = width if color is None: color = rcParams['%s.color' % name] self._color = color if pad is None: if major: pad = rcParams['%s.major.pad' % name] else: pad = rcParams['%s.minor.pad' % name] self._base_pad = pad if labelcolor is None: labelcolor = rcParams['%s.color' % name] self._labelcolor = labelcolor if labelsize is None: labelsize = rcParams['%s.labelsize' % name] self._labelsize = labelsize if zorder is None: if major: zorder = mlines.Line2D.zorder + 0.01 else: zorder = mlines.Line2D.zorder self._zorder = zorder self.apply_tickdir(tickdir) self.tick1line = self._get_tick1line() self.tick2line = self._get_tick2line() self.gridline = self._get_gridline() self.label1 = self._get_text1() self.label = self.label1 # legacy name self.label2 = self._get_text2() self.gridOn = gridOn self.tick1On = tick1On self.tick2On = tick2On self.label1On = label1On self.label2On = label2On self.update_position(loc) def apply_tickdir(self, tickdir): """ Calculate self._pad and self._tickmarkers """ pass def get_tickdir(self): return self._tickdir def get_tick_padding(self): """ Get the length of the tick outside of the axes. """ padding = { 'in': 0.0, 'inout': 0.5, 'out': 1.0 } return self._size * padding[self._tickdir] def get_children(self): children = [self.tick1line, self.tick2line, self.gridline, self.label1, self.label2] return children def set_clip_path(self, clippath, transform=None): artist.Artist.set_clip_path(self, clippath, transform) self.gridline.set_clip_path(clippath, transform) self.stale = True set_clip_path.__doc__ = artist.Artist.set_clip_path.__doc__ def get_pad_pixels(self): return self.figure.dpi * self._base_pad / 72.0 def contains(self, mouseevent): """ Test whether the mouse event occurred in the Tick marks. This function always returns false. It is more useful to test if the axis as a whole contains the mouse rather than the set of tick marks. """ if six.callable(self._contains): return self._contains(self, mouseevent) return False, {} def set_pad(self, val): """ Set the tick label pad in points ACCEPTS: float """ self._apply_params(pad=val) self.stale = True def get_pad(self): 'Get the value of the tick label pad in points' return self._base_pad def _get_text1(self): 'Get the default Text 1 instance' pass def _get_text2(self): 'Get the default Text 2 instance' pass def _get_tick1line(self): 'Get the default line2D instance for tick1' pass def _get_tick2line(self): 'Get the default line2D instance for tick2' pass def _get_gridline(self): 'Get the default grid Line2d instance for this tick' pass def get_loc(self): 'Return the tick location (data coords) as a scalar' return self._loc @allow_rasterization def draw(self, renderer): if not self.get_visible(): self.stale = False return renderer.open_group(self.__name__) if self.gridOn: self.gridline.draw(renderer) if self.tick1On: self.tick1line.draw(renderer) if self.tick2On: self.tick2line.draw(renderer) if self.label1On: self.label1.draw(renderer) if self.label2On: self.label2.draw(renderer) renderer.close_group(self.__name__) self.stale = False def set_label1(self, s): """ Set the text of ticklabel ACCEPTS: str """ self.label1.set_text(s) self.stale = True set_label = set_label1 def set_label2(self, s): """ Set the text of ticklabel2 ACCEPTS: str """ self.label2.set_text(s) self.stale = True def _set_artist_props(self, a): a.set_figure(self.figure) def get_view_interval(self): 'return the view Interval instance for the axis this tick is ticking' raise NotImplementedError('Derived must override') def _apply_params(self, **kw): switchkw = ['gridOn', 'tick1On', 'tick2On', 'label1On', 'label2On'] switches = [k for k in kw if k in switchkw] for k in switches: setattr(self, k, kw.pop(k)) newmarker = [k for k in kw if k in ['size', 'width', 'pad', 'tickdir']] if newmarker: self._size = kw.pop('size', self._size) # Width could be handled outside this block, but it is # convenient to leave it here. self._width = kw.pop('width', self._width) self._base_pad = kw.pop('pad', self._base_pad) # apply_tickdir uses _size and _base_pad to make _pad, # and also makes _tickmarkers. self.apply_tickdir(kw.pop('tickdir', self._tickdir)) self.tick1line.set_marker(self._tickmarkers[0]) self.tick2line.set_marker(self._tickmarkers[1]) for line in (self.tick1line, self.tick2line): line.set_markersize(self._size) line.set_markeredgewidth(self._width) # _get_text1_transform uses _pad from apply_tickdir. trans = self._get_text1_transform()[0] self.label1.set_transform(trans) trans = self._get_text2_transform()[0] self.label2.set_transform(trans) tick_kw = dict([kv for kv in six.iteritems(kw) if kv[0] in ['color', 'zorder']]) if tick_kw: self.tick1line.set(**tick_kw) self.tick2line.set(**tick_kw) for k, v in six.iteritems(tick_kw): setattr(self, '_' + k, v) label_list = [k for k in six.iteritems(kw) if k[0] in ['labelsize', 'labelcolor']] if label_list: label_kw = dict([(k[5:], v) for (k, v) in label_list]) self.label1.set(**label_kw) self.label2.set(**label_kw) for k, v in six.iteritems(label_kw): # for labelsize the text objects covert str ('small') # -> points. grab the integer from the `Text` object # instead of saving the string representation v = getattr(self.label1, 'get_' + k)() setattr(self, '_label' + k, v) def update_position(self, loc): 'Set the location of tick in data coords with scalar *loc*' raise NotImplementedError('Derived must override') def _get_text1_transform(self): raise NotImplementedError('Derived must override') def _get_text2_transform(self): raise NotImplementedError('Derived must override') class XTick(Tick): """ Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line """ __name__ = 'xtick' def _get_text1_transform(self): return self.axes.get_xaxis_text1_transform(self._pad) def _get_text2_transform(self): return self.axes.get_xaxis_text2_transform(self._pad) def apply_tickdir(self, tickdir): if tickdir is None: tickdir = rcParams['%s.direction' % self._name] self._tickdir = tickdir if self._tickdir == 'in': self._tickmarkers = (mlines.TICKUP, mlines.TICKDOWN) elif self._tickdir == 'inout': self._tickmarkers = ('|', '|') else: self._tickmarkers = (mlines.TICKDOWN, mlines.TICKUP) self._pad = self._base_pad + self.get_tick_padding() self.stale = True def _get_text1(self): 'Get the default Text instance' # the y loc is 3 points below the min of y axis # get the affine as an a,b,c,d,tx,ty list # x in data coords, y in axes coords trans, vert, horiz = self._get_text1_transform() t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text 2 instance' # x in data coords, y in axes coords trans, vert, horiz = self._get_text2_transform() t = mtext.Text( x=0, y=1, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(0,), color=self._color, linestyle='None', marker=self._tickmarkers[0], markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_xaxis_transform(which='tick1')) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(1,), color=self._color, linestyle='None', marker=self._tickmarkers[1], markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_xaxis_transform(which='tick2')) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0.0, 0.0), ydata=(0, 1.0), color=rcParams['grid.color'], linestyle=rcParams['grid.linestyle'], linewidth=rcParams['grid.linewidth'], alpha=rcParams['grid.alpha'], markersize=0) l.set_transform(self.axes.get_xaxis_transform(which='grid')) l.get_path()._interpolation_steps = GRIDLINE_INTERPOLATION_STEPS self._set_artist_props(l) return l def update_position(self, loc): 'Set the location of tick in data coords with scalar *loc*' x = loc nonlinear = (hasattr(self.axes, 'yaxis') and self.axes.yaxis.get_scale() != 'linear' or hasattr(self.axes, 'xaxis') and self.axes.xaxis.get_scale() != 'linear') if self.tick1On: self.tick1line.set_xdata((x,)) if self.tick2On: self.tick2line.set_xdata((x,)) if self.gridOn: self.gridline.set_xdata((x,)) if self.label1On: self.label1.set_x(x) if self.label2On: self.label2.set_x(x) if nonlinear: self.tick1line._invalid = True self.tick2line._invalid = True self.gridline._invalid = True self._loc = loc self.stale = True def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervalx class YTick(Tick): """ Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line """ __name__ = 'ytick' def _get_text1_transform(self): return self.axes.get_yaxis_text1_transform(self._pad) def _get_text2_transform(self): return self.axes.get_yaxis_text2_transform(self._pad) def apply_tickdir(self, tickdir): if tickdir is None: tickdir = rcParams['%s.direction' % self._name] self._tickdir = tickdir if self._tickdir == 'in': self._tickmarkers = (mlines.TICKRIGHT, mlines.TICKLEFT) elif self._tickdir == 'inout': self._tickmarkers = ('_', '_') else: self._tickmarkers = (mlines.TICKLEFT, mlines.TICKRIGHT) self._pad = self._base_pad + self.get_tick_padding() self.stale = True # how far from the y axis line the right of the ticklabel are def _get_text1(self): 'Get the default Text instance' # x in axes coords, y in data coords trans, vert, horiz = self._get_text1_transform() t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text instance' # x in axes coords, y in data coords trans, vert, horiz = self._get_text2_transform() t = mtext.Text( x=1, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D((0,), (0,), color=self._color, marker=self._tickmarkers[0], linestyle='None', markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_yaxis_transform(which='tick1')) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D((1,), (0,), color=self._color, marker=self._tickmarkers[1], linestyle='None', markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_yaxis_transform(which='tick2')) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D(xdata=(0, 1), ydata=(0, 0), color=rcParams['grid.color'], linestyle=rcParams['grid.linestyle'], linewidth=rcParams['grid.linewidth'], alpha=rcParams['grid.alpha'], markersize=0) l.set_transform(self.axes.get_yaxis_transform(which='grid')) l.get_path()._interpolation_steps = GRIDLINE_INTERPOLATION_STEPS self._set_artist_props(l) return l def update_position(self, loc): 'Set the location of tick in data coords with scalar loc' y = loc nonlinear = (hasattr(self.axes, 'yaxis') and self.axes.yaxis.get_scale() != 'linear' or hasattr(self.axes, 'xaxis') and self.axes.xaxis.get_scale() != 'linear') if self.tick1On: self.tick1line.set_ydata((y,)) if self.tick2On: self.tick2line.set_ydata((y,)) if self.gridOn: self.gridline.set_ydata((y, )) if self.label1On: self.label1.set_y(y) if self.label2On: self.label2.set_y(y) if nonlinear: self.tick1line._invalid = True self.tick2line._invalid = True self.gridline._invalid = True self._loc = loc self.stale = True def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervaly class Ticker(object): locator = None formatter = None class Axis(artist.Artist): """ Public attributes * :attr:`axes.transData` - transform data coords to display coords * :attr:`axes.transAxes` - transform axis coords to display coords * :attr:`labelpad` - number of points between the axis and its label """ OFFSETTEXTPAD = 3 def __str__(self): return self.__class__.__name__ \ + "(%f,%f)" % tuple(self.axes.transAxes.transform_point((0, 0))) def __init__(self, axes, pickradius=15): """ Init the axis with the parent Axes instance """ artist.Artist.__init__(self) self.set_figure(axes.figure) # Keep track of setting to the default value, this allows use to know # if any of the following values is explicitly set by the user, so as # to not overwrite their settings with any of our 'auto' settings. self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True self.isDefault_label = True self.axes = axes self.major = Ticker() self.minor = Ticker() self.callbacks = cbook.CallbackRegistry() self._autolabelpos = True self._smart_bounds = False self.label = self._get_label() self.labelpad = rcParams['axes.labelpad'] self.offsetText = self._get_offset_text() self.majorTicks = [] self.minorTicks = [] self.pickradius = pickradius # Initialize here for testing; later add API self._major_tick_kw = dict() self._minor_tick_kw = dict() self.cla() self._set_scale('linear') def set_label_coords(self, x, y, transform=None): """ Set the coordinates of the label. By default, the x coordinate of the y label is determined by the tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are multiple axes. Ditto for the y coodinate of the x label. You can also specify the coordinate system of the label with the transform. If None, the default coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle, etc """ self._autolabelpos = False if transform is None: transform = self.axes.transAxes self.label.set_transform(transform) self.label.set_position((x, y)) self.stale = True def get_transform(self): return self._scale.get_transform() def get_scale(self): return self._scale.name def _set_scale(self, value, **kwargs): self._scale = mscale.scale_factory(value, self, **kwargs) self._scale.set_default_locators_and_formatters(self) self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True def limit_range_for_scale(self, vmin, vmax): return self._scale.limit_range_for_scale(vmin, vmax, self.get_minpos()) def get_children(self): children = [self.label, self.offsetText] majorticks = self.get_major_ticks() minorticks = self.get_minor_ticks() children.extend(majorticks) children.extend(minorticks) return children def cla(self): 'clear the current axis' self.set_major_locator(mticker.AutoLocator()) self.set_major_formatter(mticker.ScalarFormatter()) self.set_minor_locator(mticker.NullLocator()) self.set_minor_formatter(mticker.NullFormatter()) self.set_label_text('') self._set_artist_props(self.label) # Keep track of setting to the default value, this allows use to know # if any of the following values is explicitly set by the user, so as # to not overwrite their settings with any of our 'auto' settings. self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True self.isDefault_label = True # Clear the callback registry for this axis, or it may "leak" self.callbacks = cbook.CallbackRegistry() # whether the grids are on self._gridOnMajor = (rcParams['axes.grid'] and rcParams['axes.grid.which'] in ('both', 'major')) self._gridOnMinor = (rcParams['axes.grid'] and rcParams['axes.grid.which'] in ('both', 'minor')) self.label.set_text('') self._set_artist_props(self.label) self.reset_ticks() self.converter = None self.units = None self.set_units(None) self.stale = True def reset_ticks(self): # build a few default ticks; grow as necessary later; only # define 1 so properties set on ticks will be copied as they # grow cbook.popall(self.majorTicks) cbook.popall(self.minorTicks) self.majorTicks.extend([self._get_tick(major=True)]) self.minorTicks.extend([self._get_tick(major=False)]) self._lastNumMajorTicks = 1 self._lastNumMinorTicks = 1 def set_tick_params(self, which='major', reset=False, **kw): """ Set appearance parameters for ticks and ticklabels. For documentation of keyword arguments, see :meth:`matplotlib.axes.Axes.tick_params`. """ dicts = [] if which == 'major' or which == 'both': dicts.append(self._major_tick_kw) if which == 'minor' or which == 'both': dicts.append(self._minor_tick_kw) kwtrans = self._translate_tick_kw(kw, to_init_kw=True) for d in dicts: if reset: d.clear() d.update(kwtrans) if reset: self.reset_ticks() else: if which == 'major' or which == 'both': for tick in self.majorTicks: tick._apply_params(**self._major_tick_kw) if which == 'minor' or which == 'both': for tick in self.minorTicks: tick._apply_params(**self._minor_tick_kw) if 'labelcolor' in kwtrans: self.offsetText.set_color(kwtrans['labelcolor']) self.stale = True @staticmethod def _translate_tick_kw(kw, to_init_kw=True): # We may want to move the following function to # a more visible location; or maybe there already # is something like this. def _bool(arg): if cbook.is_string_like(arg): if arg.lower() == 'on': return True if arg.lower() == 'off': return False raise ValueError('String "%s" should be "on" or "off"' % arg) return bool(arg) # The following lists may be moved to a more # accessible location. kwkeys0 = ['size', 'width', 'color', 'tickdir', 'pad', 'labelsize', 'labelcolor', 'zorder', 'gridOn', 'tick1On', 'tick2On', 'label1On', 'label2On'] kwkeys1 = ['length', 'direction', 'left', 'bottom', 'right', 'top', 'labelleft', 'labelbottom', 'labelright', 'labeltop'] kwkeys = kwkeys0 + kwkeys1 kwtrans = dict() if to_init_kw: if 'length' in kw: kwtrans['size'] = kw.pop('length') if 'direction' in kw: kwtrans['tickdir'] = kw.pop('direction') if 'left' in kw: kwtrans['tick1On'] = _bool(kw.pop('left')) if 'bottom' in kw: kwtrans['tick1On'] = _bool(kw.pop('bottom')) if 'right' in kw: kwtrans['tick2On'] = _bool(kw.pop('right')) if 'top' in kw: kwtrans['tick2On'] = _bool(kw.pop('top')) if 'labelleft' in kw: kwtrans['label1On'] = _bool(kw.pop('labelleft')) if 'labelbottom' in kw: kwtrans['label1On'] = _bool(kw.pop('labelbottom')) if 'labelright' in kw: kwtrans['label2On'] = _bool(kw.pop('labelright')) if 'labeltop' in kw: kwtrans['label2On'] = _bool(kw.pop('labeltop')) if 'colors' in kw: c = kw.pop('colors') kwtrans['color'] = c kwtrans['labelcolor'] = c # Maybe move the checking up to the caller of this method. for key in kw: if key not in kwkeys: raise ValueError( "keyword %s is not recognized; valid keywords are %s" % (key, kwkeys)) kwtrans.update(kw) else: raise NotImplementedError("Inverse translation is deferred") return kwtrans def set_clip_path(self, clippath, transform=None): artist.Artist.set_clip_path(self, clippath, transform) for child in self.majorTicks + self.minorTicks: child.set_clip_path(clippath, transform) self.stale = True def get_view_interval(self): 'return the Interval instance for this axis view limits' raise NotImplementedError('Derived must override') def set_view_interval(self, vmin, vmax, ignore=False): raise NotImplementedError('Derived must override') def get_data_interval(self): 'return the Interval instance for this axis data limits' raise NotImplementedError('Derived must override') def set_data_interval(self): '''set the axis data limits''' raise NotImplementedError('Derived must override') def set_default_intervals(self): '''set the default limits for the axis data and view interval if they are not mutated''' # this is mainly in support of custom object plotting. For # example, if someone passes in a datetime object, we do not # know automagically how to set the default min/max of the # data and view limits. The unit conversion AxisInfo # interface provides a hook for custom types to register # default limits through the AxisInfo.default_limits # attribute, and the derived code below will check for that # and use it if is available (else just use 0..1) pass def _set_artist_props(self, a): if a is None: return a.set_figure(self.figure) def iter_ticks(self): """ Iterate through all of the major and minor ticks. """ majorLocs = self.major.locator() majorTicks = self.get_major_ticks(len(majorLocs)) self.major.formatter.set_locs(majorLocs) majorLabels = [self.major.formatter(val, i) for i, val in enumerate(majorLocs)] minorLocs = self.minor.locator() minorTicks = self.get_minor_ticks(len(minorLocs)) self.minor.formatter.set_locs(minorLocs) minorLabels = [self.minor.formatter(val, i) for i, val in enumerate(minorLocs)] major_minor = [ (majorTicks, majorLocs, majorLabels), (minorTicks, minorLocs, minorLabels)] for group in major_minor: for tick in zip(*group): yield tick def get_ticklabel_extents(self, renderer): """ Get the extents of the tick labels on either side of the axes. """ ticks_to_draw = self._update_ticks(renderer) ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) if len(ticklabelBoxes): bbox = mtransforms.Bbox.union(ticklabelBoxes) else: bbox = mtransforms.Bbox.from_extents(0, 0, 0, 0) if len(ticklabelBoxes2): bbox2 = mtransforms.Bbox.union(ticklabelBoxes2) else: bbox2 = mtransforms.Bbox.from_extents(0, 0, 0, 0) return bbox, bbox2 def set_smart_bounds(self, value): """set the axis to have smart bounds""" self._smart_bounds = value self.stale = True def get_smart_bounds(self): """get whether the axis has smart bounds""" return self._smart_bounds def _update_ticks(self, renderer): """ Update ticks (position and labels) using the current data interval of the axes. Returns a list of ticks that will be drawn. """ interval = self.get_view_interval() tick_tups = [t for t in self.iter_ticks()] if self._smart_bounds: # handle inverted limits view_low, view_high = min(*interval), max(*interval) data_low, data_high = self.get_data_interval() if data_low > data_high: data_low, data_high = data_high, data_low locs = [ti[1] for ti in tick_tups] locs.sort() locs = np.array(locs) if len(locs): if data_low <= view_low: # data extends beyond view, take view as limit ilow = view_low else: # data stops within view, take best tick cond = locs <= data_low good_locs = locs[cond] if len(good_locs) > 0: # last tick prior or equal to first data point ilow = good_locs[-1] else: # No ticks (why not?), take first tick ilow = locs[0] if data_high >= view_high: # data extends beyond view, take view as limit ihigh = view_high else: # data stops within view, take best tick cond = locs >= data_high good_locs = locs[cond] if len(good_locs) > 0: # first tick after or equal to last data point ihigh = good_locs[0] else: # No ticks (why not?), take last tick ihigh = locs[-1] tick_tups = [ti for ti in tick_tups if (ti[1] >= ilow) and (ti[1] <= ihigh)] # so that we don't lose ticks on the end, expand out the interval ever # so slightly. The "ever so slightly" is defined to be the width of a # half of a pixel. We don't want to draw a tick that even one pixel # outside of the defined axis interval. if interval[0] <= interval[1]: interval_expanded = interval else: interval_expanded = interval[1], interval[0] if hasattr(self, '_get_pixel_distance_along_axis'): # normally, one does not want to catch all exceptions that # could possibly happen, but it is not clear exactly what # exceptions might arise from a user's projection (their # rendition of the Axis object). So, we catch all, with # the idea that one would rather potentially lose a tick # from one side of the axis or another, rather than see a # stack trace. # We also catch users warnings here. These are the result of # invalid numpy calculations that may be the result of out of # bounds on axis with finite allowed intervals such as geo # projections i.e. Mollweide. with np.errstate(invalid='ignore'): try: ds1 = self._get_pixel_distance_along_axis( interval_expanded[0], -0.5) except: warnings.warn("Unable to find pixel distance along axis " "for interval padding of ticks; assuming no " "interval padding needed.") ds1 = 0.0 if np.isnan(ds1): ds1 = 0.0 try: ds2 = self._get_pixel_distance_along_axis( interval_expanded[1], +0.5) except: warnings.warn("Unable to find pixel distance along axis " "for interval padding of ticks; assuming no " "interval padding needed.") ds2 = 0.0 if np.isnan(ds2): ds2 = 0.0 interval_expanded = (interval_expanded[0] - ds1, interval_expanded[1] + ds2) ticks_to_draw = [] for tick, loc, label in tick_tups: if tick is None: continue if not mtransforms.interval_contains(interval_expanded, loc): continue tick.update_position(loc) tick.set_label1(label) tick.set_label2(label) ticks_to_draw.append(tick) return ticks_to_draw def _get_tick_bboxes(self, ticks, renderer): """ Given the list of ticks, return two lists of bboxes. One for tick lable1's and another for tick label2's. """ ticklabelBoxes = [] ticklabelBoxes2 = [] for tick in ticks: if tick.label1On and tick.label1.get_visible(): extent = tick.label1.get_window_extent(renderer) ticklabelBoxes.append(extent) if tick.label2On and tick.label2.get_visible(): extent = tick.label2.get_window_extent(renderer) ticklabelBoxes2.append(extent) return ticklabelBoxes, ticklabelBoxes2 def get_tightbbox(self, renderer): """ Return a bounding box that encloses the axis. It only accounts tick labels, axis label, and offsetText. """ if not self.get_visible(): return ticks_to_draw = self._update_ticks(renderer) ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) self._update_label_position(ticklabelBoxes, ticklabelBoxes2) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text(self.major.formatter.get_offset()) bb = [] for a in [self.label, self.offsetText]: if a.get_visible(): bb.append(a.get_window_extent(renderer)) bb.extend(ticklabelBoxes) bb.extend(ticklabelBoxes2) bb = [b for b in bb if b.width != 0 or b.height != 0] if bb: _bbox = mtransforms.Bbox.union(bb) return _bbox else: return None def get_tick_padding(self): values = [] if len(self.majorTicks): values.append(self.majorTicks[0].get_tick_padding()) if len(self.minorTicks): values.append(self.minorTicks[0].get_tick_padding()) if len(values): return max(values) return 0.0 @allow_rasterization def draw(self, renderer, *args, **kwargs): 'Draw the axis lines, grid lines, tick lines and labels' if not self.get_visible(): return renderer.open_group(__name__) ticks_to_draw = self._update_ticks(renderer) ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) for tick in ticks_to_draw: tick.draw(renderer) # scale up the axis label box to also find the neighbors, not # just the tick labels that actually overlap note we need a # *copy* of the axis label box because we don't wan't to scale # the actual bbox self._update_label_position(ticklabelBoxes, ticklabelBoxes2) self.label.draw(renderer) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text(self.major.formatter.get_offset()) self.offsetText.draw(renderer) if 0: # draw the bounding boxes around the text for debug for tick in self.majorTicks: label = tick.label1 mpatches.bbox_artist(label, renderer) mpatches.bbox_artist(self.label, renderer) renderer.close_group(__name__) self.stale = False def _get_label(self): raise NotImplementedError('Derived must override') def _get_offset_text(self): raise NotImplementedError('Derived must override') def get_gridlines(self): 'Return the grid lines as a list of Line2D instance' ticks = self.get_major_ticks() return cbook.silent_list('Line2D gridline', [tick.gridline for tick in ticks]) def get_label(self): 'Return the axis label as a Text instance' return self.label def get_offset_text(self): 'Return the axis offsetText as a Text instance' return self.offsetText def get_pickradius(self): 'Return the depth of the axis used by the picker' return self.pickradius def get_majorticklabels(self): 'Return a list of Text instances for the major ticklabels' ticks = self.get_major_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1On] labels2 = [tick.label2 for tick in ticks if tick.label2On] return cbook.silent_list('Text major ticklabel', labels1 + labels2) def get_minorticklabels(self): 'Return a list of Text instances for the minor ticklabels' ticks = self.get_minor_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1On] labels2 = [tick.label2 for tick in ticks if tick.label2On] return cbook.silent_list('Text minor ticklabel', labels1 + labels2) def get_ticklabels(self, minor=False, which=None): """ Get the x tick labels as a list of :class:`~matplotlib.text.Text` instances. Parameters ---------- minor : bool If True return the minor ticklabels, else return the major ticklabels which : None, ('minor', 'major', 'both') Overrides `minor`. Selects which ticklabels to return Returns ------- ret : list List of :class:`~matplotlib.text.Text` instances. """ if which is not None: if which == 'minor': return self.get_minorticklabels() elif which == 'major': return self.get_majorticklabels() elif which == 'both': return self.get_majorticklabels() + self.get_minorticklabels() else: raise ValueError("`which` must be one of ('minor', 'major', " "'both') not " + str(which)) if minor: return self.get_minorticklabels() return self.get_majorticklabels() def get_majorticklines(self): 'Return the major tick lines as a list of Line2D instances' lines = [] ticks = self.get_major_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_minorticklines(self): 'Return the minor tick lines as a list of Line2D instances' lines = [] ticks = self.get_minor_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_ticklines(self, minor=False): 'Return the tick lines as a list of Line2D instances' if minor: return self.get_minorticklines() return self.get_majorticklines() def get_majorticklocs(self): "Get the major tick locations in data coordinates as a numpy array" return self.major.locator() def get_minorticklocs(self): "Get the minor tick locations in data coordinates as a numpy array" return self.minor.locator() def get_ticklocs(self, minor=False): "Get the tick locations in data coordinates as a numpy array" if minor: return self.minor.locator() return self.major.locator() def _get_tick(self, major): 'return the default tick instance' raise NotImplementedError('derived must override') def _copy_tick_props(self, src, dest): 'Copy the props from src tick to dest tick' if src is None or dest is None: return dest.label1.update_from(src.label1) dest.label2.update_from(src.label2) dest.tick1line.update_from(src.tick1line) dest.tick2line.update_from(src.tick2line) dest.gridline.update_from(src.gridline) dest.tick1On = src.tick1On dest.tick2On = src.tick2On dest.label1On = src.label1On dest.label2On = src.label2On def get_label_text(self): 'Get the text of the label' return self.label.get_text() def get_major_locator(self): 'Get the locator of the major ticker' return self.major.locator def get_minor_locator(self): 'Get the locator of the minor ticker' return self.minor.locator def get_major_formatter(self): 'Get the formatter of the major ticker' return self.major.formatter def get_minor_formatter(self): 'Get the formatter of the minor ticker' return self.minor.formatter def get_major_ticks(self, numticks=None): 'get the tick instances; grow as necessary' if numticks is None: numticks = len(self.get_major_locator()()) if len(self.majorTicks) < numticks: # update the new tick label properties from the old for i in range(numticks - len(self.majorTicks)): tick = self._get_tick(major=True) self.majorTicks.append(tick) if self._lastNumMajorTicks < numticks: protoTick = self.majorTicks[0] for i in range(self._lastNumMajorTicks, len(self.majorTicks)): tick = self.majorTicks[i] if self._gridOnMajor: tick.gridOn = True self._copy_tick_props(protoTick, tick) self._lastNumMajorTicks = numticks ticks = self.majorTicks[:numticks] return ticks def get_minor_ticks(self, numticks=None): 'get the minor tick instances; grow as necessary' if numticks is None: numticks = len(self.get_minor_locator()()) if len(self.minorTicks) < numticks: # update the new tick label properties from the old for i in range(numticks - len(self.minorTicks)): tick = self._get_tick(major=False) self.minorTicks.append(tick) if self._lastNumMinorTicks < numticks: protoTick = self.minorTicks[0] for i in range(self._lastNumMinorTicks, len(self.minorTicks)): tick = self.minorTicks[i] if self._gridOnMinor: tick.gridOn = True self._copy_tick_props(protoTick, tick) self._lastNumMinorTicks = numticks ticks = self.minorTicks[:numticks] return ticks def grid(self, b=None, which='major', **kwargs): """ Set the axis grid on or off; b is a boolean. Use *which* = 'major' | 'minor' | 'both' to set the grid for major or minor ticks. If *b* is *None* and len(kwargs)==0, toggle the grid state. If *kwargs* are supplied, it is assumed you want the grid on and *b* will be set to True. *kwargs* are used to set the line properties of the grids, e.g., xax.grid(color='r', linestyle='-', linewidth=2) """ if len(kwargs): b = True which = which.lower() if which in ['minor', 'both']: if b is None: self._gridOnMinor = not self._gridOnMinor else: self._gridOnMinor = b for tick in self.minorTicks: # don't use get_ticks here! if tick is None: continue tick.gridOn = self._gridOnMinor if len(kwargs): tick.gridline.update(kwargs) self._minor_tick_kw['gridOn'] = self._gridOnMinor if which in ['major', 'both']: if b is None: self._gridOnMajor = not self._gridOnMajor else: self._gridOnMajor = b for tick in self.majorTicks: # don't use get_ticks here! if tick is None: continue tick.gridOn = self._gridOnMajor if len(kwargs): tick.gridline.update(kwargs) self._major_tick_kw['gridOn'] = self._gridOnMajor self.stale = True def update_units(self, data): """ introspect *data* for units converter and update the axis.converter instance if necessary. Return *True* if *data* is registered for unit conversion. """ converter = munits.registry.get_converter(data) if converter is None: return False neednew = self.converter != converter self.converter = converter default = self.converter.default_units(data, self) if default is not None and self.units is None: self.set_units(default) if neednew: self._update_axisinfo() self.stale = True return True def _update_axisinfo(self): """ check the axis converter for the stored units to see if the axis info needs to be updated """ if self.converter is None: return info = self.converter.axisinfo(self.units, self) if info is None: return if info.majloc is not None and \ self.major.locator != info.majloc and self.isDefault_majloc: self.set_major_locator(info.majloc) self.isDefault_majloc = True if info.minloc is not None and \ self.minor.locator != info.minloc and self.isDefault_minloc: self.set_minor_locator(info.minloc) self.isDefault_minloc = True if info.majfmt is not None and \ self.major.formatter != info.majfmt and self.isDefault_majfmt: self.set_major_formatter(info.majfmt) self.isDefault_majfmt = True if info.minfmt is not None and \ self.minor.formatter != info.minfmt and self.isDefault_minfmt: self.set_minor_formatter(info.minfmt) self.isDefault_minfmt = True if info.label is not None and self.isDefault_label: self.set_label_text(info.label) self.isDefault_label = True self.set_default_intervals() def have_units(self): return self.converter is not None or self.units is not None def convert_units(self, x): if self.converter is None: self.converter = munits.registry.get_converter(x) if self.converter is None: return x ret = self.converter.convert(x, self.units, self) return ret def set_units(self, u): """ set the units for axis ACCEPTS: a units tag """ pchanged = False if u is None: self.units = None pchanged = True else: if u != self.units: self.units = u pchanged = True if pchanged: self._update_axisinfo() self.callbacks.process('units') self.callbacks.process('units finalize') self.stale = True def get_units(self): 'return the units for axis' return self.units def set_label_text(self, label, fontdict=None, **kwargs): """ Sets the text value of the axis label ACCEPTS: A string value for the label """ self.isDefault_label = False self.label.set_text(label) if fontdict is not None: self.label.update(fontdict) self.label.update(kwargs) self.stale = True return self.label def set_major_formatter(self, formatter): """ Set the formatter of the major ticker ACCEPTS: A :class:`~matplotlib.ticker.Formatter` instance """ self.isDefault_majfmt = False self.major.formatter = formatter formatter.set_axis(self) self.stale = True def set_minor_formatter(self, formatter): """ Set the formatter of the minor ticker ACCEPTS: A :class:`~matplotlib.ticker.Formatter` instance """ self.isDefault_minfmt = False self.minor.formatter = formatter formatter.set_axis(self) self.stale = True def set_major_locator(self, locator): """ Set the locator of the major ticker ACCEPTS: a :class:`~matplotlib.ticker.Locator` instance """ self.isDefault_majloc = False self.major.locator = locator locator.set_axis(self) self.stale = True def set_minor_locator(self, locator): """ Set the locator of the minor ticker ACCEPTS: a :class:`~matplotlib.ticker.Locator` instance """ self.isDefault_minloc = False self.minor.locator = locator locator.set_axis(self) self.stale = True def set_pickradius(self, pickradius): """ Set the depth of the axis used by the picker ACCEPTS: a distance in points """ self.pickradius = pickradius def set_ticklabels(self, ticklabels, *args, **kwargs): """ Set the text values of the tick labels. Return a list of Text instances. Use *kwarg* *minor=True* to select minor ticks. All other kwargs are used to update the text object properties. As for get_ticklabels, label1 (left or bottom) is affected for a given tick only if its label1On attribute is True, and similarly for label2. The list of returned label text objects consists of all such label1 objects followed by all such label2 objects. The input *ticklabels* is assumed to match the set of tick locations, regardless of the state of label1On and label2On. ACCEPTS: sequence of strings or Text objects """ get_labels = [] for t in ticklabels: # try calling get_text() to check whether it is Text object # if it is Text, get label content try: get_labels.append(t.get_text()) # otherwise add the label to the list directly except AttributeError: get_labels.append(t) # replace the ticklabels list with the processed one ticklabels = get_labels minor = kwargs.pop('minor', False) if minor: self.set_minor_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_minor_ticks() else: self.set_major_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_major_ticks() ret = [] for tick_label, tick in zip(ticklabels, ticks): # deal with label1 tick.label1.set_text(tick_label) tick.label1.update(kwargs) # deal with label2 tick.label2.set_text(tick_label) tick.label2.update(kwargs) # only return visible tick labels if tick.label1On: ret.append(tick.label1) if tick.label2On: ret.append(tick.label2) self.stale = True return ret def set_ticks(self, ticks, minor=False): """ Set the locations of the tick marks from sequence ticks ACCEPTS: sequence of floats """ # XXX if the user changes units, the information will be lost here ticks = self.convert_units(ticks) if len(ticks) > 1: xleft, xright = self.get_view_interval() if xright > xleft: self.set_view_interval(min(ticks), max(ticks)) else: self.set_view_interval(max(ticks), min(ticks)) if minor: self.set_minor_locator(mticker.FixedLocator(ticks)) return self.get_minor_ticks(len(ticks)) else: self.set_major_locator(mticker.FixedLocator(ticks)) return self.get_major_ticks(len(ticks)) def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ raise NotImplementedError('Derived must override') def _update_offset_text_postion(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ raise NotImplementedError('Derived must override') def pan(self, numsteps): 'Pan *numsteps* (can be positive or negative)' self.major.locator.pan(numsteps) def zoom(self, direction): "Zoom in/out on axis; if *direction* is >0 zoom in, else zoom out" self.major.locator.zoom(direction) def axis_date(self, tz=None): """ Sets up x-axis ticks and labels that treat the x data as dates. *tz* is a :class:`tzinfo` instance or a timezone string. This timezone is used to create date labels. """ # By providing a sample datetime instance with the desired # timezone, the registered converter can be selected, # and the "units" attribute, which is the timezone, can # be set. import datetime if isinstance(tz, six.string_types): import pytz tz = pytz.timezone(tz) self.update_units(datetime.datetime(2009, 1, 1, 0, 0, 0, 0, tz)) def get_tick_space(self): """ Return the estimated number of ticks that can fit on the axis. """ # Must be overridden in the subclass raise NotImplementedError() def get_label_position(self): """ Return the label position (top or bottom) """ return self.label_position def set_label_position(self, position): """ Set the label position (top or bottom) ACCEPTS: [ 'top' | 'bottom' ] """ raise NotImplementedError() def get_minpos(self): raise NotImplementedError() class XAxis(Axis): __name__ = 'xaxis' axis_name = 'x' def contains(self, mouseevent): """Test whether the mouse event occured in the x axis. """ if six.callable(self._contains): return self._contains(self, mouseevent) x, y = mouseevent.x, mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes, yaxes = trans.transform_point((x, y)) except ValueError: return False, {} l, b = self.axes.transAxes.transform_point((0, 0)) r, t = self.axes.transAxes.transform_point((1, 1)) inaxis = xaxes >= 0 and xaxes <= 1 and ( (y < b and y > b - self.pickradius) or (y > t and y < t + self.pickradius)) return inaxis, {} def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return XTick(self.axes, 0, '', major=major, **tick_kw) def _get_label(self): # x in axes coords, y in display coords (to be updated at draw # time by _update_label_positions) label = mtext.Text(x=0.5, y=0, fontproperties=font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']), color=rcParams['axes.labelcolor'], verticalalignment='top', horizontalalignment='center') label.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform())) self._set_artist_props(label) self.label_position = 'bottom' return label def _get_offset_text(self): # x in axes coords, y in display coords (to be updated at draw time) offsetText = mtext.Text(x=1, y=0, fontproperties=font_manager.FontProperties( size=rcParams['xtick.labelsize']), color=rcParams['xtick.color'], verticalalignment='top', horizontalalignment='right') offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position = 'bottom' return offsetText def _get_pixel_distance_along_axis(self, where, perturb): """ Returns the amount, in data coordinates, that a single pixel corresponds to in the locality given by "where", which is also given in data coordinates, and is an x coordinate. "perturb" is the amount to perturb the pixel. Usually +0.5 or -0.5. Implementing this routine for an axis is optional; if present, it will ensure that no ticks are lost due to round-off at the extreme ends of an axis. """ # Note that this routine does not work for a polar axis, because of # the 1e-10 below. To do things correctly, we need to use rmax # instead of 1e-10 for a polar axis. But since we do not have that # kind of information at this point, we just don't try to pad anything # for the theta axis of a polar plot. if self.axes.name == 'polar': return 0.0 # # first figure out the pixel location of the "where" point. We use # 1e-10 for the y point, so that we remain compatible with log axes. # transformation from data coords to display coords trans = self.axes.transData # transformation from display coords to data coords transinv = trans.inverted() pix = trans.transform_point((where, 1e-10)) # perturb the pixel ptp = transinv.transform_point((pix[0] + perturb, pix[1])) dx = abs(ptp[0] - where) return dx def set_label_position(self, position): """ Set the label position (top or bottom) ACCEPTS: [ 'top' | 'bottom' ] """ if position == 'top': self.label.set_verticalalignment('baseline') elif position == 'bottom': self.label.set_verticalalignment('top') else: msg = "Position accepts only [ 'top' | 'bottom' ]" raise ValueError(msg) self.label_position = position self.stale = True def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ if not self._autolabelpos: return x, y = self.label.get_position() if self.label_position == 'bottom': try: spine = self.axes.spines['bottom'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes + [spinebbox]) bottom = bbox.y0 self.label.set_position( (x, bottom - self.labelpad * self.figure.dpi / 72.0) ) else: try: spine = self.axes.spines['top'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox]) top = bbox.y1 self.label.set_position( (x, top + self.labelpad * self.figure.dpi / 72.0) ) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x, y = self.offsetText.get_position() if not len(bboxes): bottom = self.axes.bbox.ymin else: bbox = mtransforms.Bbox.union(bboxes) bottom = bbox.y0 self.offsetText.set_position( (x, bottom - self.OFFSETTEXTPAD * self.figure.dpi / 72.0) ) def get_text_heights(self, renderer): """ Returns the amount of space one should reserve for text above and below the axes. Returns a tuple (above, below) """ bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() above = 0.0 if bbox2.height: above += bbox2.height + padPixels below = 0.0 if bbox.height: below += bbox.height + padPixels if self.get_label_position() == 'top': above += self.label.get_window_extent(renderer).height + padPixels else: below += self.label.get_window_extent(renderer).height + padPixels return above, below def set_ticks_position(self, position): """ Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both positions, but does not change the tick labels. 'default' resets the tick positions to the default: ticks on both positions, labels at bottom. 'none' can be used if you don't want any ticks. 'none' and 'both' affect only the ticks, not the labels. ACCEPTS: [ 'top' | 'bottom' | 'both' | 'default' | 'none' ] """ if position == 'top': self.set_tick_params(which='both', top=True, labeltop=True, bottom=False, labelbottom=False) elif position == 'bottom': self.set_tick_params(which='both', top=False, labeltop=False, bottom=True, labelbottom=True) elif position == 'both': self.set_tick_params(which='both', top=True, bottom=True) elif position == 'none': self.set_tick_params(which='both', top=False, bottom=False) elif position == 'default': self.set_tick_params(which='both', top=True, labeltop=False, bottom=True, labelbottom=True) else: raise ValueError("invalid position: %s" % position) self.stale = True def tick_top(self): 'use ticks only on top' self.set_ticks_position('top') def tick_bottom(self): 'use ticks only on bottom' self.set_ticks_position('bottom') def get_ticks_position(self): """ Return the ticks position (top, bottom, default or unknown) """ majt = self.majorTicks[0] mT = self.minorTicks[0] majorTop = ((not majt.tick1On) and majt.tick2On and (not majt.label1On) and majt.label2On) minorTop = ((not mT.tick1On) and mT.tick2On and (not mT.label1On) and mT.label2On) if majorTop and minorTop: return 'top' MajorBottom = (majt.tick1On and (not majt.tick2On) and majt.label1On and (not majt.label2On)) MinorBottom = (mT.tick1On and (not mT.tick2On) and mT.label1On and (not mT.label2On)) if MajorBottom and MinorBottom: return 'bottom' majorDefault = (majt.tick1On and majt.tick2On and majt.label1On and (not majt.label2On)) minorDefault = (mT.tick1On and mT.tick2On and mT.label1On and (not mT.label2On)) if majorDefault and minorDefault: return 'default' return 'unknown' def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervalx def set_view_interval(self, vmin, vmax, ignore=False): """ If *ignore* is *False*, the order of vmin, vmax does not matter; the original axis orientation will be preserved. In addition, the view limits can be expanded, but will not be reduced. This method is for mpl internal use; for normal use, see :meth:`~matplotlib.axes.Axes.set_xlim`. """ if ignore: self.axes.viewLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_view_interval() if Vmin < Vmax: self.axes.viewLim.intervalx = (min(vmin, vmax, Vmin), max(vmin, vmax, Vmax)) else: self.axes.viewLim.intervalx = (max(vmin, vmax, Vmin), min(vmin, vmax, Vmax)) def get_minpos(self): return self.axes.dataLim.minposx def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervalx def set_data_interval(self, vmin, vmax, ignore=False): 'set the axis data limits' if ignore: self.axes.dataLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervalx = min(vmin, Vmin), max(vmax, Vmax) self.stale = True def set_default_intervals(self): 'set the default limits for the axis interval if they are not mutated' xmin, xmax = 0., 1. dataMutated = self.axes.dataLim.mutatedx() viewMutated = self.axes.viewLim.mutatedx() if not dataMutated or not viewMutated: if self.converter is not None: info = self.converter.axisinfo(self.units, self) if info.default_limits is not None: valmin, valmax = info.default_limits xmin = self.converter.convert(valmin, self.units, self) xmax = self.converter.convert(valmax, self.units, self) if not dataMutated: self.axes.dataLim.intervalx = xmin, xmax if not viewMutated: self.axes.viewLim.intervalx = xmin, xmax self.stale = True def get_tick_space(self): ends = self.axes.transAxes.transform([[0, 0], [1, 0]]) length = ((ends[1][0] - ends[0][0]) / self.axes.figure.dpi) * 72.0 tick = self._get_tick(True) # There is a heuristic here that the aspect ratio of tick text # is no more than 3:1 size = tick.label1.get_size() * 3 if size > 0: return int(np.floor(length / size)) else: return 2**31 - 1 class YAxis(Axis): __name__ = 'yaxis' axis_name = 'y' def contains(self, mouseevent): """Test whether the mouse event occurred in the y axis. Returns *True* | *False* """ if six.callable(self._contains): return self._contains(self, mouseevent) x, y = mouseevent.x, mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes, yaxes = trans.transform_point((x, y)) except ValueError: return False, {} l, b = self.axes.transAxes.transform_point((0, 0)) r, t = self.axes.transAxes.transform_point((1, 1)) inaxis = yaxes >= 0 and yaxes <= 1 and ( (x < l and x > l - self.pickradius) or (x > r and x < r + self.pickradius)) return inaxis, {} def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return YTick(self.axes, 0, '', major=major, **tick_kw) def _get_label(self): # x in display coords (updated by _update_label_position) # y in axes coords label = mtext.Text(x=0, y=0.5, # todo: get the label position fontproperties=font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']), color=rcParams['axes.labelcolor'], verticalalignment='bottom', horizontalalignment='center', rotation='vertical', rotation_mode='anchor') label.set_transform(mtransforms.blended_transform_factory( mtransforms.IdentityTransform(), self.axes.transAxes)) self._set_artist_props(label) self.label_position = 'left' return label def _get_offset_text(self): # x in display coords, y in axes coords (to be updated at draw time) offsetText = mtext.Text(x=0, y=0.5, fontproperties=font_manager.FontProperties( size=rcParams['ytick.labelsize'] ), color=rcParams['ytick.color'], verticalalignment='baseline', horizontalalignment='left') offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position = 'left' return offsetText def _get_pixel_distance_along_axis(self, where, perturb): """ Returns the amount, in data coordinates, that a single pixel corresponds to in the locality given by *where*, which is also given in data coordinates, and is a y coordinate. *perturb* is the amount to perturb the pixel. Usually +0.5 or -0.5. Implementing this routine for an axis is optional; if present, it will ensure that no ticks are lost due to round-off at the extreme ends of an axis. """ # # first figure out the pixel location of the "where" point. We use # 1e-10 for the x point, so that we remain compatible with log axes. # transformation from data coords to display coords trans = self.axes.transData # transformation from display coords to data coords transinv = trans.inverted() pix = trans.transform_point((1e-10, where)) # perturb the pixel ptp = transinv.transform_point((pix[0], pix[1] + perturb)) dy = abs(ptp[1] - where) return dy def set_label_position(self, position): """ Set the label position (left or right) ACCEPTS: [ 'left' | 'right' ] """ self.label.set_rotation_mode('anchor') self.label.set_horizontalalignment('center') if position == 'left': self.label.set_verticalalignment('bottom') elif position == 'right': self.label.set_verticalalignment('top') else: msg = "Position accepts only [ 'left' | 'right' ]" raise ValueError(msg) self.label_position = position self.stale = True def _update_label_position(self, bboxes, bboxes2): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ if not self._autolabelpos: return x, y = self.label.get_position() if self.label_position == 'left': try: spine = self.axes.spines['left'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes + [spinebbox]) left = bbox.x0 self.label.set_position( (left - self.labelpad * self.figure.dpi / 72.0, y) ) else: try: spine = self.axes.spines['right'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox]) right = bbox.x1 self.label.set_position( (right + self.labelpad * self.figure.dpi / 72.0, y) ) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x, y = self.offsetText.get_position() top = self.axes.bbox.ymax self.offsetText.set_position( (x, top + self.OFFSETTEXTPAD * self.figure.dpi / 72.0) ) def set_offset_position(self, position): x, y = self.offsetText.get_position() if position == 'left': x = 0 elif position == 'right': x = 1 else: msg = "Position accepts only [ 'left' | 'right' ]" raise ValueError(msg) self.offsetText.set_ha(position) self.offsetText.set_position((x, y)) self.stale = True def get_text_widths(self, renderer): bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() left = 0.0 if bbox.width: left += bbox.width + padPixels right = 0.0 if bbox2.width: right += bbox2.width + padPixels if self.get_label_position() == 'left': left += self.label.get_window_extent(renderer).width + padPixels else: right += self.label.get_window_extent(renderer).width + padPixels return left, right def set_ticks_position(self, position): """ Set the ticks position (left, right, both, default or none) 'both' sets the ticks to appear on both positions, but does not change the tick labels. 'default' resets the tick positions to the default: ticks on both positions, labels at left. 'none' can be used if you don't want any ticks. 'none' and 'both' affect only the ticks, not the labels. ACCEPTS: [ 'left' | 'right' | 'both' | 'default' | 'none' ] """ if position == 'right': self.set_tick_params(which='both', right=True, labelright=True, left=False, labelleft=False) self.set_offset_position(position) elif position == 'left': self.set_tick_params(which='both', right=False, labelright=False, left=True, labelleft=True) self.set_offset_position(position) elif position == 'both': self.set_tick_params(which='both', right=True, left=True) elif position == 'none': self.set_tick_params(which='both', right=False, left=False) elif position == 'default': self.set_tick_params(which='both', right=True, labelright=False, left=True, labelleft=True) else: raise ValueError("invalid position: %s" % position) self.stale = True def tick_right(self): 'use ticks only on right' self.set_ticks_position('right') def tick_left(self): 'use ticks only on left' self.set_ticks_position('left') def get_ticks_position(self): """ Return the ticks position (left, right, both or unknown) """ majt = self.majorTicks[0] mT = self.minorTicks[0] majorRight = ((not majt.tick1On) and majt.tick2On and (not majt.label1On) and majt.label2On) minorRight = ((not mT.tick1On) and mT.tick2On and (not mT.label1On) and mT.label2On) if majorRight and minorRight: return 'right' majorLeft = (majt.tick1On and (not majt.tick2On) and majt.label1On and (not majt.label2On)) minorLeft = (mT.tick1On and (not mT.tick2On) and mT.label1On and (not mT.label2On)) if majorLeft and minorLeft: return 'left' majorDefault = (majt.tick1On and majt.tick2On and majt.label1On and (not majt.label2On)) minorDefault = (mT.tick1On and mT.tick2On and mT.label1On and (not mT.label2On)) if majorDefault and minorDefault: return 'default' return 'unknown' def get_view_interval(self): 'return the Interval instance for this axis view limits' return self.axes.viewLim.intervaly def set_view_interval(self, vmin, vmax, ignore=False): """ If *ignore* is *False*, the order of vmin, vmax does not matter; the original axis orientation will be preserved. In addition, the view limits can be expanded, but will not be reduced. This method is for mpl internal use; for normal use, see :meth:`~matplotlib.axes.Axes.set_ylim`. """ if ignore: self.axes.viewLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_view_interval() if Vmin < Vmax: self.axes.viewLim.intervaly = (min(vmin, vmax, Vmin), max(vmin, vmax, Vmax)) else: self.axes.viewLim.intervaly = (max(vmin, vmax, Vmin), min(vmin, vmax, Vmax)) self.stale = True def get_minpos(self): return self.axes.dataLim.minposy def get_data_interval(self): 'return the Interval instance for this axis data limits' return self.axes.dataLim.intervaly def set_data_interval(self, vmin, vmax, ignore=False): 'set the axis data limits' if ignore: self.axes.dataLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervaly = min(vmin, Vmin), max(vmax, Vmax) self.stale = True def set_default_intervals(self): 'set the default limits for the axis interval if they are not mutated' ymin, ymax = 0., 1. dataMutated = self.axes.dataLim.mutatedy() viewMutated = self.axes.viewLim.mutatedy() if not dataMutated or not viewMutated: if self.converter is not None: info = self.converter.axisinfo(self.units, self) if info.default_limits is not None: valmin, valmax = info.default_limits ymin = self.converter.convert(valmin, self.units, self) ymax = self.converter.convert(valmax, self.units, self) if not dataMutated: self.axes.dataLim.intervaly = ymin, ymax if not viewMutated: self.axes.viewLim.intervaly = ymin, ymax self.stale = True def get_tick_space(self): ends = self.axes.transAxes.transform([[0, 0], [0, 1]]) length = ((ends[1][1] - ends[0][1]) / self.axes.figure.dpi) * 72.0 tick = self._get_tick(True) # Having a spacing of at least 2 just looks good. size = tick.label1.get_size() * 2.0 if size > 0: return int(np.floor(length / size)) else: return 2**31 - 1
bsd-3-clause
brettwooldridge/buck
third-party/py/pywatchman/pywatchman/encoding.py
29
2957
# Copyright 2016-present Facebook, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name Facebook nor the names of its contributors may be used to # endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from __future__ import division from __future__ import print_function # no unicode literals '''Module to deal with filename encoding on the local system, as returned by Watchman.''' import sys from . import ( compat, ) if compat.PYTHON3: default_local_errors = 'surrogateescape' def get_local_encoding(): if sys.platform == 'win32': # Watchman always returns UTF-8 encoded strings on Windows. return 'utf-8' # On the Python 3 versions we support, sys.getfilesystemencoding never # returns None. return sys.getfilesystemencoding() else: # Python 2 doesn't support surrogateescape, so use 'strict' by # default. Users can register a custom surrogateescape error handler and use # that if they so desire. default_local_errors = 'strict' def get_local_encoding(): if sys.platform == 'win32': # Watchman always returns UTF-8 encoded strings on Windows. return 'utf-8' fsencoding = sys.getfilesystemencoding() if fsencoding is None: # This is very unlikely to happen, but if it does, just use UTF-8 fsencoding = 'utf-8' return fsencoding def encode_local(s): return s.encode(get_local_encoding(), default_local_errors) def decode_local(bs): return bs.decode(get_local_encoding(), default_local_errors)
apache-2.0
gratteur/zim-desktop
zim/config/manager.py
5
10560
# -*- coding: utf-8 -*- # Copyright 2013 Jaap Karssenberg <[email protected]> from __future__ import with_statement from weakref import WeakValueDictionary from . import basedirs from .dicts import INIConfigFile from zim.fs import FileNotFoundError from zim.signals import ConnectorMixin, SignalEmitter, SignalHandler class ConfigManager(object): '''This class defines an object that manages a set of config files. The config manager abstracts the lookup of files using the XDG search paths and ensures that there is only a single instance used for each config file. The config manager can switch the config file based on the config X{profile} that is used. The profile is determined by the notebook properties. However this object relies on it's creator to setup the hooks to get the property from the notebook. Changes to the profile are communicated to all users of the config by means of the "changed" signals on L{ConfigFile} and L{ConfigDict} objects. ''' def __init__(self, dir=None, dirs=None, profile=None): '''Constructor @param dir: the folder for reading and writing config files, e.g. a C{Dir} or a C{VirtualConfigBackend} objects. If no dir is given, the XDG basedirs are used and C{dirs} is ignored. @param dirs: list or generator of C{Dir} objects used as search path when a config file does not exist on C{dir} @param profile: initial profile name ''' self.profile = profile self._config_files = WeakValueDictionary() self._config_dicts = WeakValueDictionary() if dir is None: assert dirs is None, "Do not provide 'dirs' without 'dir'" self._dir = dir self._dirs = dirs def set_profile(self, profile): '''Set the profile to use for the configuration @param profile: the profile name or C{None} ''' assert profile is None or isinstance(profile, basestring) if profile != self.profile: self.profile = profile for path, conffile in self._config_files.items(): if path.startswith('<profile>/'): file, defaults = self._get_file(path) conffile.set_files(file, defaults) # Updates will cascade through the dicts by the # "changed" signals on various objects def _get_file(self, filename): basepath = filename.replace('<profile>/', '') if self.profile: path = filename.replace('<profile>/', 'profiles/%s/' % self.profile) else: path = basepath if self._dir: file = self._dir.file(path) if self._dirs: defaults = DefaultFileIter(self._dirs, path) else: defaults = DefaultFileIter([], path) if self.profile and filename.startswith('<profile>/'): mypath = filename.replace('<profile>/', '') defaults.extra.insert(0, self._dir.file(mypath)) else: file = basedirs.XDG_CONFIG_HOME.file('zim/' + path) defaults = XDGConfigFileIter(basepath) ## Backward compatibility for profiles if self.profile \ and filename in ( '<profile>/preferences.conf', '<profile>/style.conf' ): backwardfile = self._get_backward_file(filename) defaults.extra.insert(0, backwardfile) return file, defaults def _get_backward_file(self, filename): if filename == '<profile>/preferences.conf': path = 'profiles/%s.conf' % self.profile elif filename == '<profile>/style.conf': path = 'styles/%s.conf' % self.profile else: raise AssertionError if self._dir: return self._dir.file(path) else: return basedirs.XDG_CONFIG_HOME.file('zim/' + path) def get_config_file(self, filename): '''Returns a C{ConfigFile} object for C{filename}''' if filename not in self._config_files: file, defaults = self._get_file(filename) config_file = ConfigFile(file, defaults) self._config_files[filename] = config_file return self._config_files[filename] def get_config_dict(self, filename): '''Returns a C{SectionedConfigDict} object for C{filename}''' if filename not in self._config_dicts: file = self.get_config_file(filename) config_dict = ConfigManagerINIConfigFile(file) self._config_dicts[filename] = config_dict return self._config_dicts[filename] #def get_all_config_files(filename) - iterate multiple values ? #def get_config_section(filename, section): - return section def VirtualConfigManager(**data): return ConfigManager(VirtualConfigBackend(**data)) class DefaultFileIter(object): '''Generator for iterating default files Will yield first the files in C{extra} followed by files that are based on C{path} and C{dirs}. Yields only existing files. ''' def __init__(self, dirs, path, extra=None): self.path = path self.dirs = dirs self.extra = extra or [] def __iter__(self): for file in self.extra: if file.exists(): yield file for dir in self.dirs: file = dir.file(self.path) if file.exists(): yield file class XDGConfigDirsIter(object): '''Generator for iterating XDG config dirs Yields the "zim" subdir of each XDG config file. ''' def __iter__(self): from . import data_dirs # XXX yield basedirs.XDG_CONFIG_HOME.subdir(('zim')) for dir in basedirs.XDG_CONFIG_DIRS: yield dir.subdir(('zim')) for dir in data_dirs(): yield dir class XDGConfigFileIter(DefaultFileIter): '''Like C{DefaultFileIter}, but uses XDG config dirs''' def __init__(self, path, extra=None): self.path = path self.dirs = XDGConfigDirsIter() self.extra = extra or [] class ConfigManagerINIConfigFile(INIConfigFile): '''Like L{INIConfigFile} but with autosave when the dict changes''' def __init__(self, file): INIConfigFile.__init__(self, file, monitor=True) self.connect_after('changed', self.on_changed) # autosave on changing the dict, connect after # regular handlers to avoid getting stuck with a set @SignalHandler def on_changed(self, *a): with self.on_file_changed.blocked(): self.write() @SignalHandler def on_file_changed(self, *a): with self.on_changed.blocked(): INIConfigFile.on_file_changed(self, *a) class ConfigFile(ConnectorMixin, SignalEmitter): '''Container object for a config file Maps to a "base" file in the home folder, used to write new values, and an optional default file, which is used for reading only. @ivar file: the underlying file object for the base config file in the home folder @ivar defaults: a generator that yields default files @note: this class implement similar API to the L{File} class but is explicitly not a sub-class of L{File} because config files should typically not be moved, renamed, etc. It just implements the reading and writing methods. @signal: C{changed ()}: emitted when the underlying file changed (based on C{gio} monitoring support) or for file monitors or on profile switched ''' # TODO __signals__ def __init__(self, file, defaults=None): self.file = None self.defaults = None with self.blocked_signals('changed'): self.set_files(file, defaults) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.file.path) def __eq__(self, other): return isinstance(other, ConfigFile) \ and other.file == self.file def set_files(self, file, defaults=None): if self.file: self.disconnect_from(self.file) self.file = file self.defaults = defaults or [] #~ self.connectto(self.file, 'changed', self.on_file_changed) self.emit('changed') #~ def on_file_changed(self, file, *a): #~ print "CONF FILE changed:", file # TODO verify etag (we didn't write ourselves) #~ self.emit('changed') def check_has_changed_on_disk(self): return True # we do not emit the signal if it is not real... @property def basename(self): return self.file.basename def touch(self): '''Ensure the custom file in the home folder exists. Either by copying a default config file, or touching an empty file. Intended to be called before trying to edit the file with an external editor. ''' if not self.file.exists(): for default in self.defaults: default.copyto(self.file) break else: self.file.touch() # create empty file def read(self, fail=False): '''Read the base file or first default file @param fail: if C{True} a L{FileNotFoundError} error is raised when neither the base file or a default file are found. If C{False} it will return C{''} for a non-existing file. @returns: file content as a string ''' try: return self.file.read() except FileNotFoundError: for default in self.defaults: return default.read() else: if fail: raise else: return '' def readlines(self, fail=False): '''Read the base file or first default file @param fail: if C{True} a L{FileNotFoundError} error is raised when neither the base file or a default file are found. If C{False} it will return C{[]} for a non-existing file. @returns: file content as a list of lines ''' try: return self.file.readlines() except FileNotFoundError: for default in self.defaults: return default.readlines() else: if fail: raise else: return [] def write(self, text): '''Write base file, see L{File.write()}''' self.file.write(text) def writelines(self, lines): '''Write base file, see L{File.writelines()}''' self.file.writelines(lines) def remove(self): '''Remove user file, leaves default files in place''' if self.file.exists(): return self.file.remove() class VirtualConfigBackend(object): '''Virtual dir, mainly used for testing''' def __init__(self, **data): self._data = data def file(self, path): return VirtualConfigBackendFile(self._data, path) class VirtualConfigBackendFile(object): '''Virtual file, mainly used for testing''' def __init__(self, data, path): self._key = path self._data = data @property def path(self): return '<virtual>/' + self._key @property def basename(self): import os return os.path.basename(self.path) def connect(self, handler, *a): pass def disconnect(self, handler): pass def exists(self): return self._key in self._data \ and self._data[self._key] is not None def touch(self): self._data.setdefault(self._key, '') def copyto(self, other): text = self.read() other.write(text) def read(self): try: text = self._data[self._key] except KeyError: raise FileNotFoundError(self) else: if text is None: raise FileNotFoundError(self) else: return text def readlines(self): text = self.read() return text.splitlines(True) def write(self, text): self._data[self._key] = text or '' def writelines(self, lines): self._data[self._key] = ''.join(lines) or '' def remove(self): del self._data[self._key]
gpl-2.0
PyBossa/pybossa
pybossa/default_settings.py
1
4813
# -*- coding: utf8 -*- # This file is part of PYBOSSA. # # Copyright (C) 2015 Scifabric LTD. # # PYBOSSA is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PYBOSSA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with PYBOSSA. If not, see <http://www.gnu.org/licenses/>. DEBUG = False # webserver host and port HOST = '0.0.0.0' PORT = 5000 SECRET = 'foobar' SECRET_KEY = 'my-session-secret' ITSDANGEROUSKEY = 'its-dangerous-key' ## project configuration BRAND = 'PYBOSSA' TITLE = 'PYBOSSA' COPYRIGHT = 'Set Your Institution' DESCRIPTION = 'Set the description in your config' TERMSOFUSE = 'http://okfn.org/terms-of-use/' DATAUSE = 'http://opendatacommons.org/licenses/by/' LOGO = '' DEFAULT_LOCALE = 'en' LOCALES = [('en', 'English'), ('es', u'Español'), ('it', 'Italiano'), ('fr', u'Français'), ('ja', u'日本語'), ('el', u'ελληνικά')] ## Default THEME THEME = 'default' ## Default number of apps per page APPS_PER_PAGE = 20 ## Default allowed extensions ALLOWED_EXTENSIONS = ['js', 'css', 'png', 'jpg', 'jpeg', 'gif', 'zip'] UPLOAD_METHOD = 'local' ## Default number of users shown in the leaderboard LEADERBOARD = 20 ## Default configuration for debug toolbar ENABLE_DEBUG_TOOLBAR = False # Cache default key prefix REDIS_SENTINEL = [('localhost', 26379)] REDIS_MASTER = 'mymaster' REDIS_DB = 0 REDIS_KEYPREFIX = 'pybossa_cache' ## Default cache timeouts # Project cache AVATAR_TIMEOUT = 30 * 24 * 60 * 60 APP_TIMEOUT = 15 * 60 REGISTERED_USERS_TIMEOUT = 15 * 60 ANON_USERS_TIMEOUT = 5 * 60 * 60 STATS_FRONTPAGE_TIMEOUT = APP_TIMEOUT STATS_APP_TIMEOUT = 12 * 60 * 60 STATS_DRAFT_TIMEOUT = 24 * 60 * 60 N_APPS_PER_CATEGORY_TIMEOUT = 60 * 60 BROWSE_TASKS_TIMEOUT = 3 * 60 * 60 # Category cache CATEGORY_TIMEOUT = 24 * 60 * 60 # User cache USER_TIMEOUT = 15 * 60 USER_TOP_TIMEOUT = 24 * 60 * 60 USER_TOTAL_TIMEOUT = 24 * 60 * 60 # Project Presenters PRESENTERS = ["basic", "image", "sound", "video", "map", "pdf"] # Default Google Docs spreadsheet template tasks URLs TEMPLATE_TASKS = { 'image': "https://docs.google.com/spreadsheet/ccc?key=0AsNlt0WgPAHwdHFEN29mZUF0czJWMUhIejF6dWZXdkE&usp=sharing", 'sound': "https://docs.google.com/spreadsheet/ccc?key=0AsNlt0WgPAHwdEczcWduOXRUb1JUc1VGMmJtc2xXaXc&usp=sharing", 'video': "https://docs.google.com/spreadsheet/ccc?key=0AsNlt0WgPAHwdGZ2UGhxSTJjQl9YNVhfUVhGRUdoRWc&usp=sharing", 'map': "https://docs.google.com/spreadsheet/ccc?key=0AsNlt0WgPAHwdGZnbjdwcnhKRVNlN1dGXy0tTnNWWXc&usp=sharing", 'pdf': "https://docs.google.com/spreadsheet/ccc?key=0AsNlt0WgPAHwdEVVamc0R0hrcjlGdXRaUXlqRXlJMEE&usp=sharing"} # Rate limits default values LIMIT = 300 PER = 15 * 60 # Expiration time for password protected project cookies PASSWD_COOKIE_TIMEOUT = 60 * 30 # Expiration time for account confirmation / password recovery links ACCOUNT_LINK_EXPIRATION = 5 * 60 * 60 # Rate limits default values LIMIT = 300 PER = 15 * 60 # Disable new account confirmation (via email) ACCOUNT_CONFIRMATION_DISABLED = True # Send emails weekly update every WEEKLY_UPDATE_STATS = 'Sunday' # Enable Server Sent Events SSE = False # Pro user features. False will make the feature available to all regular users, # while True will make it available only to pro users PRO_FEATURES = { 'auditlog': True, 'webhooks': True, 'updated_exports': True, 'notify_blog_updates': True, 'project_weekly_report': True, 'autoimporter': True, 'better_stats': True } CORS_RESOURCES = {r"/api/*": {"origins": "*", "allow_headers": ['Content-Type', 'Authorization'], "max_age": 21600 }} FAILED_JOBS_RETRIES = 3 FAILED_JOBS_MAILS = 7 FULLTEXTSEARCH_LANGUAGE = 'english' STRICT_SLASHES = True # Background jobs default time outs MINUTE = 60 TIMEOUT = 10 * MINUTE # OneSignal GCM Sender ID # DO NOT MODIFY THIS GCM_SENDER_ID = "482941778795" # Unpublish inactive projects UNPUBLISH_PROJECTS = True # TTL for ZIP files of personal data TTL_ZIP_SEC_FILES = 3 # Default cryptopan key CRYPTOPAN_KEY = '32-char-str-for-AES-key-and-pad.' # Instruct PYBOSSA to generate absolute paths or not for avatars AVATAR_ABSOLUTE = True # Spam accounts to avoid SPAM = []
agpl-3.0
computersalat/ansible
test/support/integration/plugins/modules/postgresql_query.py
53
10477
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2017, Felix Archambault # Copyright: (c) 2019, Andrew Klychkov (@Andersson007) <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'supported_by': 'community', 'status': ['preview'] } DOCUMENTATION = r''' --- module: postgresql_query short_description: Run PostgreSQL queries description: - Runs arbitrary PostgreSQL queries. - Can run queries from SQL script files. - Does not run against backup files. Use M(postgresql_db) with I(state=restore) to run queries on files made by pg_dump/pg_dumpall utilities. version_added: '2.8' options: query: description: - SQL query to run. Variables can be escaped with psycopg2 syntax U(http://initd.org/psycopg/docs/usage.html). type: str positional_args: description: - List of values to be passed as positional arguments to the query. When the value is a list, it will be converted to PostgreSQL array. - Mutually exclusive with I(named_args). type: list elements: raw named_args: description: - Dictionary of key-value arguments to pass to the query. When the value is a list, it will be converted to PostgreSQL array. - Mutually exclusive with I(positional_args). type: dict path_to_script: description: - Path to SQL script on the remote host. - Returns result of the last query in the script. - Mutually exclusive with I(query). type: path session_role: description: - Switch to session_role after connecting. The specified session_role must be a role that the current login_user is a member of. - Permissions checking for SQL commands is carried out as though the session_role were the one that had logged in originally. type: str db: description: - Name of database to connect to and run queries against. type: str aliases: - login_db autocommit: description: - Execute in autocommit mode when the query can't be run inside a transaction block (e.g., VACUUM). - Mutually exclusive with I(check_mode). type: bool default: no version_added: '2.9' encoding: description: - Set the client encoding for the current session (e.g. C(UTF-8)). - The default is the encoding defined by the database. type: str version_added: '2.10' seealso: - module: postgresql_db author: - Felix Archambault (@archf) - Andrew Klychkov (@Andersson007) - Will Rouesnel (@wrouesnel) extends_documentation_fragment: postgres ''' EXAMPLES = r''' - name: Simple select query to acme db postgresql_query: db: acme query: SELECT version() - name: Select query to db acme with positional arguments and non-default credentials postgresql_query: db: acme login_user: django login_password: mysecretpass query: SELECT * FROM acme WHERE id = %s AND story = %s positional_args: - 1 - test - name: Select query to test_db with named_args postgresql_query: db: test_db query: SELECT * FROM test WHERE id = %(id_val)s AND story = %(story_val)s named_args: id_val: 1 story_val: test - name: Insert query to test_table in db test_db postgresql_query: db: test_db query: INSERT INTO test_table (id, story) VALUES (2, 'my_long_story') - name: Run queries from SQL script using UTF-8 client encoding for session postgresql_query: db: test_db path_to_script: /var/lib/pgsql/test.sql positional_args: - 1 encoding: UTF-8 - name: Example of using autocommit parameter postgresql_query: db: test_db query: VACUUM autocommit: yes - name: > Insert data to the column of array type using positional_args. Note that we use quotes here, the same as for passing JSON, etc. postgresql_query: query: INSERT INTO test_table (array_column) VALUES (%s) positional_args: - '{1,2,3}' # Pass list and string vars as positional_args - name: Set vars set_fact: my_list: - 1 - 2 - 3 my_arr: '{1, 2, 3}' - name: Select from test table by passing positional_args as arrays postgresql_query: query: SELECT * FROM test_array_table WHERE arr_col1 = %s AND arr_col2 = %s positional_args: - '{{ my_list }}' - '{{ my_arr|string }}' ''' RETURN = r''' query: description: Query that was tried to be executed. returned: always type: str sample: 'SELECT * FROM bar' statusmessage: description: Attribute containing the message returned by the command. returned: always type: str sample: 'INSERT 0 1' query_result: description: - List of dictionaries in column:value form representing returned rows. returned: changed type: list sample: [{"Column": "Value1"},{"Column": "Value2"}] rowcount: description: Number of affected rows. returned: changed type: int sample: 5 ''' try: from psycopg2 import ProgrammingError as Psycopg2ProgrammingError from psycopg2.extras import DictCursor except ImportError: # it is needed for checking 'no result to fetch' in main(), # psycopg2 availability will be checked by connect_to_db() into # ansible.module_utils.postgres pass from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.postgres import ( connect_to_db, get_conn_params, postgres_common_argument_spec, ) from ansible.module_utils._text import to_native from ansible.module_utils.six import iteritems # =========================================== # Module execution. # def list_to_pg_array(elem): """Convert the passed list to PostgreSQL array represented as a string. Args: elem (list): List that needs to be converted. Returns: elem (str): String representation of PostgreSQL array. """ elem = str(elem).strip('[]') elem = '{' + elem + '}' return elem def convert_elements_to_pg_arrays(obj): """Convert list elements of the passed object to PostgreSQL arrays represented as strings. Args: obj (dict or list): Object whose elements need to be converted. Returns: obj (dict or list): Object with converted elements. """ if isinstance(obj, dict): for (key, elem) in iteritems(obj): if isinstance(elem, list): obj[key] = list_to_pg_array(elem) elif isinstance(obj, list): for i, elem in enumerate(obj): if isinstance(elem, list): obj[i] = list_to_pg_array(elem) return obj def main(): argument_spec = postgres_common_argument_spec() argument_spec.update( query=dict(type='str'), db=dict(type='str', aliases=['login_db']), positional_args=dict(type='list', elements='raw'), named_args=dict(type='dict'), session_role=dict(type='str'), path_to_script=dict(type='path'), autocommit=dict(type='bool', default=False), encoding=dict(type='str'), ) module = AnsibleModule( argument_spec=argument_spec, mutually_exclusive=(('positional_args', 'named_args'),), supports_check_mode=True, ) query = module.params["query"] positional_args = module.params["positional_args"] named_args = module.params["named_args"] path_to_script = module.params["path_to_script"] autocommit = module.params["autocommit"] encoding = module.params["encoding"] if autocommit and module.check_mode: module.fail_json(msg="Using autocommit is mutually exclusive with check_mode") if path_to_script and query: module.fail_json(msg="path_to_script is mutually exclusive with query") if positional_args: positional_args = convert_elements_to_pg_arrays(positional_args) elif named_args: named_args = convert_elements_to_pg_arrays(named_args) if path_to_script: try: with open(path_to_script, 'rb') as f: query = to_native(f.read()) except Exception as e: module.fail_json(msg="Cannot read file '%s' : %s" % (path_to_script, to_native(e))) conn_params = get_conn_params(module, module.params) db_connection = connect_to_db(module, conn_params, autocommit=autocommit) if encoding is not None: db_connection.set_client_encoding(encoding) cursor = db_connection.cursor(cursor_factory=DictCursor) # Prepare args: if module.params.get("positional_args"): arguments = module.params["positional_args"] elif module.params.get("named_args"): arguments = module.params["named_args"] else: arguments = None # Set defaults: changed = False # Execute query: try: cursor.execute(query, arguments) except Exception as e: if not autocommit: db_connection.rollback() cursor.close() db_connection.close() module.fail_json(msg="Cannot execute SQL '%s' %s: %s" % (query, arguments, to_native(e))) statusmessage = cursor.statusmessage rowcount = cursor.rowcount try: query_result = [dict(row) for row in cursor.fetchall()] except Psycopg2ProgrammingError as e: if to_native(e) == 'no results to fetch': query_result = {} except Exception as e: module.fail_json(msg="Cannot fetch rows from cursor: %s" % to_native(e)) if 'SELECT' not in statusmessage: if 'UPDATE' in statusmessage or 'INSERT' in statusmessage or 'DELETE' in statusmessage: s = statusmessage.split() if len(s) == 3: if statusmessage.split()[2] != '0': changed = True elif len(s) == 2: if statusmessage.split()[1] != '0': changed = True else: changed = True else: changed = True if module.check_mode: db_connection.rollback() else: if not autocommit: db_connection.commit() kw = dict( changed=changed, query=cursor.query, statusmessage=statusmessage, query_result=query_result, rowcount=rowcount if rowcount >= 0 else 0, ) cursor.close() db_connection.close() module.exit_json(**kw) if __name__ == '__main__': main()
gpl-3.0
Naoto-Imamachi/MIRAGE
scripts/module/preparation/phastcons_score_list.py
1
3683
#!usr/bin/env python import sys import re import shelve from parameter.common_parameters import common_parameters import utils.setting_utils as utils utils.now_time("phastcons_score_list script starting...") p = utils.Bunch(common_parameters) def main(): utils.now_time("Input_file: " + p.phastcons_score_list_db_input) utils.now_time("Reference_file: " + p.phastcons_score_list_reference) utils.now_time("Output_file: " + p.phastcons_score_list_db_output) output_merge = p.phastcons_score_list_db_output + 'phastCons46way_Refseq_for_MIRAGE_CDS.db' #'phastCons46way_miRBase_v21_hg38Tohg19_for_MIRAGE.db' output_merge_shelve = shelve.open(output_merge) #for x in ['chr21']: for x in ['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15','chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX','chrY','chrM']: ref_s = p.phastcons_score_list_reference #mirBase, Refseq etc... ref_file = open(ref_s,'r') input_s = p.phastcons_score_list_db_input + x + '.phastCons46way_Refseq_CDS.db' #'.phastCons46way_miRBase_v21_hg38Tohg19.db' output_s = p.phastcons_score_list_db_output + x + '.phastCons46way_Refseq_for_MIRAGE_CDS.db' #'.phastCons46way_miRBase_v21_hg38Tohg19_for_MIRAGE.db' input_shelve = shelve.open(input_s) output_shelve = shelve.open(output_s) score_list_dict = {} for line in ref_file: line = line.rstrip() data = line.split("\t") chrom = data[0] if not chrom == x: continue strand = data[5] if len(data) >= 12: #12bed format exon_block = data[10].split(',') exon_block.pop() #Remove the last item '' exon_st = data[11].split(',') exon_st.pop() #Remove the last item '' name = data[3] score_list_dict[name] = [] for y in range(len(exon_block)): st = int(data[1]) + int(exon_st[y]) ed = int(data[1]) + int(exon_st[y]) + int(exon_block[y]) length = ed - st for z in range(length): score = input_shelve[str(st)] score_list_dict[name].append(score) st += 1 if strand == '-': rev_score = score_list_dict[name][::-1] score_list_dict[name] = rev_score elif len(data) >= 3: #6bed format st = int(data[1]) ed = int(data[2]) length = ed - st name = data[3] score_list_dict[name] = [] for z in range(length): score = input_shelve[str(st)] score_list_dict[name].append(score) st += 1 if strand == '-': rev_score = score_list_dict[name][::-1] score_list_dict[name] = rev_score else: print('ERROR: Your BED format file have less than three column.') print ('BED format file need to have at least three column [chr, st, ed]...') sys.exit(1) output_shelve.update(score_list_dict) output_merge_shelve.update(score_list_dict) input_shelve.close() output_shelve.close() utils.now_time("phastcons_score_list script was successfully finished!!") output_merge_shelve.close() if __name__ == '__main__': main()
mit
guewen/odoo
addons/project_issue/res_config.py
441
1492
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Business Applications # Copyright (C) 2004-2012 OpenERP S.A. (<http://openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv class project_issue_settings(osv.osv_memory): _name = 'project.config.settings' _inherit = ['project.config.settings', 'fetchmail.config.settings'] _columns = { 'fetchmail_issue': fields.boolean("Create issues from an incoming email account ", fetchmail_model='project.issue', fetchmail_name='Incoming Issues', help="""Allows you to configure your incoming mail server, and create issues from incoming emails."""), }
agpl-3.0
matthiasdiener/spack
var/spack/repos/builtin/packages/paml/package.py
5
2221
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Paml(MakefilePackage): """PAML is a package of programs for phylogenetic analyses of DNA or protein sewuences using maximum likelihood.""" homepage = "http://abacus.gene.ucl.ac.uk/software/paml.html" url = "http://abacus.gene.ucl.ac.uk/software/paml4.9e.tgz" version('4.9e', 'ac5a062bfea1f4eaac79008434030acf') build_directory = 'src' def install(self, spec, prefix): mkdirp(prefix.bin) with working_dir(self.build_directory): install('baseml', prefix.bin) install('basemlg', prefix.bin) install('chi2', prefix.bin) install('codeml', prefix.bin) install('evolver', prefix.bin) install('infinitesites', prefix.bin) install('mcmctree', prefix.bin) install('pamp', prefix.bin) install('yn00', prefix.bin) install_tree('dat', prefix.dat) install_tree('Technical', prefix.Technical)
lgpl-2.1
nyasara/azuremono-docker
IronPython-2.7.4/Lib/encodings/cp861.py
93
35587
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP861.TXT' with gencodec.py. """#" import codecs ### Codec APIs class Codec(codecs.Codec): def encode(self,input,errors='strict'): return codecs.charmap_encode(input,errors,encoding_map) def decode(self,input,errors='strict'): return codecs.charmap_decode(input,errors,decoding_table) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return codecs.charmap_encode(input,self.errors,encoding_map)[0] class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): return codecs.charmap_decode(input,self.errors,decoding_table)[0] class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='cp861', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter, ) ### Decoding Map decoding_map = codecs.make_identity_dict(range(256)) decoding_map.update({ 0x0080: 0x00c7, # LATIN CAPITAL LETTER C WITH CEDILLA 0x0081: 0x00fc, # LATIN SMALL LETTER U WITH DIAERESIS 0x0082: 0x00e9, # LATIN SMALL LETTER E WITH ACUTE 0x0083: 0x00e2, # LATIN SMALL LETTER A WITH CIRCUMFLEX 0x0084: 0x00e4, # LATIN SMALL LETTER A WITH DIAERESIS 0x0085: 0x00e0, # LATIN SMALL LETTER A WITH GRAVE 0x0086: 0x00e5, # LATIN SMALL LETTER A WITH RING ABOVE 0x0087: 0x00e7, # LATIN SMALL LETTER C WITH CEDILLA 0x0088: 0x00ea, # LATIN SMALL LETTER E WITH CIRCUMFLEX 0x0089: 0x00eb, # LATIN SMALL LETTER E WITH DIAERESIS 0x008a: 0x00e8, # LATIN SMALL LETTER E WITH GRAVE 0x008b: 0x00d0, # LATIN CAPITAL LETTER ETH 0x008c: 0x00f0, # LATIN SMALL LETTER ETH 0x008d: 0x00de, # LATIN CAPITAL LETTER THORN 0x008e: 0x00c4, # LATIN CAPITAL LETTER A WITH DIAERESIS 0x008f: 0x00c5, # LATIN CAPITAL LETTER A WITH RING ABOVE 0x0090: 0x00c9, # LATIN CAPITAL LETTER E WITH ACUTE 0x0091: 0x00e6, # LATIN SMALL LIGATURE AE 0x0092: 0x00c6, # LATIN CAPITAL LIGATURE AE 0x0093: 0x00f4, # LATIN SMALL LETTER O WITH CIRCUMFLEX 0x0094: 0x00f6, # LATIN SMALL LETTER O WITH DIAERESIS 0x0095: 0x00fe, # LATIN SMALL LETTER THORN 0x0096: 0x00fb, # LATIN SMALL LETTER U WITH CIRCUMFLEX 0x0097: 0x00dd, # LATIN CAPITAL LETTER Y WITH ACUTE 0x0098: 0x00fd, # LATIN SMALL LETTER Y WITH ACUTE 0x0099: 0x00d6, # LATIN CAPITAL LETTER O WITH DIAERESIS 0x009a: 0x00dc, # LATIN CAPITAL LETTER U WITH DIAERESIS 0x009b: 0x00f8, # LATIN SMALL LETTER O WITH STROKE 0x009c: 0x00a3, # POUND SIGN 0x009d: 0x00d8, # LATIN CAPITAL LETTER O WITH STROKE 0x009e: 0x20a7, # PESETA SIGN 0x009f: 0x0192, # LATIN SMALL LETTER F WITH HOOK 0x00a0: 0x00e1, # LATIN SMALL LETTER A WITH ACUTE 0x00a1: 0x00ed, # LATIN SMALL LETTER I WITH ACUTE 0x00a2: 0x00f3, # LATIN SMALL LETTER O WITH ACUTE 0x00a3: 0x00fa, # LATIN SMALL LETTER U WITH ACUTE 0x00a4: 0x00c1, # LATIN CAPITAL LETTER A WITH ACUTE 0x00a5: 0x00cd, # LATIN CAPITAL LETTER I WITH ACUTE 0x00a6: 0x00d3, # LATIN CAPITAL LETTER O WITH ACUTE 0x00a7: 0x00da, # LATIN CAPITAL LETTER U WITH ACUTE 0x00a8: 0x00bf, # INVERTED QUESTION MARK 0x00a9: 0x2310, # REVERSED NOT SIGN 0x00aa: 0x00ac, # NOT SIGN 0x00ab: 0x00bd, # VULGAR FRACTION ONE HALF 0x00ac: 0x00bc, # VULGAR FRACTION ONE QUARTER 0x00ad: 0x00a1, # INVERTED EXCLAMATION MARK 0x00ae: 0x00ab, # LEFT-POINTING DOUBLE ANGLE QUOTATION MARK 0x00af: 0x00bb, # RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK 0x00b0: 0x2591, # LIGHT SHADE 0x00b1: 0x2592, # MEDIUM SHADE 0x00b2: 0x2593, # DARK SHADE 0x00b3: 0x2502, # BOX DRAWINGS LIGHT VERTICAL 0x00b4: 0x2524, # BOX DRAWINGS LIGHT VERTICAL AND LEFT 0x00b5: 0x2561, # BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE 0x00b6: 0x2562, # BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE 0x00b7: 0x2556, # BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE 0x00b8: 0x2555, # BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE 0x00b9: 0x2563, # BOX DRAWINGS DOUBLE VERTICAL AND LEFT 0x00ba: 0x2551, # BOX DRAWINGS DOUBLE VERTICAL 0x00bb: 0x2557, # BOX DRAWINGS DOUBLE DOWN AND LEFT 0x00bc: 0x255d, # BOX DRAWINGS DOUBLE UP AND LEFT 0x00bd: 0x255c, # BOX DRAWINGS UP DOUBLE AND LEFT SINGLE 0x00be: 0x255b, # BOX DRAWINGS UP SINGLE AND LEFT DOUBLE 0x00bf: 0x2510, # BOX DRAWINGS LIGHT DOWN AND LEFT 0x00c0: 0x2514, # BOX DRAWINGS LIGHT UP AND RIGHT 0x00c1: 0x2534, # BOX DRAWINGS LIGHT UP AND HORIZONTAL 0x00c2: 0x252c, # BOX DRAWINGS LIGHT DOWN AND HORIZONTAL 0x00c3: 0x251c, # BOX DRAWINGS LIGHT VERTICAL AND RIGHT 0x00c4: 0x2500, # BOX DRAWINGS LIGHT HORIZONTAL 0x00c5: 0x253c, # BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL 0x00c6: 0x255e, # BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE 0x00c7: 0x255f, # BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE 0x00c8: 0x255a, # BOX DRAWINGS DOUBLE UP AND RIGHT 0x00c9: 0x2554, # BOX DRAWINGS DOUBLE DOWN AND RIGHT 0x00ca: 0x2569, # BOX DRAWINGS DOUBLE UP AND HORIZONTAL 0x00cb: 0x2566, # BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL 0x00cc: 0x2560, # BOX DRAWINGS DOUBLE VERTICAL AND RIGHT 0x00cd: 0x2550, # BOX DRAWINGS DOUBLE HORIZONTAL 0x00ce: 0x256c, # BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL 0x00cf: 0x2567, # BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE 0x00d0: 0x2568, # BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE 0x00d1: 0x2564, # BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE 0x00d2: 0x2565, # BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE 0x00d3: 0x2559, # BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE 0x00d4: 0x2558, # BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE 0x00d5: 0x2552, # BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE 0x00d6: 0x2553, # BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE 0x00d7: 0x256b, # BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE 0x00d8: 0x256a, # BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE 0x00d9: 0x2518, # BOX DRAWINGS LIGHT UP AND LEFT 0x00da: 0x250c, # BOX DRAWINGS LIGHT DOWN AND RIGHT 0x00db: 0x2588, # FULL BLOCK 0x00dc: 0x2584, # LOWER HALF BLOCK 0x00dd: 0x258c, # LEFT HALF BLOCK 0x00de: 0x2590, # RIGHT HALF BLOCK 0x00df: 0x2580, # UPPER HALF BLOCK 0x00e0: 0x03b1, # GREEK SMALL LETTER ALPHA 0x00e1: 0x00df, # LATIN SMALL LETTER SHARP S 0x00e2: 0x0393, # GREEK CAPITAL LETTER GAMMA 0x00e3: 0x03c0, # GREEK SMALL LETTER PI 0x00e4: 0x03a3, # GREEK CAPITAL LETTER SIGMA 0x00e5: 0x03c3, # GREEK SMALL LETTER SIGMA 0x00e6: 0x00b5, # MICRO SIGN 0x00e7: 0x03c4, # GREEK SMALL LETTER TAU 0x00e8: 0x03a6, # GREEK CAPITAL LETTER PHI 0x00e9: 0x0398, # GREEK CAPITAL LETTER THETA 0x00ea: 0x03a9, # GREEK CAPITAL LETTER OMEGA 0x00eb: 0x03b4, # GREEK SMALL LETTER DELTA 0x00ec: 0x221e, # INFINITY 0x00ed: 0x03c6, # GREEK SMALL LETTER PHI 0x00ee: 0x03b5, # GREEK SMALL LETTER EPSILON 0x00ef: 0x2229, # INTERSECTION 0x00f0: 0x2261, # IDENTICAL TO 0x00f1: 0x00b1, # PLUS-MINUS SIGN 0x00f2: 0x2265, # GREATER-THAN OR EQUAL TO 0x00f3: 0x2264, # LESS-THAN OR EQUAL TO 0x00f4: 0x2320, # TOP HALF INTEGRAL 0x00f5: 0x2321, # BOTTOM HALF INTEGRAL 0x00f6: 0x00f7, # DIVISION SIGN 0x00f7: 0x2248, # ALMOST EQUAL TO 0x00f8: 0x00b0, # DEGREE SIGN 0x00f9: 0x2219, # BULLET OPERATOR 0x00fa: 0x00b7, # MIDDLE DOT 0x00fb: 0x221a, # SQUARE ROOT 0x00fc: 0x207f, # SUPERSCRIPT LATIN SMALL LETTER N 0x00fd: 0x00b2, # SUPERSCRIPT TWO 0x00fe: 0x25a0, # BLACK SQUARE 0x00ff: 0x00a0, # NO-BREAK SPACE }) ### Decoding Table decoding_table = ( u'\x00' # 0x0000 -> NULL u'\x01' # 0x0001 -> START OF HEADING u'\x02' # 0x0002 -> START OF TEXT u'\x03' # 0x0003 -> END OF TEXT u'\x04' # 0x0004 -> END OF TRANSMISSION u'\x05' # 0x0005 -> ENQUIRY u'\x06' # 0x0006 -> ACKNOWLEDGE u'\x07' # 0x0007 -> BELL u'\x08' # 0x0008 -> BACKSPACE u'\t' # 0x0009 -> HORIZONTAL TABULATION u'\n' # 0x000a -> LINE FEED u'\x0b' # 0x000b -> VERTICAL TABULATION u'\x0c' # 0x000c -> FORM FEED u'\r' # 0x000d -> CARRIAGE RETURN u'\x0e' # 0x000e -> SHIFT OUT u'\x0f' # 0x000f -> SHIFT IN u'\x10' # 0x0010 -> DATA LINK ESCAPE u'\x11' # 0x0011 -> DEVICE CONTROL ONE u'\x12' # 0x0012 -> DEVICE CONTROL TWO u'\x13' # 0x0013 -> DEVICE CONTROL THREE u'\x14' # 0x0014 -> DEVICE CONTROL FOUR u'\x15' # 0x0015 -> NEGATIVE ACKNOWLEDGE u'\x16' # 0x0016 -> SYNCHRONOUS IDLE u'\x17' # 0x0017 -> END OF TRANSMISSION BLOCK u'\x18' # 0x0018 -> CANCEL u'\x19' # 0x0019 -> END OF MEDIUM u'\x1a' # 0x001a -> SUBSTITUTE u'\x1b' # 0x001b -> ESCAPE u'\x1c' # 0x001c -> FILE SEPARATOR u'\x1d' # 0x001d -> GROUP SEPARATOR u'\x1e' # 0x001e -> RECORD SEPARATOR u'\x1f' # 0x001f -> UNIT SEPARATOR u' ' # 0x0020 -> SPACE u'!' # 0x0021 -> EXCLAMATION MARK u'"' # 0x0022 -> QUOTATION MARK u'#' # 0x0023 -> NUMBER SIGN u'$' # 0x0024 -> DOLLAR SIGN u'%' # 0x0025 -> PERCENT SIGN u'&' # 0x0026 -> AMPERSAND u"'" # 0x0027 -> APOSTROPHE u'(' # 0x0028 -> LEFT PARENTHESIS u')' # 0x0029 -> RIGHT PARENTHESIS u'*' # 0x002a -> ASTERISK u'+' # 0x002b -> PLUS SIGN u',' # 0x002c -> COMMA u'-' # 0x002d -> HYPHEN-MINUS u'.' # 0x002e -> FULL STOP u'/' # 0x002f -> SOLIDUS u'0' # 0x0030 -> DIGIT ZERO u'1' # 0x0031 -> DIGIT ONE u'2' # 0x0032 -> DIGIT TWO u'3' # 0x0033 -> DIGIT THREE u'4' # 0x0034 -> DIGIT FOUR u'5' # 0x0035 -> DIGIT FIVE u'6' # 0x0036 -> DIGIT SIX u'7' # 0x0037 -> DIGIT SEVEN u'8' # 0x0038 -> DIGIT EIGHT u'9' # 0x0039 -> DIGIT NINE u':' # 0x003a -> COLON u';' # 0x003b -> SEMICOLON u'<' # 0x003c -> LESS-THAN SIGN u'=' # 0x003d -> EQUALS SIGN u'>' # 0x003e -> GREATER-THAN SIGN u'?' # 0x003f -> QUESTION MARK u'@' # 0x0040 -> COMMERCIAL AT u'A' # 0x0041 -> LATIN CAPITAL LETTER A u'B' # 0x0042 -> LATIN CAPITAL LETTER B u'C' # 0x0043 -> LATIN CAPITAL LETTER C u'D' # 0x0044 -> LATIN CAPITAL LETTER D u'E' # 0x0045 -> LATIN CAPITAL LETTER E u'F' # 0x0046 -> LATIN CAPITAL LETTER F u'G' # 0x0047 -> LATIN CAPITAL LETTER G u'H' # 0x0048 -> LATIN CAPITAL LETTER H u'I' # 0x0049 -> LATIN CAPITAL LETTER I u'J' # 0x004a -> LATIN CAPITAL LETTER J u'K' # 0x004b -> LATIN CAPITAL LETTER K u'L' # 0x004c -> LATIN CAPITAL LETTER L u'M' # 0x004d -> LATIN CAPITAL LETTER M u'N' # 0x004e -> LATIN CAPITAL LETTER N u'O' # 0x004f -> LATIN CAPITAL LETTER O u'P' # 0x0050 -> LATIN CAPITAL LETTER P u'Q' # 0x0051 -> LATIN CAPITAL LETTER Q u'R' # 0x0052 -> LATIN CAPITAL LETTER R u'S' # 0x0053 -> LATIN CAPITAL LETTER S u'T' # 0x0054 -> LATIN CAPITAL LETTER T u'U' # 0x0055 -> LATIN CAPITAL LETTER U u'V' # 0x0056 -> LATIN CAPITAL LETTER V u'W' # 0x0057 -> LATIN CAPITAL LETTER W u'X' # 0x0058 -> LATIN CAPITAL LETTER X u'Y' # 0x0059 -> LATIN CAPITAL LETTER Y u'Z' # 0x005a -> LATIN CAPITAL LETTER Z u'[' # 0x005b -> LEFT SQUARE BRACKET u'\\' # 0x005c -> REVERSE SOLIDUS u']' # 0x005d -> RIGHT SQUARE BRACKET u'^' # 0x005e -> CIRCUMFLEX ACCENT u'_' # 0x005f -> LOW LINE u'`' # 0x0060 -> GRAVE ACCENT u'a' # 0x0061 -> LATIN SMALL LETTER A u'b' # 0x0062 -> LATIN SMALL LETTER B u'c' # 0x0063 -> LATIN SMALL LETTER C u'd' # 0x0064 -> LATIN SMALL LETTER D u'e' # 0x0065 -> LATIN SMALL LETTER E u'f' # 0x0066 -> LATIN SMALL LETTER F u'g' # 0x0067 -> LATIN SMALL LETTER G u'h' # 0x0068 -> LATIN SMALL LETTER H u'i' # 0x0069 -> LATIN SMALL LETTER I u'j' # 0x006a -> LATIN SMALL LETTER J u'k' # 0x006b -> LATIN SMALL LETTER K u'l' # 0x006c -> LATIN SMALL LETTER L u'm' # 0x006d -> LATIN SMALL LETTER M u'n' # 0x006e -> LATIN SMALL LETTER N u'o' # 0x006f -> LATIN SMALL LETTER O u'p' # 0x0070 -> LATIN SMALL LETTER P u'q' # 0x0071 -> LATIN SMALL LETTER Q u'r' # 0x0072 -> LATIN SMALL LETTER R u's' # 0x0073 -> LATIN SMALL LETTER S u't' # 0x0074 -> LATIN SMALL LETTER T u'u' # 0x0075 -> LATIN SMALL LETTER U u'v' # 0x0076 -> LATIN SMALL LETTER V u'w' # 0x0077 -> LATIN SMALL LETTER W u'x' # 0x0078 -> LATIN SMALL LETTER X u'y' # 0x0079 -> LATIN SMALL LETTER Y u'z' # 0x007a -> LATIN SMALL LETTER Z u'{' # 0x007b -> LEFT CURLY BRACKET u'|' # 0x007c -> VERTICAL LINE u'}' # 0x007d -> RIGHT CURLY BRACKET u'~' # 0x007e -> TILDE u'\x7f' # 0x007f -> DELETE u'\xc7' # 0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA u'\xfc' # 0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS u'\xe9' # 0x0082 -> LATIN SMALL LETTER E WITH ACUTE u'\xe2' # 0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX u'\xe4' # 0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS u'\xe0' # 0x0085 -> LATIN SMALL LETTER A WITH GRAVE u'\xe5' # 0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE u'\xe7' # 0x0087 -> LATIN SMALL LETTER C WITH CEDILLA u'\xea' # 0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX u'\xeb' # 0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS u'\xe8' # 0x008a -> LATIN SMALL LETTER E WITH GRAVE u'\xd0' # 0x008b -> LATIN CAPITAL LETTER ETH u'\xf0' # 0x008c -> LATIN SMALL LETTER ETH u'\xde' # 0x008d -> LATIN CAPITAL LETTER THORN u'\xc4' # 0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS u'\xc5' # 0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE u'\xc9' # 0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE u'\xe6' # 0x0091 -> LATIN SMALL LIGATURE AE u'\xc6' # 0x0092 -> LATIN CAPITAL LIGATURE AE u'\xf4' # 0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX u'\xf6' # 0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS u'\xfe' # 0x0095 -> LATIN SMALL LETTER THORN u'\xfb' # 0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX u'\xdd' # 0x0097 -> LATIN CAPITAL LETTER Y WITH ACUTE u'\xfd' # 0x0098 -> LATIN SMALL LETTER Y WITH ACUTE u'\xd6' # 0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS u'\xdc' # 0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS u'\xf8' # 0x009b -> LATIN SMALL LETTER O WITH STROKE u'\xa3' # 0x009c -> POUND SIGN u'\xd8' # 0x009d -> LATIN CAPITAL LETTER O WITH STROKE u'\u20a7' # 0x009e -> PESETA SIGN u'\u0192' # 0x009f -> LATIN SMALL LETTER F WITH HOOK u'\xe1' # 0x00a0 -> LATIN SMALL LETTER A WITH ACUTE u'\xed' # 0x00a1 -> LATIN SMALL LETTER I WITH ACUTE u'\xf3' # 0x00a2 -> LATIN SMALL LETTER O WITH ACUTE u'\xfa' # 0x00a3 -> LATIN SMALL LETTER U WITH ACUTE u'\xc1' # 0x00a4 -> LATIN CAPITAL LETTER A WITH ACUTE u'\xcd' # 0x00a5 -> LATIN CAPITAL LETTER I WITH ACUTE u'\xd3' # 0x00a6 -> LATIN CAPITAL LETTER O WITH ACUTE u'\xda' # 0x00a7 -> LATIN CAPITAL LETTER U WITH ACUTE u'\xbf' # 0x00a8 -> INVERTED QUESTION MARK u'\u2310' # 0x00a9 -> REVERSED NOT SIGN u'\xac' # 0x00aa -> NOT SIGN u'\xbd' # 0x00ab -> VULGAR FRACTION ONE HALF u'\xbc' # 0x00ac -> VULGAR FRACTION ONE QUARTER u'\xa1' # 0x00ad -> INVERTED EXCLAMATION MARK u'\xab' # 0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK u'\xbb' # 0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK u'\u2591' # 0x00b0 -> LIGHT SHADE u'\u2592' # 0x00b1 -> MEDIUM SHADE u'\u2593' # 0x00b2 -> DARK SHADE u'\u2502' # 0x00b3 -> BOX DRAWINGS LIGHT VERTICAL u'\u2524' # 0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT u'\u2561' # 0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE u'\u2562' # 0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE u'\u2556' # 0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE u'\u2555' # 0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE u'\u2563' # 0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT u'\u2551' # 0x00ba -> BOX DRAWINGS DOUBLE VERTICAL u'\u2557' # 0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT u'\u255d' # 0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT u'\u255c' # 0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE u'\u255b' # 0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE u'\u2510' # 0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT u'\u2514' # 0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT u'\u2534' # 0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL u'\u252c' # 0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL u'\u251c' # 0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT u'\u2500' # 0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL u'\u253c' # 0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL u'\u255e' # 0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE u'\u255f' # 0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE u'\u255a' # 0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT u'\u2554' # 0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT u'\u2569' # 0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL u'\u2566' # 0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL u'\u2560' # 0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT u'\u2550' # 0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL u'\u256c' # 0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL u'\u2567' # 0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE u'\u2568' # 0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE u'\u2564' # 0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE u'\u2565' # 0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE u'\u2559' # 0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE u'\u2558' # 0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE u'\u2552' # 0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE u'\u2553' # 0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE u'\u256b' # 0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE u'\u256a' # 0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE u'\u2518' # 0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT u'\u250c' # 0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT u'\u2588' # 0x00db -> FULL BLOCK u'\u2584' # 0x00dc -> LOWER HALF BLOCK u'\u258c' # 0x00dd -> LEFT HALF BLOCK u'\u2590' # 0x00de -> RIGHT HALF BLOCK u'\u2580' # 0x00df -> UPPER HALF BLOCK u'\u03b1' # 0x00e0 -> GREEK SMALL LETTER ALPHA u'\xdf' # 0x00e1 -> LATIN SMALL LETTER SHARP S u'\u0393' # 0x00e2 -> GREEK CAPITAL LETTER GAMMA u'\u03c0' # 0x00e3 -> GREEK SMALL LETTER PI u'\u03a3' # 0x00e4 -> GREEK CAPITAL LETTER SIGMA u'\u03c3' # 0x00e5 -> GREEK SMALL LETTER SIGMA u'\xb5' # 0x00e6 -> MICRO SIGN u'\u03c4' # 0x00e7 -> GREEK SMALL LETTER TAU u'\u03a6' # 0x00e8 -> GREEK CAPITAL LETTER PHI u'\u0398' # 0x00e9 -> GREEK CAPITAL LETTER THETA u'\u03a9' # 0x00ea -> GREEK CAPITAL LETTER OMEGA u'\u03b4' # 0x00eb -> GREEK SMALL LETTER DELTA u'\u221e' # 0x00ec -> INFINITY u'\u03c6' # 0x00ed -> GREEK SMALL LETTER PHI u'\u03b5' # 0x00ee -> GREEK SMALL LETTER EPSILON u'\u2229' # 0x00ef -> INTERSECTION u'\u2261' # 0x00f0 -> IDENTICAL TO u'\xb1' # 0x00f1 -> PLUS-MINUS SIGN u'\u2265' # 0x00f2 -> GREATER-THAN OR EQUAL TO u'\u2264' # 0x00f3 -> LESS-THAN OR EQUAL TO u'\u2320' # 0x00f4 -> TOP HALF INTEGRAL u'\u2321' # 0x00f5 -> BOTTOM HALF INTEGRAL u'\xf7' # 0x00f6 -> DIVISION SIGN u'\u2248' # 0x00f7 -> ALMOST EQUAL TO u'\xb0' # 0x00f8 -> DEGREE SIGN u'\u2219' # 0x00f9 -> BULLET OPERATOR u'\xb7' # 0x00fa -> MIDDLE DOT u'\u221a' # 0x00fb -> SQUARE ROOT u'\u207f' # 0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N u'\xb2' # 0x00fd -> SUPERSCRIPT TWO u'\u25a0' # 0x00fe -> BLACK SQUARE u'\xa0' # 0x00ff -> NO-BREAK SPACE ) ### Encoding Map encoding_map = { 0x0000: 0x0000, # NULL 0x0001: 0x0001, # START OF HEADING 0x0002: 0x0002, # START OF TEXT 0x0003: 0x0003, # END OF TEXT 0x0004: 0x0004, # END OF TRANSMISSION 0x0005: 0x0005, # ENQUIRY 0x0006: 0x0006, # ACKNOWLEDGE 0x0007: 0x0007, # BELL 0x0008: 0x0008, # BACKSPACE 0x0009: 0x0009, # HORIZONTAL TABULATION 0x000a: 0x000a, # LINE FEED 0x000b: 0x000b, # VERTICAL TABULATION 0x000c: 0x000c, # FORM FEED 0x000d: 0x000d, # CARRIAGE RETURN 0x000e: 0x000e, # SHIFT OUT 0x000f: 0x000f, # SHIFT IN 0x0010: 0x0010, # DATA LINK ESCAPE 0x0011: 0x0011, # DEVICE CONTROL ONE 0x0012: 0x0012, # DEVICE CONTROL TWO 0x0013: 0x0013, # DEVICE CONTROL THREE 0x0014: 0x0014, # DEVICE CONTROL FOUR 0x0015: 0x0015, # NEGATIVE ACKNOWLEDGE 0x0016: 0x0016, # SYNCHRONOUS IDLE 0x0017: 0x0017, # END OF TRANSMISSION BLOCK 0x0018: 0x0018, # CANCEL 0x0019: 0x0019, # END OF MEDIUM 0x001a: 0x001a, # SUBSTITUTE 0x001b: 0x001b, # ESCAPE 0x001c: 0x001c, # FILE SEPARATOR 0x001d: 0x001d, # GROUP SEPARATOR 0x001e: 0x001e, # RECORD SEPARATOR 0x001f: 0x001f, # UNIT SEPARATOR 0x0020: 0x0020, # SPACE 0x0021: 0x0021, # EXCLAMATION MARK 0x0022: 0x0022, # QUOTATION MARK 0x0023: 0x0023, # NUMBER SIGN 0x0024: 0x0024, # DOLLAR SIGN 0x0025: 0x0025, # PERCENT SIGN 0x0026: 0x0026, # AMPERSAND 0x0027: 0x0027, # APOSTROPHE 0x0028: 0x0028, # LEFT PARENTHESIS 0x0029: 0x0029, # RIGHT PARENTHESIS 0x002a: 0x002a, # ASTERISK 0x002b: 0x002b, # PLUS SIGN 0x002c: 0x002c, # COMMA 0x002d: 0x002d, # HYPHEN-MINUS 0x002e: 0x002e, # FULL STOP 0x002f: 0x002f, # SOLIDUS 0x0030: 0x0030, # DIGIT ZERO 0x0031: 0x0031, # DIGIT ONE 0x0032: 0x0032, # DIGIT TWO 0x0033: 0x0033, # DIGIT THREE 0x0034: 0x0034, # DIGIT FOUR 0x0035: 0x0035, # DIGIT FIVE 0x0036: 0x0036, # DIGIT SIX 0x0037: 0x0037, # DIGIT SEVEN 0x0038: 0x0038, # DIGIT EIGHT 0x0039: 0x0039, # DIGIT NINE 0x003a: 0x003a, # COLON 0x003b: 0x003b, # SEMICOLON 0x003c: 0x003c, # LESS-THAN SIGN 0x003d: 0x003d, # EQUALS SIGN 0x003e: 0x003e, # GREATER-THAN SIGN 0x003f: 0x003f, # QUESTION MARK 0x0040: 0x0040, # COMMERCIAL AT 0x0041: 0x0041, # LATIN CAPITAL LETTER A 0x0042: 0x0042, # LATIN CAPITAL LETTER B 0x0043: 0x0043, # LATIN CAPITAL LETTER C 0x0044: 0x0044, # LATIN CAPITAL LETTER D 0x0045: 0x0045, # LATIN CAPITAL LETTER E 0x0046: 0x0046, # LATIN CAPITAL LETTER F 0x0047: 0x0047, # LATIN CAPITAL LETTER G 0x0048: 0x0048, # LATIN CAPITAL LETTER H 0x0049: 0x0049, # LATIN CAPITAL LETTER I 0x004a: 0x004a, # LATIN CAPITAL LETTER J 0x004b: 0x004b, # LATIN CAPITAL LETTER K 0x004c: 0x004c, # LATIN CAPITAL LETTER L 0x004d: 0x004d, # LATIN CAPITAL LETTER M 0x004e: 0x004e, # LATIN CAPITAL LETTER N 0x004f: 0x004f, # LATIN CAPITAL LETTER O 0x0050: 0x0050, # LATIN CAPITAL LETTER P 0x0051: 0x0051, # LATIN CAPITAL LETTER Q 0x0052: 0x0052, # LATIN CAPITAL LETTER R 0x0053: 0x0053, # LATIN CAPITAL LETTER S 0x0054: 0x0054, # LATIN CAPITAL LETTER T 0x0055: 0x0055, # LATIN CAPITAL LETTER U 0x0056: 0x0056, # LATIN CAPITAL LETTER V 0x0057: 0x0057, # LATIN CAPITAL LETTER W 0x0058: 0x0058, # LATIN CAPITAL LETTER X 0x0059: 0x0059, # LATIN CAPITAL LETTER Y 0x005a: 0x005a, # LATIN CAPITAL LETTER Z 0x005b: 0x005b, # LEFT SQUARE BRACKET 0x005c: 0x005c, # REVERSE SOLIDUS 0x005d: 0x005d, # RIGHT SQUARE BRACKET 0x005e: 0x005e, # CIRCUMFLEX ACCENT 0x005f: 0x005f, # LOW LINE 0x0060: 0x0060, # GRAVE ACCENT 0x0061: 0x0061, # LATIN SMALL LETTER A 0x0062: 0x0062, # LATIN SMALL LETTER B 0x0063: 0x0063, # LATIN SMALL LETTER C 0x0064: 0x0064, # LATIN SMALL LETTER D 0x0065: 0x0065, # LATIN SMALL LETTER E 0x0066: 0x0066, # LATIN SMALL LETTER F 0x0067: 0x0067, # LATIN SMALL LETTER G 0x0068: 0x0068, # LATIN SMALL LETTER H 0x0069: 0x0069, # LATIN SMALL LETTER I 0x006a: 0x006a, # LATIN SMALL LETTER J 0x006b: 0x006b, # LATIN SMALL LETTER K 0x006c: 0x006c, # LATIN SMALL LETTER L 0x006d: 0x006d, # LATIN SMALL LETTER M 0x006e: 0x006e, # LATIN SMALL LETTER N 0x006f: 0x006f, # LATIN SMALL LETTER O 0x0070: 0x0070, # LATIN SMALL LETTER P 0x0071: 0x0071, # LATIN SMALL LETTER Q 0x0072: 0x0072, # LATIN SMALL LETTER R 0x0073: 0x0073, # LATIN SMALL LETTER S 0x0074: 0x0074, # LATIN SMALL LETTER T 0x0075: 0x0075, # LATIN SMALL LETTER U 0x0076: 0x0076, # LATIN SMALL LETTER V 0x0077: 0x0077, # LATIN SMALL LETTER W 0x0078: 0x0078, # LATIN SMALL LETTER X 0x0079: 0x0079, # LATIN SMALL LETTER Y 0x007a: 0x007a, # LATIN SMALL LETTER Z 0x007b: 0x007b, # LEFT CURLY BRACKET 0x007c: 0x007c, # VERTICAL LINE 0x007d: 0x007d, # RIGHT CURLY BRACKET 0x007e: 0x007e, # TILDE 0x007f: 0x007f, # DELETE 0x00a0: 0x00ff, # NO-BREAK SPACE 0x00a1: 0x00ad, # INVERTED EXCLAMATION MARK 0x00a3: 0x009c, # POUND SIGN 0x00ab: 0x00ae, # LEFT-POINTING DOUBLE ANGLE QUOTATION MARK 0x00ac: 0x00aa, # NOT SIGN 0x00b0: 0x00f8, # DEGREE SIGN 0x00b1: 0x00f1, # PLUS-MINUS SIGN 0x00b2: 0x00fd, # SUPERSCRIPT TWO 0x00b5: 0x00e6, # MICRO SIGN 0x00b7: 0x00fa, # MIDDLE DOT 0x00bb: 0x00af, # RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK 0x00bc: 0x00ac, # VULGAR FRACTION ONE QUARTER 0x00bd: 0x00ab, # VULGAR FRACTION ONE HALF 0x00bf: 0x00a8, # INVERTED QUESTION MARK 0x00c1: 0x00a4, # LATIN CAPITAL LETTER A WITH ACUTE 0x00c4: 0x008e, # LATIN CAPITAL LETTER A WITH DIAERESIS 0x00c5: 0x008f, # LATIN CAPITAL LETTER A WITH RING ABOVE 0x00c6: 0x0092, # LATIN CAPITAL LIGATURE AE 0x00c7: 0x0080, # LATIN CAPITAL LETTER C WITH CEDILLA 0x00c9: 0x0090, # LATIN CAPITAL LETTER E WITH ACUTE 0x00cd: 0x00a5, # LATIN CAPITAL LETTER I WITH ACUTE 0x00d0: 0x008b, # LATIN CAPITAL LETTER ETH 0x00d3: 0x00a6, # LATIN CAPITAL LETTER O WITH ACUTE 0x00d6: 0x0099, # LATIN CAPITAL LETTER O WITH DIAERESIS 0x00d8: 0x009d, # LATIN CAPITAL LETTER O WITH STROKE 0x00da: 0x00a7, # LATIN CAPITAL LETTER U WITH ACUTE 0x00dc: 0x009a, # LATIN CAPITAL LETTER U WITH DIAERESIS 0x00dd: 0x0097, # LATIN CAPITAL LETTER Y WITH ACUTE 0x00de: 0x008d, # LATIN CAPITAL LETTER THORN 0x00df: 0x00e1, # LATIN SMALL LETTER SHARP S 0x00e0: 0x0085, # LATIN SMALL LETTER A WITH GRAVE 0x00e1: 0x00a0, # LATIN SMALL LETTER A WITH ACUTE 0x00e2: 0x0083, # LATIN SMALL LETTER A WITH CIRCUMFLEX 0x00e4: 0x0084, # LATIN SMALL LETTER A WITH DIAERESIS 0x00e5: 0x0086, # LATIN SMALL LETTER A WITH RING ABOVE 0x00e6: 0x0091, # LATIN SMALL LIGATURE AE 0x00e7: 0x0087, # LATIN SMALL LETTER C WITH CEDILLA 0x00e8: 0x008a, # LATIN SMALL LETTER E WITH GRAVE 0x00e9: 0x0082, # LATIN SMALL LETTER E WITH ACUTE 0x00ea: 0x0088, # LATIN SMALL LETTER E WITH CIRCUMFLEX 0x00eb: 0x0089, # LATIN SMALL LETTER E WITH DIAERESIS 0x00ed: 0x00a1, # LATIN SMALL LETTER I WITH ACUTE 0x00f0: 0x008c, # LATIN SMALL LETTER ETH 0x00f3: 0x00a2, # LATIN SMALL LETTER O WITH ACUTE 0x00f4: 0x0093, # LATIN SMALL LETTER O WITH CIRCUMFLEX 0x00f6: 0x0094, # LATIN SMALL LETTER O WITH DIAERESIS 0x00f7: 0x00f6, # DIVISION SIGN 0x00f8: 0x009b, # LATIN SMALL LETTER O WITH STROKE 0x00fa: 0x00a3, # LATIN SMALL LETTER U WITH ACUTE 0x00fb: 0x0096, # LATIN SMALL LETTER U WITH CIRCUMFLEX 0x00fc: 0x0081, # LATIN SMALL LETTER U WITH DIAERESIS 0x00fd: 0x0098, # LATIN SMALL LETTER Y WITH ACUTE 0x00fe: 0x0095, # LATIN SMALL LETTER THORN 0x0192: 0x009f, # LATIN SMALL LETTER F WITH HOOK 0x0393: 0x00e2, # GREEK CAPITAL LETTER GAMMA 0x0398: 0x00e9, # GREEK CAPITAL LETTER THETA 0x03a3: 0x00e4, # GREEK CAPITAL LETTER SIGMA 0x03a6: 0x00e8, # GREEK CAPITAL LETTER PHI 0x03a9: 0x00ea, # GREEK CAPITAL LETTER OMEGA 0x03b1: 0x00e0, # GREEK SMALL LETTER ALPHA 0x03b4: 0x00eb, # GREEK SMALL LETTER DELTA 0x03b5: 0x00ee, # GREEK SMALL LETTER EPSILON 0x03c0: 0x00e3, # GREEK SMALL LETTER PI 0x03c3: 0x00e5, # GREEK SMALL LETTER SIGMA 0x03c4: 0x00e7, # GREEK SMALL LETTER TAU 0x03c6: 0x00ed, # GREEK SMALL LETTER PHI 0x207f: 0x00fc, # SUPERSCRIPT LATIN SMALL LETTER N 0x20a7: 0x009e, # PESETA SIGN 0x2219: 0x00f9, # BULLET OPERATOR 0x221a: 0x00fb, # SQUARE ROOT 0x221e: 0x00ec, # INFINITY 0x2229: 0x00ef, # INTERSECTION 0x2248: 0x00f7, # ALMOST EQUAL TO 0x2261: 0x00f0, # IDENTICAL TO 0x2264: 0x00f3, # LESS-THAN OR EQUAL TO 0x2265: 0x00f2, # GREATER-THAN OR EQUAL TO 0x2310: 0x00a9, # REVERSED NOT SIGN 0x2320: 0x00f4, # TOP HALF INTEGRAL 0x2321: 0x00f5, # BOTTOM HALF INTEGRAL 0x2500: 0x00c4, # BOX DRAWINGS LIGHT HORIZONTAL 0x2502: 0x00b3, # BOX DRAWINGS LIGHT VERTICAL 0x250c: 0x00da, # BOX DRAWINGS LIGHT DOWN AND RIGHT 0x2510: 0x00bf, # BOX DRAWINGS LIGHT DOWN AND LEFT 0x2514: 0x00c0, # BOX DRAWINGS LIGHT UP AND RIGHT 0x2518: 0x00d9, # BOX DRAWINGS LIGHT UP AND LEFT 0x251c: 0x00c3, # BOX DRAWINGS LIGHT VERTICAL AND RIGHT 0x2524: 0x00b4, # BOX DRAWINGS LIGHT VERTICAL AND LEFT 0x252c: 0x00c2, # BOX DRAWINGS LIGHT DOWN AND HORIZONTAL 0x2534: 0x00c1, # BOX DRAWINGS LIGHT UP AND HORIZONTAL 0x253c: 0x00c5, # BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL 0x2550: 0x00cd, # BOX DRAWINGS DOUBLE HORIZONTAL 0x2551: 0x00ba, # BOX DRAWINGS DOUBLE VERTICAL 0x2552: 0x00d5, # BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE 0x2553: 0x00d6, # BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE 0x2554: 0x00c9, # BOX DRAWINGS DOUBLE DOWN AND RIGHT 0x2555: 0x00b8, # BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE 0x2556: 0x00b7, # BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE 0x2557: 0x00bb, # BOX DRAWINGS DOUBLE DOWN AND LEFT 0x2558: 0x00d4, # BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE 0x2559: 0x00d3, # BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE 0x255a: 0x00c8, # BOX DRAWINGS DOUBLE UP AND RIGHT 0x255b: 0x00be, # BOX DRAWINGS UP SINGLE AND LEFT DOUBLE 0x255c: 0x00bd, # BOX DRAWINGS UP DOUBLE AND LEFT SINGLE 0x255d: 0x00bc, # BOX DRAWINGS DOUBLE UP AND LEFT 0x255e: 0x00c6, # BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE 0x255f: 0x00c7, # BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE 0x2560: 0x00cc, # BOX DRAWINGS DOUBLE VERTICAL AND RIGHT 0x2561: 0x00b5, # BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE 0x2562: 0x00b6, # BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE 0x2563: 0x00b9, # BOX DRAWINGS DOUBLE VERTICAL AND LEFT 0x2564: 0x00d1, # BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE 0x2565: 0x00d2, # BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE 0x2566: 0x00cb, # BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL 0x2567: 0x00cf, # BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE 0x2568: 0x00d0, # BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE 0x2569: 0x00ca, # BOX DRAWINGS DOUBLE UP AND HORIZONTAL 0x256a: 0x00d8, # BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE 0x256b: 0x00d7, # BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE 0x256c: 0x00ce, # BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL 0x2580: 0x00df, # UPPER HALF BLOCK 0x2584: 0x00dc, # LOWER HALF BLOCK 0x2588: 0x00db, # FULL BLOCK 0x258c: 0x00dd, # LEFT HALF BLOCK 0x2590: 0x00de, # RIGHT HALF BLOCK 0x2591: 0x00b0, # LIGHT SHADE 0x2592: 0x00b1, # MEDIUM SHADE 0x2593: 0x00b2, # DARK SHADE 0x25a0: 0x00fe, # BLACK SQUARE }
mit
alrusdi/lettuce
tests/integration/lib/Django-1.2.5/tests/regressiontests/templates/unicode.py
39
1290
# -*- coding: utf-8 -*- from unittest import TestCase from django.template import Template, TemplateEncodingError, Context from django.utils.safestring import SafeData class UnicodeTests(TestCase): def test_template(self): # Templates can be created from unicode strings. t1 = Template(u'ŠĐĆŽćžšđ {{ var }}') # Templates can also be created from bytestrings. These are assumed to # be encoded using UTF-8. s = '\xc5\xa0\xc4\x90\xc4\x86\xc5\xbd\xc4\x87\xc5\xbe\xc5\xa1\xc4\x91 {{ var }}' t2 = Template(s) s = '\x80\xc5\xc0' self.assertRaises(TemplateEncodingError, Template, s) # Contexts can be constructed from unicode or UTF-8 bytestrings. c1 = Context({"var": "foo"}) c2 = Context({u"var": "foo"}) c3 = Context({"var": u"Đđ"}) c4 = Context({u"var": "\xc4\x90\xc4\x91"}) # Since both templates and all four contexts represent the same thing, # they all render the same (and are returned as unicode objects and # "safe" objects as well, for auto-escaping purposes). self.assertEqual(t1.render(c3), t2.render(c3)) self.assertTrue(isinstance(t1.render(c3), unicode)) self.assertTrue(isinstance(t1.render(c3), SafeData))
gpl-3.0
HarborYuan/cashier
env/Lib/site-packages/wheel/signatures/__init__.py
70
3766
""" Create and verify jws-js format Ed25519 signatures. """ import json from ..util import urlsafe_b64decode, urlsafe_b64encode, native, binary __all__ = ['sign', 'verify'] ed25519ll = None ALG = "Ed25519" def get_ed25519ll(): """Lazy import-and-test of ed25519 module""" global ed25519ll if not ed25519ll: try: import ed25519ll # fast (thousands / s) except (ImportError, OSError): # pragma nocover from . import ed25519py as ed25519ll # pure Python (hundreds / s) test() return ed25519ll def sign(payload, keypair): """Return a JWS-JS format signature given a JSON-serializable payload and an Ed25519 keypair.""" get_ed25519ll() # header = { "alg": ALG, "jwk": { "kty": ALG, # alg -> kty in jwk-08. "vk": native(urlsafe_b64encode(keypair.vk)) } } encoded_header = urlsafe_b64encode(binary(json.dumps(header, sort_keys=True))) encoded_payload = urlsafe_b64encode(binary(json.dumps(payload, sort_keys=True))) secured_input = b".".join((encoded_header, encoded_payload)) sig_msg = ed25519ll.crypto_sign(secured_input, keypair.sk) signature = sig_msg[:ed25519ll.SIGNATUREBYTES] encoded_signature = urlsafe_b64encode(signature) return {"recipients": [{"header": native(encoded_header), "signature": native(encoded_signature)}], "payload": native(encoded_payload)} def assertTrue(condition, message=""): if not condition: raise ValueError(message) def verify(jwsjs): """Return (decoded headers, payload) if all signatures in jwsjs are consistent, else raise ValueError. Caller must decide whether the keys are actually trusted.""" get_ed25519ll() # XXX forbid duplicate keys in JSON input using object_pairs_hook (2.7+) recipients = jwsjs["recipients"] encoded_payload = binary(jwsjs["payload"]) headers = [] for recipient in recipients: assertTrue(len(recipient) == 2, "Unknown recipient key {0}".format(recipient)) h = binary(recipient["header"]) s = binary(recipient["signature"]) header = json.loads(native(urlsafe_b64decode(h))) assertTrue(header["alg"] == ALG, "Unexpected algorithm {0}".format(header["alg"])) if "alg" in header["jwk"] and "kty" not in header["jwk"]: header["jwk"]["kty"] = header["jwk"]["alg"] # b/w for JWK < -08 assertTrue(header["jwk"]["kty"] == ALG, # true for Ed25519 "Unexpected key type {0}".format(header["jwk"]["kty"])) vk = urlsafe_b64decode(binary(header["jwk"]["vk"])) secured_input = b".".join((h, encoded_payload)) sig = urlsafe_b64decode(s) sig_msg = sig+secured_input verified_input = native(ed25519ll.crypto_sign_open(sig_msg, vk)) verified_header, verified_payload = verified_input.split('.') verified_header = binary(verified_header) decoded_header = native(urlsafe_b64decode(verified_header)) headers.append(json.loads(decoded_header)) verified_payload = binary(verified_payload) # only return header, payload that have passed through the crypto library. payload = json.loads(native(urlsafe_b64decode(verified_payload))) return headers, payload def test(): kp = ed25519ll.crypto_sign_keypair() payload = {'test': 'onstartup'} jwsjs = json.loads(json.dumps(sign(payload, kp))) verify(jwsjs) jwsjs['payload'] += 'x' try: verify(jwsjs) except ValueError: pass else: # pragma no cover raise RuntimeError("No error from bad wheel.signatures payload.")
mit
DerekK88/PICwriter
picwriter/components/stripslotconverter.py
1
9317
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import gdspy import picwriter.toolkit as tk class StripSlotConverter(tk.Component): """Strip-to-Slot Side Converter Cell class. Adiabatically transforms a strip to a slot waveguide mode, with two sections. Section 1 introduces a narrow waveguide alongside the input strip waveguide and gradually lowers the gap between the strip waveguide and narrow side waveguide. Section 2 gradually converts the widths of the two waveguides until they are equal to the slot rail widths. Args: * **wgt_input** (WaveguideTemplate): WaveguideTemplate object for the input waveguide (should be either of type `strip` or `slot`). * **wgt_output** (WaveguideTemplate): WaveguideTemplate object for the output waveguide (should be either of type `strip` or `slot`, opposite of the input type). * **length1** (float): Length of section 1 that gradually changes the distance between the two waveguides. * **length2** (float): Length of section 2 that gradually changes the widths of the two waveguides until equal to the slot waveguide rail widths. * **start_rail_width** (float): Width of the narrow waveguide appearing next to the strip waveguide. * **end_strip_width** (float): Width of the strip waveguide at the end of `length1` and before `length2` * **d** (float): Distance between the outer edge of the strip waveguide and the start of the slot waveguide rail. Keyword Args: * **input_strip** (Boolean): If `True`, sets the input port to be the strip waveguide side. If `False`, slot waveguide is on the input. Defaults to `None`, in which case the input port waveguide template is used to choose. * **port** (tuple): Cartesian coordinate of the input port. Defaults to (0,0). * **direction** (string): Direction that the component will point *towards*, can be of type `'NORTH'`, `'WEST'`, `'SOUTH'`, `'EAST'`, OR an angle (float, in radians) Members: * **portlist** (dict): Dictionary with the relevant port information Portlist format: * portlist['input'] = {'port': (x1,y1), 'direction': 'dir1'} * portlist['output'] = {'port': (x2, y2), 'direction': 'dir2'} Where in the above (x1,y1) is the same as the 'port' input, (x2, y2) is the end of the taper, and 'dir1', 'dir2' are of type `'NORTH'`, `'WEST'`, `'SOUTH'`, `'EAST'`, *or* an angle in *radians*. 'Direction' points *towards* the waveguide that will connect to it. Note: The waveguide and cladding layer/datatype are taken from the `wgt_slot` by default. """ def __init__( self, wgt_input, wgt_output, length1, length2, start_rail_width, end_strip_width, d, input_strip=None, port=(0, 0), direction="EAST", ): tk.Component.__init__(self, "StripSlotConverter", locals()) self.portlist = {} if (not isinstance(input_strip, bool)) and (input_strip != None): raise ValueError( "Invalid input provided for `input_strip`. Please specify a boolean." ) if input_strip == None: # Auto-detect based on wgt_input self.input_strip = ( wgt_input.wg_type == "strip" or wgt_input.wg_type == "swg" ) else: # User-override self.input_strip = input_strip if self.input_strip: self.wgt_strip = wgt_input self.wgt_slot = wgt_output else: self.wgt_strip = wgt_output self.wgt_slot = wgt_input self.wg_spec = { "layer": wgt_output.wg_layer, "datatype": wgt_output.wg_datatype, } self.clad_spec = { "layer": wgt_output.clad_layer, "datatype": wgt_output.clad_datatype, } self.length1 = length1 self.length2 = length2 self.d = d self.start_rail_width = start_rail_width self.end_strip_width = end_strip_width self.port = port self.direction = direction self.__build_cell() self.__build_ports() """ Translate & rotate the ports corresponding to this specific component object """ self._auto_transform_() def __build_cell(self): # Sequentially build all the geometric shapes using polygons # Add strip waveguide taper for region 1 x0, y0 = (0, 0) pts = [ (x0, y0 - self.wgt_strip.wg_width / 2.0), (x0, y0 + self.wgt_strip.wg_width / 2.0), ( x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0 + self.end_strip_width, ), (x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0), ] strip1 = gdspy.Polygon( pts, layer=self.wgt_strip.wg_layer, datatype=self.wgt_strip.wg_datatype ) # Add the thin side waveguide for region 1 pts = [ (x0, y0 + self.wgt_strip.wg_width / 2.0 + self.d), (x0, y0 + self.wgt_strip.wg_width / 2.0 + self.d + self.start_rail_width), ( x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0 + self.end_strip_width + self.wgt_slot.slot + self.start_rail_width, ), ( x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0 + self.end_strip_width + self.wgt_slot.slot, ), ] thin_strip = gdspy.Polygon( pts, layer=self.wgt_strip.wg_layer, datatype=self.wgt_strip.wg_datatype ) # Add the bottom rail for region 2 pts = [ ( x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0 + self.end_strip_width, ), (x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0), (x0 + self.length1 + self.length2, y0 - self.wgt_slot.wg_width / 2.0), ( x0 + self.length1 + self.length2, y0 - self.wgt_slot.wg_width / 2.0 + self.wgt_slot.rail, ), ] rail1 = gdspy.Polygon( pts, layer=self.wgt_strip.wg_layer, datatype=self.wgt_strip.wg_datatype ) # Add the top rail for region 2 pts = [ ( x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0 + self.end_strip_width + self.wgt_slot.slot + self.start_rail_width, ), ( x0 + self.length1, y0 - self.wgt_strip.wg_width / 2.0 + self.end_strip_width + self.wgt_slot.slot, ), ( x0 + self.length1 + self.length2, y0 + self.wgt_slot.wg_width / 2.0 - self.wgt_slot.rail, ), (x0 + self.length1 + self.length2, y0 + self.wgt_slot.wg_width / 2.0), ] rail2 = gdspy.Polygon( pts, layer=self.wgt_strip.wg_layer, datatype=self.wgt_strip.wg_datatype ) # Add a cladding polygon pts = [ (x0, y0 + self.wgt_strip.clad_width + self.wgt_strip.wg_width / 2.0), ( x0 + self.length1 + self.length2, y0 + self.wgt_slot.clad_width + self.wgt_slot.wg_width / 2.0, ), ( x0 + self.length1 + self.length2, y0 - self.wgt_slot.clad_width - self.wgt_slot.wg_width / 2.0, ), (x0, y0 - self.wgt_strip.clad_width - self.wgt_strip.wg_width / 2.0), ] clad = gdspy.Polygon( pts, layer=self.wgt_strip.clad_layer, datatype=self.wgt_strip.clad_datatype ) self.add(strip1) self.add(thin_strip) self.add(rail1) self.add(rail2) self.add(clad) def __build_ports(self): # Portlist format: # example: example: {'port':(x_position, y_position), 'direction': 'NORTH'} self.portlist["input"] = {"port": (0, 0), "direction": "WEST"} self.portlist["output"] = { "port": (self.length1 + self.length2, 0), "direction": "EAST", } if __name__ == "__main__": from . import * top = gdspy.Cell("top") wgt_strip = WaveguideTemplate(bend_radius=50, wg_type="strip", wg_width=0.7) wgt_slot = WaveguideTemplate(bend_radius=50, wg_type="slot", wg_width=0.7, slot=0.2) wg1 = Waveguide([(0, 0), (100, 0)], wgt_strip) tk.add(top, wg1) ssc = StripSlotConverter( wgt_strip, wgt_slot, length1=15.0, length2=15.0, start_rail_width=0.1, end_strip_width=0.4, d=1.0, **wg1.portlist["output"] ) tk.add(top, ssc) (x1, y1) = ssc.portlist["output"]["port"] wg2 = Waveguide([(x1, y1), (x1 + 100, y1)], wgt_slot) tk.add(top, wg2) gdspy.LayoutViewer(cells=top) # gdspy.write_gds('StripSlotConverter.gds', unit=1.0e-6, precision=1.0e-9)
mit
EricForgy/JuliaBox
container/interactive/IJulia/tornado/src/gdrivesync.py
4
9487
import base64 import shutil import os import hashlib import time import datetime import pytz import isodate from oauth2client.client import OAuth2Credentials from oauth2client import GOOGLE_REVOKE_URI, GOOGLE_TOKEN_URI, GOOGLE_AUTH_URI from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive class GDriveSync: """Synchronizes folders from Google Drive. Requires credentials to be provided as base64 encoded JSON representation of OAuth2Credentials, in form field gauth. If credentials are not found, the Google authentication plugin is invoked with state as ask_gdrive (/jboxauth/google?state=ask_gdrive). On successful authentication and authorization, the plugin must call JuliaBox.init_gauth_tok on the browser with appropriately formatted credentials. """ CREDSB64 = None CREDS = None GAUTH = None DRIVE = None LOCAL_TZ_OFFSET = 0 def __init__(self, loc): self.loc = loc with open(os.path.join(loc, '.gdrive')) as f: self.gfolder = f.read().strip() def repo_hash(self): return hashlib.sha1('_'.join([self.loc, self.gfolder])).hexdigest() def repo_name(self): return os.path.basename(self.loc) + ' (' + self.gfolder + ')' def sync(self): self._sync_folder(self.loc, GDriveSync.folder_id(self.gfolder)) def _sync_folder(self, loc, gfolder): # list local folder loc_flist = {} for f in os.listdir(loc): if f.startswith('.'): continue full_path = os.path.join(loc, f) is_dir = os.path.isdir(full_path) mtime = datetime.datetime.fromtimestamp(os.path.getmtime(full_path), pytz.utc) # + datetime.timedelta(seconds=GDriveSync.LOCAL_TZ_OFFSET) loc_flist[f] = {'fullpath': full_path, 'is_dir': is_dir, 'mtime': mtime} # list remote folder gdrive_flist = {} for f in GDriveSync.DRIVE.ListFile({'q': "'" + gfolder + "' in parents and trashed=false"}).GetList(): fname = f['title'] full_path = os.path.join(loc, fname) is_dir = ('application/vnd.google-apps.folder' in f['mimeType']) mtime = GDriveSync.parse_gdrive_time(f['modifiedDate']) gdrive_flist[fname] = {'fullpath': full_path, 'is_dir': is_dir, 'mtime': mtime, 'id': f['id']} parent_spec = [{"kind": "drive#fileLink", "id": gfolder}] # for all files in local folder for f, attrs in loc_flist.items(): # if it is a folder if attrs['is_dir']: # if file not on remote create remote folder, remove file from local list, add to remote list if f not in gdrive_flist: gdrive_file = GDriveSync.DRIVE.CreateFile({ 'title': f, 'mimeType': 'application/vnd.google-apps.folder', 'parents': parent_spec, 'modifiedDate': attrs['mtime'] }) gdrive_file.Upload() gdrive_flist[f] = { 'fullpath': attrs['full_path'], 'is_dir': attrs['is_dir'], 'mtime': attrs['mtime'], 'id': gdrive_file['id'] } del loc_flist[f] else: # it is a file # if file not on remote, upload local file, remove file from local list if f not in gdrive_flist: GDriveSync._upload(attrs['fullpath'], parents=parent_spec) del loc_flist[f] else: gf_attrs = gdrive_flist[f] # if file in remote is older, upload local file tdiff = (attrs['mtime'] - gf_attrs['mtime']).total_seconds() # print("existing file tdiff: " + str(tdiff)) if tdiff >= 1: GDriveSync._upload(attrs['fullpath'], parents=None, remid=gf_attrs['id']) # if file on remote is newer, download remote file elif tdiff <= -1: GDriveSync._download(attrs['fullpath'], gf_attrs['id']) #else: # print("already in sync " + attrs['fullpath']) # remove file from both lists del loc_flist[f] del gdrive_flist[f] # for files remaining in remote list for f, gf_attrs in gdrive_flist.items(): # create local folder if it does not exist fullpath = gf_attrs['fullpath'] if gf_attrs['is_dir']: if not os.path.exists(fullpath): os.makedirs(fullpath) # download remote file, remove from remote list else: GDriveSync._download(fullpath, gf_attrs['id']) del gdrive_flist[f] # gdrive_flist should only have folders if any # for folders remaining in remote list call _sync_folder recursively on them for f, gf_attrs in gdrive_flist.items(): self._sync_folder(gf_attrs['fullpath'], gf_attrs['id']) @staticmethod def _upload(locpath, parents=None, remid=None): fname = os.path.basename(locpath) # print("uploading " + fname + " to " + locpath + ", parents: " + str(parents) + ", remid: " + str(remid)) gdrive_file = GDriveSync.DRIVE.CreateFile({'id': remid}) if (remid is not None) else \ GDriveSync.DRIVE.CreateFile({'title': fname, 'parents': parents}) gdrive_file.SetContentFile(locpath) gdrive_file.Upload() GDriveSync._sync_file_time(locpath, gdrive_file) @staticmethod def _download(locpath, remid): # print("downloading " + locpath + " from " + remid) gdrive_file = GDriveSync.DRIVE.CreateFile({'id': remid}) gdrive_file.GetContentFile(locpath) GDriveSync._sync_file_time(locpath, gdrive_file) @staticmethod def _sync_file_time(locpath, gdrive_file): gdrive_file.FetchMetadata() mtime = GDriveSync.parse_gdrive_time(gdrive_file['modifiedDate']) timestamp = (mtime - datetime.datetime.fromtimestamp(0, pytz.utc)).total_seconds() # print("setting file time to " + str(mtime) + " timestamp: " + str(timestamp)) os.utime(locpath, (timestamp, timestamp)) @staticmethod def parse_gdrive_time(tm): if None != tm: tm = isodate.parse_datetime(tm) return tm @staticmethod def local_time_offset(): """Return offset of local zone from GMT""" if time.localtime().tm_isdst and time.daylight: return time.altzone else: return time.timezone @staticmethod def init_creds(credsb64): GDriveSync.LOCAL_TZ_OFFSET = GDriveSync.local_time_offset() if GDriveSync.CREDSB64 == credsb64: return creds_json = base64.b64decode(credsb64) creds = OAuth2Credentials.from_json(creds_json) GDriveSync.CREDS = creds GDriveSync.CREDSB64 = credsb64 gauth = GoogleAuth() gauth.settings = { 'client_config_backend': 'settings', 'client_config_file': 'client_secrets.json', 'save_credentials': False, 'oauth_scope': ['https://www.googleapis.com/auth/drive'], 'client_config': { 'client_id': creds.client_id, 'client_secret': creds.client_secret, 'auth_uri': GOOGLE_AUTH_URI, 'token_uri': GOOGLE_TOKEN_URI, 'revoke_uri': GOOGLE_REVOKE_URI, 'redirect_uri': 'http://juliabox.org/jboxauth/google/' } } gauth.LoadClientConfigSettings() gauth.credentials = creds GDriveSync.GAUTH = gauth GDriveSync.DRIVE = GoogleDrive(gauth) @staticmethod def folder_name(gfolder): return gfolder.split('/')[-2] @staticmethod def folder_id(gfolder): return gfolder.split('/')[-1] @staticmethod def clone(gfolder, loc, overwrite=False): if overwrite and os.path.exists(loc): shutil.rmtree(loc) # create the folder and .gdrive file os.mkdir(loc) with open(os.path.join(loc, '.gdrive'), 'w') as f: f.write(gfolder) GDriveSync._clone_gfolder(GDriveSync.folder_id(gfolder), loc) return GDriveSync(loc) @staticmethod def _clone_gfolder(gfolder, loc): drive = GDriveSync.DRIVE for f in drive.ListFile({'q': "'" + gfolder + "' in parents and trashed=false"}).GetList(): fpath = os.path.join(loc, f['title']) if 'application/vnd.google-apps.folder' in f['mimeType']: os.mkdir(fpath) GDriveSync._clone_gfolder(f['id'], fpath) else: GDriveSync._download(fpath, f['id']) @staticmethod def scan_repo_paths(dirs): repos = [] for d in dirs: for pth in os.listdir(d): if pth.startswith('.'): continue fpth = os.path.join(d, pth) if os.path.isdir(fpth): gdrive_pth = os.path.join(fpth, '.gdrive') if os.path.isfile(gdrive_pth): repos.append(fpth) return repos
mit
dzamie/weasyl
weasyl/blocktag.py
1
4024
# blocktag.py from error import PostgresError import define as d import profile import searchtag from libweasyl import ratings from weasyl.cache import region # For blocked tags, `rating` refers to the lowest rating for which that tag is # blocked; for example, (X, Y, 10) would block tag Y for all ratings, whereas # (X, Y, 30) would block tag Y for only adult ratings. def check(userid, submitid=None, charid=None, journalid=None): """ Returns True if the submission, character, or journal contains a search tag that the user has blocked, else False. """ if not userid: return False if submitid: map_table = "searchmapsubmit" content_table = "submission" id_field = "submitid" target = submitid elif charid: map_table = "searchmapchar" content_table = "character" id_field = "charid" target = charid else: map_table = "searchmapjournal" content_table = "journal" id_field = "journalid" target = journalid query = """ SELECT EXISTS ( SELECT 0 FROM {map_table} searchmap INNER JOIN {content_table} content ON searchmap.targetid = content.{id_field} WHERE searchmap.targetid = %(id)s AND content.userid != %(user)s AND searchmap.tagid IN ( SELECT blocktag.tagid FROM blocktag WHERE userid = %(user)s AND blocktag.rating <= content.rating)) AS block """.format(map_table=map_table, content_table=content_table, id_field=id_field) return d.engine.execute(query, id=target, user=userid).first().block def check_list(rating, tags, blocked_tags): return any(rating >= b['rating'] and b['title'] in tags for b in blocked_tags) def suggest(userid, target): if not target: return [] return d.execute("SELECT title FROM searchtag" " WHERE title LIKE '%s%%' AND tagid NOT IN (SELECT tagid FROM blocktag WHERE userid = %i)" " ORDER BY title LIMIT 10", [target, userid], options="within") def select(userid): return [{ "title": i[0], "rating": i[1], } for i in d.execute("SELECT st.title, bt.rating FROM searchtag st " " INNER JOIN blocktag bt ON st.tagid = bt.tagid" " WHERE bt.userid = %i" " ORDER BY st.title", [userid])] @region.cache_on_arguments() @d.record_timing def cached_select(userid): return select(userid) def insert(userid, tagid=None, title=None, rating=None): if rating not in ratings.CODE_MAP: rating = ratings.GENERAL.code profile.check_user_rating_allowed(userid, rating) if tagid: tag = int(tagid) try: d.engine.execute("INSERT INTO blocktag VALUES (%s, %s, %s)", userid, tag, rating) except PostgresError: return elif title: tag_name = d.get_search_tag(title) try: d.engine.execute(""" INSERT INTO blocktag (userid, tagid, rating) VALUES ( %(user)s, (SELECT tagid FROM searchtag WHERE title = %(tag_name)s), %(rating)s ) """, user=userid, tag_name=tag_name, rating=rating) except PostgresError: try: tag = searchtag.create(title) except PostgresError: return d.engine.execute("INSERT INTO blocktag VALUES (%s, %s, %s)", userid, tag, rating) cached_select.invalidate(userid) def remove(userid, tagid=None, title=None): if tagid: d.execute("DELETE FROM blocktag WHERE (userid, tagid) = (%i, %i)", [userid, tagid]) elif title: d.execute("DELETE FROM blocktag WHERE (userid, tagid) = (%i, (SELECT tagid FROM searchtag WHERE title = '%s'))", [userid, d.get_search_tag(title)]) cached_select.invalidate(userid)
apache-2.0
phihag/youtube-dl
youtube_dl/extractor/primesharetv.py
73
1853
from __future__ import unicode_literals from .common import InfoExtractor from ..utils import ( ExtractorError, sanitized_Request, urlencode_postdata, ) class PrimeShareTVIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?primeshare\.tv/download/(?P<id>[\da-zA-Z]+)' _TEST = { 'url': 'http://primeshare.tv/download/238790B611', 'md5': 'b92d9bf5461137c36228009f31533fbc', 'info_dict': { 'id': '238790B611', 'ext': 'mp4', 'title': 'Public Domain - 1960s Commercial - Crest Toothpaste-YKsuFona', }, } def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) if '>File not exist<' in webpage: raise ExtractorError('Video %s does not exist' % video_id, expected=True) fields = self._hidden_inputs(webpage) headers = { 'Referer': url, 'Content-Type': 'application/x-www-form-urlencoded', } wait_time = int(self._search_regex( r'var\s+cWaitTime\s*=\s*(\d+)', webpage, 'wait time', default=7)) + 1 self._sleep(wait_time, video_id) req = sanitized_Request( url, urlencode_postdata(fields), headers) video_page = self._download_webpage( req, video_id, 'Downloading video page') video_url = self._search_regex( r"url\s*:\s*'([^']+\.primeshare\.tv(?::443)?/file/[^']+)'", video_page, 'video url') title = self._html_search_regex( r'<h1>Watch\s*(?:&nbsp;)?\s*\((.+?)(?:\s*\[\.\.\.\])?\)\s*(?:&nbsp;)?\s*<strong>', video_page, 'title') return { 'id': video_id, 'url': video_url, 'title': title, 'ext': 'mp4', }
unlicense
atruberg/django-custom
django/contrib/admin/templatetags/log.py
114
2125
from django import template from django.contrib.admin.models import LogEntry register = template.Library() class AdminLogNode(template.Node): def __init__(self, limit, varname, user): self.limit, self.varname, self.user = limit, varname, user def __repr__(self): return "<GetAdminLog Node>" def render(self, context): if self.user is None: context[self.varname] = LogEntry.objects.all().select_related('content_type', 'user')[:self.limit] else: user_id = self.user if not user_id.isdigit(): user_id = context[self.user].pk context[self.varname] = LogEntry.objects.filter(user__pk__exact=user_id).select_related('content_type', 'user')[:int(self.limit)] return '' @register.tag def get_admin_log(parser, token): """ Populates a template variable with the admin log for the given criteria. Usage:: {% get_admin_log [limit] as [varname] for_user [context_var_containing_user_obj] %} Examples:: {% get_admin_log 10 as admin_log for_user 23 %} {% get_admin_log 10 as admin_log for_user user %} {% get_admin_log 10 as admin_log %} Note that ``context_var_containing_user_obj`` can be a hard-coded integer (user ID) or the name of a template context variable containing the user object whose ID you want. """ tokens = token.contents.split() if len(tokens) < 4: raise template.TemplateSyntaxError( "'get_admin_log' statements require two arguments") if not tokens[1].isdigit(): raise template.TemplateSyntaxError( "First argument to 'get_admin_log' must be an integer") if tokens[2] != 'as': raise template.TemplateSyntaxError( "Second argument to 'get_admin_log' must be 'as'") if len(tokens) > 4: if tokens[4] != 'for_user': raise template.TemplateSyntaxError( "Fourth argument to 'get_admin_log' must be 'for_user'") return AdminLogNode(limit=tokens[1], varname=tokens[3], user=(tokens[5] if len(tokens) > 5 else None))
bsd-3-clause
henrytao-me/openerp.positionq
openerp/addons/pad_project/__openerp__.py
119
1478
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'Pad on tasks', 'version': '1.0', 'category': 'Project Management', 'description': """ This module adds a PAD in all project kanban views. =================================================== """, 'author': 'OpenERP SA', 'website': 'http://www.openerp.com', 'depends': ['project', 'pad'], 'data': ['project_task.xml'], 'demo': [], 'installable': True, 'auto_install': True, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
guewen/OpenUpgrade
openerp/service/server.py
32
35650
#----------------------------------------------------------- # Threaded, Gevent and Prefork Servers #----------------------------------------------------------- import datetime import errno import logging import os import os.path import platform import psutil import random if os.name == 'posix': import resource else: resource = None import select import signal import socket import subprocess import sys import threading import time import unittest2 import werkzeug.serving try: import fcntl except ImportError: pass try: from setproctitle import setproctitle except ImportError: setproctitle = lambda x: None import openerp from openerp.modules.registry import RegistryManager from openerp.release import nt_service_name import openerp.tools.config as config from openerp.tools.misc import stripped_sys_argv, dumpstacks _logger = logging.getLogger(__name__) SLEEP_INTERVAL = 60 # 1 min #---------------------------------------------------------- # Werkzeug WSGI servers patched #---------------------------------------------------------- class BaseWSGIServerNoBind(werkzeug.serving.BaseWSGIServer): """ werkzeug Base WSGI Server patched to skip socket binding. PreforkServer use this class, sets the socket and calls the process_request() manually """ def __init__(self, app): werkzeug.serving.BaseWSGIServer.__init__(self, "1", "1", app) def server_bind(self): # we dont bind beause we use the listen socket of PreforkServer#socket # instead we close the socket if self.socket: self.socket.close() def server_activate(self): # dont listen as we use PreforkServer#socket pass class RequestHandler(werkzeug.serving.WSGIRequestHandler): def setup(self): # flag the current thread as handling a http request super(RequestHandler, self).setup() me = threading.currentThread() me.name = 'openerp.service.http.request.%s' % (me.ident,) # _reexec() should set LISTEN_* to avoid connection refused during reload time. It # should also work with systemd socket activation. This is currently untested # and not yet used. class ThreadedWSGIServerReloadable(werkzeug.serving.ThreadedWSGIServer): """ werkzeug Threaded WSGI Server patched to allow reusing a listen socket given by the environement, this is used by autoreload to keep the listen socket open when a reload happens. """ def __init__(self, host, port, app): super(ThreadedWSGIServerReloadable, self).__init__(host, port, app, handler=RequestHandler) def server_bind(self): envfd = os.environ.get('LISTEN_FDS') if envfd and os.environ.get('LISTEN_PID') == str(os.getpid()): self.reload_socket = True self.socket = socket.fromfd(int(envfd), socket.AF_INET, socket.SOCK_STREAM) # should we os.close(int(envfd)) ? it seem python duplicate the fd. else: self.reload_socket = False super(ThreadedWSGIServerReloadable, self).server_bind() def server_activate(self): if not self.reload_socket: super(ThreadedWSGIServerReloadable, self).server_activate() #---------------------------------------------------------- # AutoReload watcher #---------------------------------------------------------- class AutoReload(object): def __init__(self, server): self.server = server self.files = {} self.modules = {} import pyinotify class EventHandler(pyinotify.ProcessEvent): def __init__(self, autoreload): self.autoreload = autoreload def process_IN_CREATE(self, event): _logger.debug('File created: %s', event.pathname) self.autoreload.files[event.pathname] = 1 def process_IN_MODIFY(self, event): _logger.debug('File modified: %s', event.pathname) self.autoreload.files[event.pathname] = 1 self.wm = pyinotify.WatchManager() self.handler = EventHandler(self) self.notifier = pyinotify.Notifier(self.wm, self.handler, timeout=0) mask = pyinotify.IN_MODIFY | pyinotify.IN_CREATE # IN_MOVED_FROM, IN_MOVED_TO ? for path in openerp.modules.modules.ad_paths: _logger.info('Watching addons folder %s', path) self.wm.add_watch(path, mask, rec=True) def process_data(self, files): xml_files = [i for i in files if i.endswith('.xml')] for i in xml_files: for path in openerp.modules.modules.ad_paths: if i.startswith(path): # find out wich addons path the file belongs to # and extract it's module name right = i[len(path) + 1:].split('/') if len(right) < 2: continue module = right[0] self.modules[module] = 1 if self.modules: _logger.info('autoreload: xml change detected, autoreload activated') restart() def process_python(self, files): # process python changes py_files = [i for i in files if i.endswith('.py')] py_errors = [] # TODO keep python errors until they are ok if py_files: for i in py_files: try: source = open(i, 'rb').read() + '\n' compile(source, i, 'exec') except SyntaxError: py_errors.append(i) if py_errors: _logger.info('autoreload: python code change detected, errors found') for i in py_errors: _logger.info('autoreload: SyntaxError %s', i) else: _logger.info('autoreload: python code updated, autoreload activated') restart() def check_thread(self): # Check if some files have been touched in the addons path. # If true, check if the touched file belongs to an installed module # in any of the database used in the registry manager. while 1: while self.notifier.check_events(1000): self.notifier.read_events() self.notifier.process_events() l = self.files.keys() self.files.clear() self.process_data(l) self.process_python(l) def run(self): t = threading.Thread(target=self.check_thread) t.setDaemon(True) t.start() _logger.info('AutoReload watcher running') #---------------------------------------------------------- # Servers: Threaded, Gevented and Prefork #---------------------------------------------------------- class CommonServer(object): def __init__(self, app): # TODO Change the xmlrpc_* options to http_* self.app = app # config self.interface = config['xmlrpc_interface'] or '0.0.0.0' self.port = config['xmlrpc_port'] # runtime self.pid = os.getpid() def close_socket(self, sock): """ Closes a socket instance cleanly :param sock: the network socket to close :type sock: socket.socket """ try: sock.shutdown(socket.SHUT_RDWR) except socket.error, e: # On OSX, socket shutdowns both sides if any side closes it # causing an error 57 'Socket is not connected' on shutdown # of the other side (or something), see # http://bugs.python.org/issue4397 # note: stdlib fixed test, not behavior if e.errno != errno.ENOTCONN or platform.system() not in ['Darwin', 'Windows']: raise sock.close() class ThreadedServer(CommonServer): def __init__(self, app): super(ThreadedServer, self).__init__(app) self.main_thread_id = threading.currentThread().ident # Variable keeping track of the number of calls to the signal handler defined # below. This variable is monitored by ``quit_on_signals()``. self.quit_signals_received = 0 #self.socket = None self.httpd = None def signal_handler(self, sig, frame): if sig in [signal.SIGINT, signal.SIGTERM]: # shutdown on kill -INT or -TERM self.quit_signals_received += 1 if self.quit_signals_received > 1: # logging.shutdown was already called at this point. sys.stderr.write("Forced shutdown.\n") os._exit(0) elif sig == signal.SIGHUP: # restart on kill -HUP openerp.phoenix = True self.quit_signals_received += 1 def cron_thread(self, number): while True: time.sleep(SLEEP_INTERVAL + number) # Steve Reich timing style registries = openerp.modules.registry.RegistryManager.registries _logger.debug('cron%d polling for jobs', number) for db_name, registry in registries.items(): while True and registry.ready: acquired = openerp.addons.base.ir.ir_cron.ir_cron._acquire_job(db_name) if not acquired: break def cron_spawn(self): """ Start the above runner function in a daemon thread. The thread is a typical daemon thread: it will never quit and must be terminated when the main process exits - with no consequence (the processing threads it spawns are not marked daemon). """ # Force call to strptime just before starting the cron thread # to prevent time.strptime AttributeError within the thread. # See: http://bugs.python.org/issue7980 datetime.datetime.strptime('2012-01-01', '%Y-%m-%d') for i in range(openerp.tools.config['max_cron_threads']): def target(): self.cron_thread(i) t = threading.Thread(target=target, name="openerp.service.cron.cron%d" % i) t.setDaemon(True) t.start() _logger.debug("cron%d started!" % i) def http_thread(self): def app(e, s): return self.app(e, s) self.httpd = ThreadedWSGIServerReloadable(self.interface, self.port, app) self.httpd.serve_forever() def http_spawn(self): t = threading.Thread(target=self.http_thread, name="openerp.service.httpd") t.setDaemon(True) t.start() _logger.info('HTTP service (werkzeug) running on %s:%s', self.interface, self.port) def start(self, stop=False): _logger.debug("Setting signal handlers") if os.name == 'posix': signal.signal(signal.SIGINT, self.signal_handler) signal.signal(signal.SIGTERM, self.signal_handler) signal.signal(signal.SIGCHLD, self.signal_handler) signal.signal(signal.SIGHUP, self.signal_handler) signal.signal(signal.SIGQUIT, dumpstacks) elif os.name == 'nt': import win32api win32api.SetConsoleCtrlHandler(lambda sig: self.signal_handler(sig, None), 1) test_mode = config['test_enable'] or config['test_file'] if not stop or test_mode: # some tests need the http deamon to be available... self.http_spawn() if not stop: # only relevant if we are not in "--stop-after-init" mode self.cron_spawn() def stop(self): """ Shutdown the WSGI server. Wait for non deamon threads. """ _logger.info("Initiating shutdown") _logger.info("Hit CTRL-C again or send a second signal to force the shutdown.") if self.httpd: self.httpd.shutdown() self.close_socket(self.httpd.socket) # Manually join() all threads before calling sys.exit() to allow a second signal # to trigger _force_quit() in case some non-daemon threads won't exit cleanly. # threading.Thread.join() should not mask signals (at least in python 2.5). me = threading.currentThread() _logger.debug('current thread: %r', me) for thread in threading.enumerate(): _logger.debug('process %r (%r)', thread, thread.isDaemon()) if thread != me and not thread.isDaemon() and thread.ident != self.main_thread_id: while thread.isAlive(): _logger.debug('join and sleep') # Need a busyloop here as thread.join() masks signals # and would prevent the forced shutdown. thread.join(0.05) time.sleep(0.05) _logger.debug('--') openerp.modules.registry.RegistryManager.delete_all() logging.shutdown() def run(self, preload=None, stop=False): """ Start the http server and the cron thread then wait for a signal. The first SIGINT or SIGTERM signal will initiate a graceful shutdown while a second one if any will force an immediate exit. """ self.start(stop=stop) rc = preload_registries(preload) if stop: self.stop() return rc # Wait for a first signal to be handled. (time.sleep will be interrupted # by the signal handler.) The try/except is for the win32 case. try: while self.quit_signals_received == 0: time.sleep(60) except KeyboardInterrupt: pass self.stop() def reload(self): os.kill(self.pid, signal.SIGHUP) class GeventServer(CommonServer): def __init__(self, app): super(GeventServer, self).__init__(app) self.port = config['longpolling_port'] self.httpd = None def watch_parent(self, beat=4): import gevent ppid = os.getppid() while True: if ppid != os.getppid(): pid = os.getpid() _logger.info("LongPolling (%s) Parent changed", pid) # suicide !! os.kill(pid, signal.SIGTERM) return gevent.sleep(beat) def start(self): import gevent from gevent.wsgi import WSGIServer if os.name == 'posix': signal.signal(signal.SIGQUIT, dumpstacks) gevent.spawn(self.watch_parent) self.httpd = WSGIServer((self.interface, self.port), self.app) _logger.info('Evented Service (longpolling) running on %s:%s', self.interface, self.port) self.httpd.serve_forever() def stop(self): import gevent self.httpd.stop() gevent.shutdown() def run(self, preload, stop): self.start() self.stop() class PreforkServer(CommonServer): """ Multiprocessing inspired by (g)unicorn. PreforkServer (aka Multicorn) currently uses accept(2) as dispatching method between workers but we plan to replace it by a more intelligent dispatcher to will parse the first HTTP request line. """ def __init__(self, app): # config self.address = (config['xmlrpc_interface'] or '0.0.0.0', config['xmlrpc_port']) self.population = config['workers'] self.timeout = config['limit_time_real'] self.limit_request = config['limit_request'] # working vars self.beat = 4 self.app = app self.pid = os.getpid() self.socket = None self.workers_http = {} self.workers_cron = {} self.workers = {} self.generation = 0 self.queue = [] self.long_polling_pid = None def pipe_new(self): pipe = os.pipe() for fd in pipe: # non_blocking flags = fcntl.fcntl(fd, fcntl.F_GETFL) | os.O_NONBLOCK fcntl.fcntl(fd, fcntl.F_SETFL, flags) # close_on_exec flags = fcntl.fcntl(fd, fcntl.F_GETFD) | fcntl.FD_CLOEXEC fcntl.fcntl(fd, fcntl.F_SETFD, flags) return pipe def pipe_ping(self, pipe): try: os.write(pipe[1], '.') except IOError, e: if e.errno not in [errno.EAGAIN, errno.EINTR]: raise def signal_handler(self, sig, frame): if len(self.queue) < 5 or sig == signal.SIGCHLD: self.queue.append(sig) self.pipe_ping(self.pipe) else: _logger.warn("Dropping signal: %s", sig) def worker_spawn(self, klass, workers_registry): self.generation += 1 worker = klass(self) pid = os.fork() if pid != 0: worker.pid = pid self.workers[pid] = worker workers_registry[pid] = worker return worker else: worker.run() sys.exit(0) def long_polling_spawn(self): nargs = stripped_sys_argv() cmd = nargs[0] cmd = os.path.join(os.path.dirname(cmd), "openerp-gevent") nargs[0] = cmd popen = subprocess.Popen(nargs) self.long_polling_pid = popen.pid def worker_pop(self, pid): if pid in self.workers: _logger.debug("Worker (%s) unregistered", pid) try: self.workers_http.pop(pid, None) self.workers_cron.pop(pid, None) u = self.workers.pop(pid) u.close() except OSError: return def worker_kill(self, pid, sig): try: os.kill(pid, sig) except OSError, e: if e.errno == errno.ESRCH: self.worker_pop(pid) def process_signals(self): while len(self.queue): sig = self.queue.pop(0) if sig in [signal.SIGINT, signal.SIGTERM]: raise KeyboardInterrupt elif sig == signal.SIGHUP: # restart on kill -HUP openerp.phoenix = True raise KeyboardInterrupt elif sig == signal.SIGQUIT: # dump stacks on kill -3 self.dumpstacks() elif sig == signal.SIGTTIN: # increase number of workers self.population += 1 elif sig == signal.SIGTTOU: # decrease number of workers self.population -= 1 def process_zombie(self): # reap dead workers while 1: try: wpid, status = os.waitpid(-1, os.WNOHANG) if not wpid: break if (status >> 8) == 3: msg = "Critial worker error (%s)" _logger.critical(msg, wpid) raise Exception(msg % wpid) self.worker_pop(wpid) except OSError, e: if e.errno == errno.ECHILD: break raise def process_timeout(self): now = time.time() for (pid, worker) in self.workers.items(): if worker.watchdog_timeout is not None and \ (now - worker.watchdog_time) >= worker.watchdog_timeout: _logger.error("Worker (%s) timeout", pid) self.worker_kill(pid, signal.SIGKILL) def process_spawn(self): while len(self.workers_http) < self.population: self.worker_spawn(WorkerHTTP, self.workers_http) while len(self.workers_cron) < config['max_cron_threads']: self.worker_spawn(WorkerCron, self.workers_cron) if not self.long_polling_pid: self.long_polling_spawn() def sleep(self): try: # map of fd -> worker fds = dict([(w.watchdog_pipe[0], w) for k, w in self.workers.items()]) fd_in = fds.keys() + [self.pipe[0]] # check for ping or internal wakeups ready = select.select(fd_in, [], [], self.beat) # update worker watchdogs for fd in ready[0]: if fd in fds: fds[fd].watchdog_time = time.time() try: # empty pipe while os.read(fd, 1): pass except OSError, e: if e.errno not in [errno.EAGAIN]: raise except select.error, e: if e[0] not in [errno.EINTR]: raise def start(self): # wakeup pipe, python doesnt throw EINTR when a syscall is interrupted # by a signal simulating a pseudo SA_RESTART. We write to a pipe in the # signal handler to overcome this behaviour self.pipe = self.pipe_new() # set signal handlers signal.signal(signal.SIGINT, self.signal_handler) signal.signal(signal.SIGTERM, self.signal_handler) signal.signal(signal.SIGHUP, self.signal_handler) signal.signal(signal.SIGCHLD, self.signal_handler) signal.signal(signal.SIGTTIN, self.signal_handler) signal.signal(signal.SIGTTOU, self.signal_handler) signal.signal(signal.SIGQUIT, dumpstacks) # listen to socket self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.setblocking(0) self.socket.bind(self.address) self.socket.listen(8 * self.population) def stop(self, graceful=True): if self.long_polling_pid is not None: # FIXME make longpolling process handle SIGTERM correctly self.worker_kill(self.long_polling_pid, signal.SIGKILL) self.long_polling_pid = None if graceful: _logger.info("Stopping gracefully") limit = time.time() + self.timeout for pid in self.workers.keys(): self.worker_kill(pid, signal.SIGTERM) while self.workers and time.time() < limit: self.process_zombie() time.sleep(0.1) else: _logger.info("Stopping forcefully") for pid in self.workers.keys(): self.worker_kill(pid, signal.SIGTERM) self.socket.close() def run(self, preload, stop): self.start() rc = preload_registries(preload) if stop: self.stop() return rc # Empty the cursor pool, we dont want them to be shared among forked workers. openerp.sql_db.close_all() _logger.debug("Multiprocess starting") while 1: try: #_logger.debug("Multiprocess beat (%s)",time.time()) self.process_signals() self.process_zombie() self.process_timeout() self.process_spawn() self.sleep() except KeyboardInterrupt: _logger.debug("Multiprocess clean stop") self.stop() break except Exception, e: _logger.exception(e) self.stop(False) return -1 class Worker(object): """ Workers """ def __init__(self, multi): self.multi = multi self.watchdog_time = time.time() self.watchdog_pipe = multi.pipe_new() # Can be set to None if no watchdog is desired. self.watchdog_timeout = multi.timeout self.ppid = os.getpid() self.pid = None self.alive = True # should we rename into lifetime ? self.request_max = multi.limit_request self.request_count = 0 def setproctitle(self, title=""): setproctitle('openerp: %s %s %s' % (self.__class__.__name__, self.pid, title)) def close(self): os.close(self.watchdog_pipe[0]) os.close(self.watchdog_pipe[1]) def signal_handler(self, sig, frame): self.alive = False def sleep(self): try: select.select([self.multi.socket], [], [], self.multi.beat) except select.error, e: if e[0] not in [errno.EINTR]: raise def process_limit(self): if resource is None: return # If our parent changed sucide if self.ppid != os.getppid(): _logger.info("Worker (%s) Parent changed", self.pid) self.alive = False # check for lifetime if self.request_count >= self.request_max: _logger.info("Worker (%d) max request (%s) reached.", self.pid, self.request_count) self.alive = False # Reset the worker if it consumes too much memory (e.g. caused by a memory leak). rss, vms = psutil.Process(os.getpid()).get_memory_info() if vms > config['limit_memory_soft']: _logger.info('Worker (%d) virtual memory limit (%s) reached.', self.pid, vms) self.alive = False # Commit suicide after the request. # VMS and RLIMIT_AS are the same thing: virtual memory, a.k.a. address space soft, hard = resource.getrlimit(resource.RLIMIT_AS) resource.setrlimit(resource.RLIMIT_AS, (config['limit_memory_hard'], hard)) # SIGXCPU (exceeded CPU time) signal handler will raise an exception. r = resource.getrusage(resource.RUSAGE_SELF) cpu_time = r.ru_utime + r.ru_stime def time_expired(n, stack): _logger.info('Worker (%d) CPU time limit (%s) reached.', config['limit_time_cpu']) # We dont suicide in such case raise Exception('CPU time limit exceeded.') signal.signal(signal.SIGXCPU, time_expired) soft, hard = resource.getrlimit(resource.RLIMIT_CPU) resource.setrlimit(resource.RLIMIT_CPU, (cpu_time + config['limit_time_cpu'], hard)) def process_work(self): pass def start(self): self.pid = os.getpid() self.setproctitle() _logger.info("Worker %s (%s) alive", self.__class__.__name__, self.pid) # Reseed the random number generator random.seed() # Prevent fd inherientence close_on_exec flags = fcntl.fcntl(self.multi.socket, fcntl.F_GETFD) | fcntl.FD_CLOEXEC fcntl.fcntl(self.multi.socket, fcntl.F_SETFD, flags) # reset blocking status self.multi.socket.setblocking(0) signal.signal(signal.SIGINT, self.signal_handler) signal.signal(signal.SIGTERM, signal.SIG_DFL) signal.signal(signal.SIGCHLD, signal.SIG_DFL) def stop(self): pass def run(self): try: self.start() while self.alive: self.process_limit() self.multi.pipe_ping(self.watchdog_pipe) self.sleep() self.process_work() _logger.info("Worker (%s) exiting. request_count: %s.", self.pid, self.request_count) self.stop() except Exception: _logger.exception("Worker (%s) Exception occured, exiting..." % self.pid) # should we use 3 to abort everything ? sys.exit(1) class WorkerHTTP(Worker): """ HTTP Request workers """ def process_request(self, client, addr): client.setblocking(1) client.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) # Prevent fd inherientence close_on_exec flags = fcntl.fcntl(client, fcntl.F_GETFD) | fcntl.FD_CLOEXEC fcntl.fcntl(client, fcntl.F_SETFD, flags) # do request using BaseWSGIServerNoBind monkey patched with socket self.server.socket = client # tolerate broken pipe when the http client closes the socket before # receiving the full reply try: self.server.process_request(client, addr) except IOError, e: if e.errno != errno.EPIPE: raise self.request_count += 1 def process_work(self): try: client, addr = self.multi.socket.accept() self.process_request(client, addr) except socket.error, e: if e[0] not in (errno.EAGAIN, errno.ECONNABORTED): raise def start(self): Worker.start(self) self.server = BaseWSGIServerNoBind(self.multi.app) class WorkerCron(Worker): """ Cron workers """ def __init__(self, multi): super(WorkerCron, self).__init__(multi) # process_work() below process a single database per call. # The variable db_index is keeping track of the next database to # process. self.db_index = 0 def sleep(self): # Really sleep once all the databases have been processed. if self.db_index == 0: interval = SLEEP_INTERVAL + self.pid % 10 # chorus effect time.sleep(interval) def _db_list(self): if config['db_name']: db_names = config['db_name'].split(',') else: db_names = openerp.service.db.exp_list(True) return db_names def process_work(self): rpc_request = logging.getLogger('openerp.netsvc.rpc.request') rpc_request_flag = rpc_request.isEnabledFor(logging.DEBUG) _logger.debug("WorkerCron (%s) polling for jobs", self.pid) db_names = self._db_list() if len(db_names): self.db_index = (self.db_index + 1) % len(db_names) db_name = db_names[self.db_index] self.setproctitle(db_name) if rpc_request_flag: start_time = time.time() start_rss, start_vms = psutil.Process(os.getpid()).get_memory_info() import openerp.addons.base as base base.ir.ir_cron.ir_cron._acquire_job(db_name) openerp.modules.registry.RegistryManager.delete(db_name) # dont keep cursors in multi database mode if len(db_names) > 1: openerp.sql_db.close_db(db_name) if rpc_request_flag: run_time = time.time() - start_time end_rss, end_vms = psutil.Process(os.getpid()).get_memory_info() vms_diff = (end_vms - start_vms) / 1024 logline = '%s time:%.3fs mem: %sk -> %sk (diff: %sk)' % \ (db_name, run_time, start_vms / 1024, end_vms / 1024, vms_diff) _logger.debug("WorkerCron (%s) %s", self.pid, logline) self.request_count += 1 if self.request_count >= self.request_max and self.request_max < len(db_names): _logger.error("There are more dabatases to process than allowed " "by the `limit_request` configuration variable: %s more.", len(db_names) - self.request_max) else: self.db_index = 0 def start(self): os.nice(10) # mommy always told me to be nice with others... Worker.start(self) self.multi.socket.close() #---------------------------------------------------------- # start/stop public api #---------------------------------------------------------- server = None def load_server_wide_modules(): for m in openerp.conf.server_wide_modules: try: openerp.modules.module.load_openerp_module(m) except Exception: msg = '' if m == 'web': msg = """ The `web` module is provided by the addons found in the `openerp-web` project. Maybe you forgot to add those addons in your addons_path configuration.""" _logger.exception('Failed to load server-wide module `%s`.%s', m, msg) def _reexec(updated_modules=None): """reexecute openerp-server process with (nearly) the same arguments""" if openerp.tools.osutil.is_running_as_nt_service(): subprocess.call('net stop {0} && net start {0}'.format(nt_service_name), shell=True) exe = os.path.basename(sys.executable) args = stripped_sys_argv() args += ["-u", ','.join(updated_modules)] if not args or args[0] != exe: args.insert(0, exe) os.execv(sys.executable, args) def load_test_file_yml(registry, test_file): with registry.cursor() as cr: openerp.tools.convert_yaml_import(cr, 'base', file(test_file), 'test', {}, 'init') if config['test_commit']: _logger.info('test %s has been commited', test_file) cr.commit() else: _logger.info('test %s has been rollbacked', test_file) cr.rollback() def load_test_file_py(registry, test_file): # Locate python module based on its filename and run the tests test_path, _ = os.path.splitext(os.path.abspath(test_file)) for mod_name, mod_mod in sys.modules.items(): if mod_mod: mod_path, _ = os.path.splitext(getattr(mod_mod, '__file__', '')) if test_path == mod_path: suite = unittest2.TestSuite() for t in unittest2.TestLoader().loadTestsFromModule(mod_mod): suite.addTest(t) _logger.log(logging.INFO, 'running tests %s.', mod_mod.__name__) stream = openerp.modules.module.TestStream() result = unittest2.TextTestRunner(verbosity=2, stream=stream).run(suite) success = result.wasSuccessful() if hasattr(registry._assertion_report,'report_result'): registry._assertion_report.report_result(success) if not success: _logger.error('%s: at least one error occurred in a test', test_file) def preload_registries(dbnames): """ Preload a registries, possibly run a test file.""" # TODO: move all config checks to args dont check tools.config here config = openerp.tools.config test_file = config['test_file'] dbnames = dbnames or [] rc = 0 for dbname in dbnames: try: update_module = config['init'] or config['update'] registry = RegistryManager.new(dbname, update_module=update_module) # run test_file if provided if test_file: _logger.info('loading test file %s', test_file) if test_file.endswith('yml'): load_test_file_yml(registry, test_file) elif test_file.endswith('py'): load_test_file_py(registry, test_file) if registry._assertion_report.failures: rc += 1 except Exception: _logger.critical('Failed to initialize database `%s`.', dbname, exc_info=True) return -1 return rc def start(preload=None, stop=False): """ Start the openerp http server and cron processor. """ global server load_server_wide_modules() if openerp.evented: server = GeventServer(openerp.service.wsgi_server.application) elif config['workers']: server = PreforkServer(openerp.service.wsgi_server.application) else: server = ThreadedServer(openerp.service.wsgi_server.application) if config['auto_reload']: autoreload = AutoReload(server) autoreload.run() rc = server.run(preload, stop) # like the legend of the phoenix, all ends with beginnings if getattr(openerp, 'phoenix', False): modules = [] if config['auto_reload']: modules = autoreload.modules.keys() _reexec(modules) return rc if rc else 0 def restart(): """ Restart the server """ if os.name == 'nt': # run in a thread to let the current thread return response to the caller. threading.Thread(target=_reexec).start() else: os.kill(server.pid, signal.SIGHUP) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
MoamerEncsConcordiaCa/tensorflow
tensorflow/python/ops/spectral_ops.py
38
4414
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Spectral operators (e.g. FFT, RFFT). @@fft @@ifft @@fft2d @@ifft2d @@fft3d @@ifft3d @@rfft @@irfft @@rfft2d @@irfft2d @@rfft3d @@irfft3d """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import ops as _ops from tensorflow.python.ops import array_ops as _array_ops from tensorflow.python.ops import gen_spectral_ops from tensorflow.python.ops import math_ops as _math_ops from tensorflow.python.util.all_util import remove_undocumented def _infer_fft_length_for_rfft(input_tensor, fft_rank): """Infers the `fft_length` argument for a `rank` RFFT from `input_tensor`.""" # A TensorShape for the inner fft_rank dimensions. fft_shape = input_tensor.get_shape()[-fft_rank:] # If any dim is unknown, fall back to tensor-based math. if not fft_shape.is_fully_defined(): return _array_ops.shape(input_tensor)[-fft_rank:] # Otherwise, return a constant. return _ops.convert_to_tensor(fft_shape.as_list(), _dtypes.int32) def _infer_fft_length_for_irfft(input_tensor, fft_rank): """Infers the `fft_length` argument for a `rank` IRFFT from `input_tensor`.""" # A TensorShape for the inner fft_rank dimensions. fft_shape = input_tensor.get_shape()[-fft_rank:] # If any dim is unknown, fall back to tensor-based math. if not fft_shape.is_fully_defined(): fft_length = _array_ops.unstack(_array_ops.shape(input_tensor)[-fft_rank:]) fft_length[-1] = _math_ops.maximum(0, 2 * (fft_length[-1] - 1)) return _array_ops.stack(fft_length) # Otherwise, return a constant. fft_length = fft_shape.as_list() if fft_length: fft_length[-1] = max(0, 2 * (fft_length[-1] - 1)) return _ops.convert_to_tensor(fft_length, _dtypes.int32) def _rfft_wrapper(fft_fn, fft_rank, default_name): """Wrapper around gen_spectral_ops.rfft* that infers fft_length argument.""" def _rfft(input_tensor, fft_length=None, name=None): with _ops.name_scope(name, default_name, [input_tensor, fft_length]) as name: input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.float32) if fft_length is None: fft_length = _infer_fft_length_for_rfft(input_tensor, fft_rank) else: fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) return fft_fn(input_tensor, fft_length, name) _rfft.__doc__ = fft_fn.__doc__ return _rfft def _irfft_wrapper(ifft_fn, fft_rank, default_name): """Wrapper around gen_spectral_ops.irfft* that infers fft_length argument.""" def _irfft(input_tensor, fft_length=None, name=None): with _ops.name_scope(name, default_name, [input_tensor, fft_length]) as name: input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.complex64) if fft_length is None: fft_length = _infer_fft_length_for_irfft(input_tensor, fft_rank) else: fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32) return ifft_fn(input_tensor, fft_length, name) _irfft.__doc__ = ifft_fn.__doc__ return _irfft fft = gen_spectral_ops.fft ifft = gen_spectral_ops.ifft fft2d = gen_spectral_ops.fft2d ifft2d = gen_spectral_ops.ifft2d fft3d = gen_spectral_ops.fft3d ifft3d = gen_spectral_ops.ifft3d rfft = _rfft_wrapper(gen_spectral_ops.rfft, 1, "rfft") irfft = _irfft_wrapper(gen_spectral_ops.irfft, 1, "irfft") rfft2d = _rfft_wrapper(gen_spectral_ops.rfft2d, 2, "rfft2d") irfft2d = _irfft_wrapper(gen_spectral_ops.irfft2d, 2, "irfft2d") rfft3d = _rfft_wrapper(gen_spectral_ops.rfft3d, 3, "rfft3d") irfft3d = _irfft_wrapper(gen_spectral_ops.irfft3d, 3, "irfft3d") remove_undocumented(__name__)
apache-2.0
ryfeus/lambda-packs
Tensorflow_LightGBM_Scipy_nightly/source/scipy/stats/_binned_statistic.py
10
25912
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.six import callable, xrange from scipy._lib._numpy_compat import suppress_warnings from collections import namedtuple __all__ = ['binned_statistic', 'binned_statistic_2d', 'binned_statistic_dd'] BinnedStatisticResult = namedtuple('BinnedStatisticResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic(x, values, statistic='mean', bins=10, range=None): """ Compute a binned statistic for one or more sets of data. This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a set of sequences - each the same shape as `x`. If `values` is a set of sequences, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10 by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in `x` that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to ``bins[-1]``. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1). range : (float, float) or [(float, float)], optional The lower and upper range of the bins. If not provided, range is simply ``(x.min(), x.max())``. Values outside the range are ignored. Returns ------- statistic : array The values of the selected statistic in each bin. bin_edges : array of dtype float Return the bin edges ``(length(statistic)+1)``. binnumber: 1-D ndarray of ints Indices of the bins (corresponding to `bin_edges`) in which each value of `x` belongs. Same length as `values`. A binnumber of `i` means the corresponding value is between (bin_edges[i-1], bin_edges[i]). See Also -------- numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt First some basic examples: Create two evenly spaced bins in the range of the given sample, and sum the corresponding values in each of those bins: >>> values = [1.0, 1.0, 2.0, 1.5, 3.0] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([ 4. , 4.5]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) Multiple arrays of values can also be passed. The statistic is calculated on each set independently: >>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]] >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2) (array([[ 4. , 4.5], [ 8. , 9. ]]), array([ 1., 4., 7.]), array([1, 1, 1, 2, 2])) >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', ... bins=3) (array([ 1., 2., 4.]), array([ 1., 2., 3., 4.]), array([1, 2, 1, 2, 3])) As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and then determine how fast our boat is for certain wind speeds: >>> windspeed = 8 * np.random.rand(500) >>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed, ... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7]) >>> plt.figure() >>> plt.plot(windspeed, boatspeed, 'b.', label='raw data') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5, ... label='binned statistic of data') >>> plt.legend() Now we can use ``binnumber`` to select all datapoints with a windspeed below 1: >>> low_boatspeed = boatspeed[binnumber == 0] As a final example, we will use ``bin_edges`` and ``binnumber`` to make a plot of a distribution that shows the mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution function: >>> x = np.linspace(0, 5, num=500) >>> x_pdf = stats.maxwell.pdf(x) >>> samples = stats.maxwell.rvs(size=10000) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf, ... statistic='mean', bins=25) >>> bin_width = (bin_edges[1] - bin_edges[0]) >>> bin_centers = bin_edges[1:] - bin_width/2 >>> plt.figure() >>> plt.hist(samples, bins=50, normed=True, histtype='stepfilled', ... alpha=0.2, label='histogram of data') >>> plt.plot(x, x_pdf, 'r-', label='analytical pdf') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2, ... label='binned statistic of data') >>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5) >>> plt.legend(fontsize=10) >>> plt.show() """ try: N = len(bins) except TypeError: N = 1 if N != 1: bins = [np.asarray(bins, float)] if range is not None: if len(range) == 2: range = [range] medians, edges, binnumbers = binned_statistic_dd( [x], values, statistic, bins, range) return BinnedStatisticResult(medians, edges[0], binnumbers) BinnedStatistic2dResult = namedtuple('BinnedStatistic2dResult', ('statistic', 'x_edge', 'y_edge', 'binnumber')) def binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a bidimensional binned statistic for one or more sets of data. This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned along the first dimension. y : (N,) array_like A sequence of values to be binned along the second dimension. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * the number of bins for the two dimensions (nx = ny = bins), * the number of bins in each dimension (nx, ny = bins), * the bin edges for the two dimensions (x_edge = y_edge = bins), * the bin edges in each dimension (x_edge, y_edge = bins). If the bin edges are specified, the number of bins will be, (nx = len(x_edge)-1, ny = len(y_edge)-1). range : (2,2) array_like, optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (2,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section. .. versionadded:: 0.17.0 Returns ------- statistic : (nx, ny) ndarray The values of the selected statistic in each two-dimensional bin. x_edge : (nx + 1) ndarray The bin edges along the first dimension. y_edge : (ny + 1) ndarray The bin edges along the second dimension. binnumber : (N,) array of ints or (2,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd Notes ----- Binedges: All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (2,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (D_edge[i-1], D_edge[i]), where 'D' is either 'x' or 'y'. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats Calculate the counts with explicit bin-edges: >>> x = [0.1, 0.1, 0.1, 0.6] >>> y = [2.1, 2.6, 2.1, 2.1] >>> binx = [0.0, 0.5, 1.0] >>> biny = [2.0, 2.5, 3.0] >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny]) >>> ret.statistic array([[ 2., 1.], [ 1., 0.]]) The bin in which each sample is placed is given by the `binnumber` returned parameter. By default, these are the linearized bin indices: >>> ret.binnumber array([5, 6, 5, 9]) The bin indices can also be expanded into separate entries for each dimension using the `expand_binnumbers` parameter: >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny], ... expand_binnumbers=True) >>> ret.binnumber array([[1, 1, 1, 2], [1, 2, 1, 1]]) Which shows that the first three elements belong in the xbin 1, and the fourth into xbin 2; and so on for y. """ # This code is based on np.histogram2d try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = np.asarray(bins, float) bins = [xedges, yedges] medians, edges, binnumbers = binned_statistic_dd( [x, y], values, statistic, bins, range, expand_binnumbers=expand_binnumbers) return BinnedStatistic2dResult(medians, edges[0], edges[1], binnumbers) BinnedStatisticddResult = namedtuple('BinnedStatisticddResult', ('statistic', 'bin_edges', 'binnumber')) def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : (N,) array_like or list of (N,) array_like The data on which the statistic will be computed. This must be the same shape as `x`, or a list of sequences - each with the same shape as `x`. If `values` is such a list, the statistic will be computed on each independently. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * 'min' : compute the minimum of values for points within each bin. Empty bins will be represented by NaN. * 'max' : compute the maximum of values for point within each bin. Empty bins will be represented by NaN. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification must be in one of the following forms: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... = bins). * The number of bins for all dimensions (nx = ny = ... = bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. expand_binnumbers : bool, optional 'False' (default): the returned `binnumber` is a shape (N,) array of linearized bin indices. 'True': the returned `binnumber` is 'unraveled' into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the `binnumber` returned value, and the `Examples` section of `binned_statistic_2d`. .. versionadded:: 0.17.0 Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin. bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension. binnumber : (N,) array of ints or (D,N) ndarray of ints This assigns to each element of `sample` an integer that represents the bin in which this observation falls. The representation depends on the `expand_binnumbers` argument. See `Notes` for details. See Also -------- numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d Notes ----- Binedges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. `binnumber`: This returned argument assigns to each element of `sample` an integer that represents the bin in which it belongs. The representation depends on the `expand_binnumbers` argument. If 'False' (default): The returned `binnumber` is a shape (N,) array of linearized indices mapping each element of `sample` to its corresponding bin (using row-major ordering). If 'True': The returned `binnumber` is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of `i` means the corresponding value is between (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'. .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std','min','max'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`) # `Dlen` is the length of elements along each dimension. # This code is based on np.histogramdd try: # `sample` is an ND-array. Dlen, Ndim = sample.shape except (AttributeError, ValueError): # `sample` is a sequence of 1D arrays. sample = np.atleast_2d(sample).T Dlen, Ndim = sample.shape # Store initial shape of `values` to preserve it in the output values = np.asarray(values) input_shape = list(values.shape) # Make sure that `values` is 2D to iterate over rows values = np.atleast_2d(values) Vdim, Vlen = values.shape # Make sure `values` match `sample` if(statistic != 'count' and Vlen != Dlen): raise AttributeError('The number of `values` elements must match the ' 'length of each `sample` dimension.') nbin = np.empty(Ndim, int) # Number of bins in each dimension edges = Ndim * [None] # Bin edges for each dim (will be 2D array) dedges = Ndim * [None] # Spacing between edges (will be 2D array) try: M = len(bins) if M != Ndim: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = Ndim * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(axis=0), float)) smax = np.atleast_1d(np.array(sample.max(axis=0), float)) else: smin = np.zeros(Ndim) smax = np.zeros(Ndim) for i in xrange(Ndim): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in xrange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in xrange(Ndim): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into, in each dimension sampBin = [ np.digitize(sample[:, i], edges[i]) for i in xrange(Ndim) ] # Using `digitize`, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in xrange(Ndim): # Find the rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. sampBin[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. binnumbers = np.ravel_multi_index(sampBin, nbin) result = np.empty([Vdim, nbin.prod()], float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) result[vv, a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(binnumbers, None) a = flatcount.nonzero() for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) flatsum2 = np.bincount(binnumbers, values[vv] ** 2) result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(binnumbers, None) a = np.arange(len(flatcount)) result[:, a] = flatcount[np.newaxis, :] elif statistic == 'sum': result.fill(0) for vv in xrange(Vdim): flatsum = np.bincount(binnumbers, values[vv]) a = np.arange(len(flatsum)) result[vv, a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.median(values[vv, binnumbers == i]) elif statistic == 'min': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.min(values[vv, binnumbers == i]) elif statistic == 'max': result.fill(np.nan) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = np.max(values[vv, binnumbers == i]) elif callable(statistic): with np.errstate(invalid='ignore'), suppress_warnings() as sup: sup.filter(RuntimeWarning) try: null = statistic([]) except: null = np.nan result.fill(null) for i in np.unique(binnumbers): for vv in xrange(Vdim): result[vv, i] = statistic(values[vv, binnumbers == i]) # Shape into a proper matrix result = result.reshape(np.append(Vdim, nbin)) # Remove outliers (indices 0 and -1 for each bin-dimension). core = [slice(None)] + Ndim * [slice(1, -1)] result = result[core] # Unravel binnumbers into an ndarray, each row the bins for each dimension if(expand_binnumbers and Ndim > 1): binnumbers = np.asarray(np.unravel_index(binnumbers, nbin)) if np.any(result.shape[1:] != nbin - 2): raise RuntimeError('Internal Shape Error') # Reshape to have output (`reulst`) match input (`values`) shape result = result.reshape(input_shape[:-1] + list(nbin-2)) return BinnedStatisticddResult(result, edges, binnumbers)
mit
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/idlelib/IdleHistory.py
122
4052
"Implement Idle Shell history mechanism with History class" from idlelib.configHandler import idleConf class History: ''' Implement Idle Shell history mechanism. store - Store source statement (called from PyShell.resetoutput). fetch - Fetch stored statement matching prefix already entered. history_next - Bound to <<history-next>> event (default Alt-N). history_prev - Bound to <<history-prev>> event (default Alt-P). ''' def __init__(self, text): '''Initialize data attributes and bind event methods. .text - Idle wrapper of tk Text widget, with .bell(). .history - source statements, possibly with multiple lines. .prefix - source already entered at prompt; filters history list. .pointer - index into history. .cyclic - wrap around history list (or not). ''' self.text = text self.history = [] self.prefix = None self.pointer = None self.cyclic = idleConf.GetOption("main", "History", "cyclic", 1, "bool") text.bind("<<history-previous>>", self.history_prev) text.bind("<<history-next>>", self.history_next) def history_next(self, event): "Fetch later statement; start with ealiest if cyclic." self.fetch(reverse=False) return "break" def history_prev(self, event): "Fetch earlier statement; start with most recent." self.fetch(reverse=True) return "break" def fetch(self, reverse): '''Fetch statememt and replace current line in text widget. Set prefix and pointer as needed for successive fetches. Reset them to None, None when returning to the start line. Sound bell when return to start line or cannot leave a line because cyclic is False. ''' nhist = len(self.history) pointer = self.pointer prefix = self.prefix if pointer is not None and prefix is not None: if self.text.compare("insert", "!=", "end-1c") or \ self.text.get("iomark", "end-1c") != self.history[pointer]: pointer = prefix = None self.text.mark_set("insert", "end-1c") # != after cursor move if pointer is None or prefix is None: prefix = self.text.get("iomark", "end-1c") if reverse: pointer = nhist # will be decremented else: if self.cyclic: pointer = -1 # will be incremented else: # abort history_next self.text.bell() return nprefix = len(prefix) while 1: pointer += -1 if reverse else 1 if pointer < 0 or pointer >= nhist: self.text.bell() if not self.cyclic and pointer < 0: # abort history_prev return else: if self.text.get("iomark", "end-1c") != prefix: self.text.delete("iomark", "end-1c") self.text.insert("iomark", prefix) pointer = prefix = None break item = self.history[pointer] if item[:nprefix] == prefix and len(item) > nprefix: self.text.delete("iomark", "end-1c") self.text.insert("iomark", item) break self.text.see("insert") self.text.tag_remove("sel", "1.0", "end") self.pointer = pointer self.prefix = prefix def store(self, source): "Store Shell input statement into history list." source = source.strip() if len(source) > 2: # avoid duplicates try: self.history.remove(source) except ValueError: pass self.history.append(source) self.pointer = None self.prefix = None if __name__ == "__main__": from unittest import main main('idlelib.idle_test.test_idlehistory', verbosity=2, exit=False)
gpl-3.0
HesselTjeerdsma/Cyber-Physical-Pacman-Game
Algor/flask/lib/python2.7/site-packages/flask/blueprints.py
169
16872
# -*- coding: utf-8 -*- """ flask.blueprints ~~~~~~~~~~~~~~~~ Blueprints are the recommended way to implement larger or more pluggable applications in Flask 0.7 and later. :copyright: (c) 2015 by Armin Ronacher. :license: BSD, see LICENSE for more details. """ from functools import update_wrapper from .helpers import _PackageBoundObject, _endpoint_from_view_func class BlueprintSetupState(object): """Temporary holder object for registering a blueprint with the application. An instance of this class is created by the :meth:`~flask.Blueprint.make_setup_state` method and later passed to all register callback functions. """ def __init__(self, blueprint, app, options, first_registration): #: a reference to the current application self.app = app #: a reference to the blueprint that created this setup state. self.blueprint = blueprint #: a dictionary with all options that were passed to the #: :meth:`~flask.Flask.register_blueprint` method. self.options = options #: as blueprints can be registered multiple times with the #: application and not everything wants to be registered #: multiple times on it, this attribute can be used to figure #: out if the blueprint was registered in the past already. self.first_registration = first_registration subdomain = self.options.get('subdomain') if subdomain is None: subdomain = self.blueprint.subdomain #: The subdomain that the blueprint should be active for, ``None`` #: otherwise. self.subdomain = subdomain url_prefix = self.options.get('url_prefix') if url_prefix is None: url_prefix = self.blueprint.url_prefix #: The prefix that should be used for all URLs defined on the #: blueprint. self.url_prefix = url_prefix #: A dictionary with URL defaults that is added to each and every #: URL that was defined with the blueprint. self.url_defaults = dict(self.blueprint.url_values_defaults) self.url_defaults.update(self.options.get('url_defaults', ())) def add_url_rule(self, rule, endpoint=None, view_func=None, **options): """A helper method to register a rule (and optionally a view function) to the application. The endpoint is automatically prefixed with the blueprint's name. """ if self.url_prefix: rule = self.url_prefix + rule options.setdefault('subdomain', self.subdomain) if endpoint is None: endpoint = _endpoint_from_view_func(view_func) defaults = self.url_defaults if 'defaults' in options: defaults = dict(defaults, **options.pop('defaults')) self.app.add_url_rule(rule, '%s.%s' % (self.blueprint.name, endpoint), view_func, defaults=defaults, **options) class Blueprint(_PackageBoundObject): """Represents a blueprint. A blueprint is an object that records functions that will be called with the :class:`~flask.blueprints.BlueprintSetupState` later to register functions or other things on the main application. See :ref:`blueprints` for more information. .. versionadded:: 0.7 """ warn_on_modifications = False _got_registered_once = False def __init__(self, name, import_name, static_folder=None, static_url_path=None, template_folder=None, url_prefix=None, subdomain=None, url_defaults=None, root_path=None): _PackageBoundObject.__init__(self, import_name, template_folder, root_path=root_path) self.name = name self.url_prefix = url_prefix self.subdomain = subdomain self.static_folder = static_folder self.static_url_path = static_url_path self.deferred_functions = [] if url_defaults is None: url_defaults = {} self.url_values_defaults = url_defaults def record(self, func): """Registers a function that is called when the blueprint is registered on the application. This function is called with the state as argument as returned by the :meth:`make_setup_state` method. """ if self._got_registered_once and self.warn_on_modifications: from warnings import warn warn(Warning('The blueprint was already registered once ' 'but is getting modified now. These changes ' 'will not show up.')) self.deferred_functions.append(func) def record_once(self, func): """Works like :meth:`record` but wraps the function in another function that will ensure the function is only called once. If the blueprint is registered a second time on the application, the function passed is not called. """ def wrapper(state): if state.first_registration: func(state) return self.record(update_wrapper(wrapper, func)) def make_setup_state(self, app, options, first_registration=False): """Creates an instance of :meth:`~flask.blueprints.BlueprintSetupState` object that is later passed to the register callback functions. Subclasses can override this to return a subclass of the setup state. """ return BlueprintSetupState(self, app, options, first_registration) def register(self, app, options, first_registration=False): """Called by :meth:`Flask.register_blueprint` to register a blueprint on the application. This can be overridden to customize the register behavior. Keyword arguments from :func:`~flask.Flask.register_blueprint` are directly forwarded to this method in the `options` dictionary. """ self._got_registered_once = True state = self.make_setup_state(app, options, first_registration) if self.has_static_folder: state.add_url_rule(self.static_url_path + '/<path:filename>', view_func=self.send_static_file, endpoint='static') for deferred in self.deferred_functions: deferred(state) def route(self, rule, **options): """Like :meth:`Flask.route` but for a blueprint. The endpoint for the :func:`url_for` function is prefixed with the name of the blueprint. """ def decorator(f): endpoint = options.pop("endpoint", f.__name__) self.add_url_rule(rule, endpoint, f, **options) return f return decorator def add_url_rule(self, rule, endpoint=None, view_func=None, **options): """Like :meth:`Flask.add_url_rule` but for a blueprint. The endpoint for the :func:`url_for` function is prefixed with the name of the blueprint. """ if endpoint: assert '.' not in endpoint, "Blueprint endpoints should not contain dots" self.record(lambda s: s.add_url_rule(rule, endpoint, view_func, **options)) def endpoint(self, endpoint): """Like :meth:`Flask.endpoint` but for a blueprint. This does not prefix the endpoint with the blueprint name, this has to be done explicitly by the user of this method. If the endpoint is prefixed with a `.` it will be registered to the current blueprint, otherwise it's an application independent endpoint. """ def decorator(f): def register_endpoint(state): state.app.view_functions[endpoint] = f self.record_once(register_endpoint) return f return decorator def app_template_filter(self, name=None): """Register a custom template filter, available application wide. Like :meth:`Flask.template_filter` but for a blueprint. :param name: the optional name of the filter, otherwise the function name will be used. """ def decorator(f): self.add_app_template_filter(f, name=name) return f return decorator def add_app_template_filter(self, f, name=None): """Register a custom template filter, available application wide. Like :meth:`Flask.add_template_filter` but for a blueprint. Works exactly like the :meth:`app_template_filter` decorator. :param name: the optional name of the filter, otherwise the function name will be used. """ def register_template(state): state.app.jinja_env.filters[name or f.__name__] = f self.record_once(register_template) def app_template_test(self, name=None): """Register a custom template test, available application wide. Like :meth:`Flask.template_test` but for a blueprint. .. versionadded:: 0.10 :param name: the optional name of the test, otherwise the function name will be used. """ def decorator(f): self.add_app_template_test(f, name=name) return f return decorator def add_app_template_test(self, f, name=None): """Register a custom template test, available application wide. Like :meth:`Flask.add_template_test` but for a blueprint. Works exactly like the :meth:`app_template_test` decorator. .. versionadded:: 0.10 :param name: the optional name of the test, otherwise the function name will be used. """ def register_template(state): state.app.jinja_env.tests[name or f.__name__] = f self.record_once(register_template) def app_template_global(self, name=None): """Register a custom template global, available application wide. Like :meth:`Flask.template_global` but for a blueprint. .. versionadded:: 0.10 :param name: the optional name of the global, otherwise the function name will be used. """ def decorator(f): self.add_app_template_global(f, name=name) return f return decorator def add_app_template_global(self, f, name=None): """Register a custom template global, available application wide. Like :meth:`Flask.add_template_global` but for a blueprint. Works exactly like the :meth:`app_template_global` decorator. .. versionadded:: 0.10 :param name: the optional name of the global, otherwise the function name will be used. """ def register_template(state): state.app.jinja_env.globals[name or f.__name__] = f self.record_once(register_template) def before_request(self, f): """Like :meth:`Flask.before_request` but for a blueprint. This function is only executed before each request that is handled by a function of that blueprint. """ self.record_once(lambda s: s.app.before_request_funcs .setdefault(self.name, []).append(f)) return f def before_app_request(self, f): """Like :meth:`Flask.before_request`. Such a function is executed before each request, even if outside of a blueprint. """ self.record_once(lambda s: s.app.before_request_funcs .setdefault(None, []).append(f)) return f def before_app_first_request(self, f): """Like :meth:`Flask.before_first_request`. Such a function is executed before the first request to the application. """ self.record_once(lambda s: s.app.before_first_request_funcs.append(f)) return f def after_request(self, f): """Like :meth:`Flask.after_request` but for a blueprint. This function is only executed after each request that is handled by a function of that blueprint. """ self.record_once(lambda s: s.app.after_request_funcs .setdefault(self.name, []).append(f)) return f def after_app_request(self, f): """Like :meth:`Flask.after_request` but for a blueprint. Such a function is executed after each request, even if outside of the blueprint. """ self.record_once(lambda s: s.app.after_request_funcs .setdefault(None, []).append(f)) return f def teardown_request(self, f): """Like :meth:`Flask.teardown_request` but for a blueprint. This function is only executed when tearing down requests handled by a function of that blueprint. Teardown request functions are executed when the request context is popped, even when no actual request was performed. """ self.record_once(lambda s: s.app.teardown_request_funcs .setdefault(self.name, []).append(f)) return f def teardown_app_request(self, f): """Like :meth:`Flask.teardown_request` but for a blueprint. Such a function is executed when tearing down each request, even if outside of the blueprint. """ self.record_once(lambda s: s.app.teardown_request_funcs .setdefault(None, []).append(f)) return f def context_processor(self, f): """Like :meth:`Flask.context_processor` but for a blueprint. This function is only executed for requests handled by a blueprint. """ self.record_once(lambda s: s.app.template_context_processors .setdefault(self.name, []).append(f)) return f def app_context_processor(self, f): """Like :meth:`Flask.context_processor` but for a blueprint. Such a function is executed each request, even if outside of the blueprint. """ self.record_once(lambda s: s.app.template_context_processors .setdefault(None, []).append(f)) return f def app_errorhandler(self, code): """Like :meth:`Flask.errorhandler` but for a blueprint. This handler is used for all requests, even if outside of the blueprint. """ def decorator(f): self.record_once(lambda s: s.app.errorhandler(code)(f)) return f return decorator def url_value_preprocessor(self, f): """Registers a function as URL value preprocessor for this blueprint. It's called before the view functions are called and can modify the url values provided. """ self.record_once(lambda s: s.app.url_value_preprocessors .setdefault(self.name, []).append(f)) return f def url_defaults(self, f): """Callback function for URL defaults for this blueprint. It's called with the endpoint and values and should update the values passed in place. """ self.record_once(lambda s: s.app.url_default_functions .setdefault(self.name, []).append(f)) return f def app_url_value_preprocessor(self, f): """Same as :meth:`url_value_preprocessor` but application wide. """ self.record_once(lambda s: s.app.url_value_preprocessors .setdefault(None, []).append(f)) return f def app_url_defaults(self, f): """Same as :meth:`url_defaults` but application wide. """ self.record_once(lambda s: s.app.url_default_functions .setdefault(None, []).append(f)) return f def errorhandler(self, code_or_exception): """Registers an error handler that becomes active for this blueprint only. Please be aware that routing does not happen local to a blueprint so an error handler for 404 usually is not handled by a blueprint unless it is caused inside a view function. Another special case is the 500 internal server error which is always looked up from the application. Otherwise works as the :meth:`~flask.Flask.errorhandler` decorator of the :class:`~flask.Flask` object. """ def decorator(f): self.record_once(lambda s: s.app._register_error_handler( self.name, code_or_exception, f)) return f return decorator def register_error_handler(self, code_or_exception, f): """Non-decorator version of the :meth:`errorhandler` error attach function, akin to the :meth:`~flask.Flask.register_error_handler` application-wide function of the :class:`~flask.Flask` object but for error handlers limited to this blueprint. .. versionadded:: 0.11 """ self.record_once(lambda s: s.app._register_error_handler( self.name, code_or_exception, f))
apache-2.0
cloudbase/nova-virtualbox
nova/virt/ironic/patcher.py
7
7408
# coding=utf-8 # # Copyright 2014 Hewlett-Packard Development Company, L.P. # Copyright 2014 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """ Helper classes for Ironic HTTP PATCH creation. """ from oslo_config import cfg from oslo_serialization import jsonutils import six CONF = cfg.CONF CONF.import_opt('default_ephemeral_format', 'nova.virt.driver') def create(node): """Create an instance of the appropriate DriverFields class. :param node: a node object returned from ironicclient :returns: GenericDriverFields or a subclass thereof, as appropriate for the supplied node. """ if 'pxe' in node.driver: return PXEDriverFields(node) else: return GenericDriverFields(node) class GenericDriverFields(object): def __init__(self, node): self.node = node def get_deploy_patch(self, instance, image_meta, flavor, preserve_ephemeral=None): """Build a patch to add the required fields to deploy a node. :param instance: the instance object. :param image_meta: the metadata associated with the instance image. :param flavor: the flavor object. :param preserve_ephemeral: preserve_ephemeral status (bool) to be specified during rebuild. :returns: a json-patch with the fields that needs to be updated. """ patch = [] patch.append({'path': '/instance_info/image_source', 'op': 'add', 'value': image_meta['id']}) patch.append({'path': '/instance_info/root_gb', 'op': 'add', 'value': str(instance.root_gb)}) patch.append({'path': '/instance_info/swap_mb', 'op': 'add', 'value': str(flavor['swap'])}) if instance.ephemeral_gb: patch.append({'path': '/instance_info/ephemeral_gb', 'op': 'add', 'value': str(instance.ephemeral_gb)}) if CONF.default_ephemeral_format: patch.append({'path': '/instance_info/ephemeral_format', 'op': 'add', 'value': CONF.default_ephemeral_format}) if preserve_ephemeral is not None: patch.append({'path': '/instance_info/preserve_ephemeral', 'op': 'add', 'value': str(preserve_ephemeral)}) capabilities = {} # read the flavor and get the extra_specs value. extra_specs = flavor.get('extra_specs') # scan through the extra_specs values and ignore the keys # not starting with keyword 'capabilities'. for key, val in six.iteritems(extra_specs): if not key.startswith('capabilities:'): continue # split the extra_spec key to remove the keyword # 'capabilities' and get the actual key. capabilities_string, capabilities_key = key.split(':', 1) if capabilities_key: capabilities[capabilities_key] = val if capabilities: patch.append({'path': '/instance_info/capabilities', 'op': 'add', 'value': jsonutils.dumps(capabilities)}) return patch def get_cleanup_patch(self, instance, network_info, flavor): """Build a patch to clean up the fields. :param instance: the instance object. :param network_info: the instance network information. :param flavor: the flavor object. :returns: a json-patch with the fields that needs to be updated. """ return [] class PXEDriverFields(GenericDriverFields): def _get_kernel_ramdisk_dict(self, flavor): """Get the deploy ramdisk and kernel IDs from the flavor. :param flavor: the flavor object. :returns: a dict with the pxe options for the deploy ramdisk and kernel if the IDs were found in the flavor, otherwise an empty dict is returned. """ extra_specs = flavor['extra_specs'] deploy_kernel = extra_specs.get('baremetal:deploy_kernel_id') deploy_ramdisk = extra_specs.get('baremetal:deploy_ramdisk_id') deploy_ids = {} if deploy_kernel and deploy_ramdisk: deploy_ids['pxe_deploy_kernel'] = deploy_kernel deploy_ids['pxe_deploy_ramdisk'] = deploy_ramdisk return deploy_ids def get_deploy_patch(self, instance, image_meta, flavor, preserve_ephemeral=None): """Build a patch to add the required fields to deploy a node. Build a json-patch to add the required fields to deploy a node using the PXE driver. :param instance: the instance object. :param image_meta: the metadata associated with the instance image. :param flavor: the flavor object. :param preserve_ephemeral: preserve_ephemeral status (bool) to be specified during rebuild. :returns: a json-patch with the fields that needs to be updated. """ patch = super(PXEDriverFields, self).get_deploy_patch( instance, image_meta, flavor, preserve_ephemeral) # TODO(lucasagomes): Remove it in Kilo. This is for backwards # compatibility with Icehouse. If flavor contains both ramdisk # and kernel ids, use them. for key, value in self._get_kernel_ramdisk_dict(flavor).items(): patch.append({'path': '/driver_info/%s' % key, 'op': 'add', 'value': value}) return patch def get_cleanup_patch(self, instance, network_info, flavor): """Build a patch to clean up the fields. Build a json-patch to remove the fields used to deploy a node using the PXE driver. Note that the fields added to the Node's instance_info don't need to be removed because they are purged during the Node's tear down. :param instance: the instance object. :param network_info: the instance network information. :param flavor: the flavor object. :returns: a json-patch with the fields that needs to be updated. """ patch = super(PXEDriverFields, self).get_cleanup_patch( instance, network_info, flavor) # TODO(lucasagomes): Remove it in Kilo. This is for backwards # compatibility with Icehouse. If flavor contains a ramdisk and # kernel id remove it from nodes as part of the tear down process for key in self._get_kernel_ramdisk_dict(flavor): if key in self.node.driver_info: patch.append({'op': 'remove', 'path': '/driver_info/%s' % key}) return patch
apache-2.0
KyleJamesWalker/ansible
lib/ansible/modules/cloud/openstack/_quantum_subnet.py
12
10250
#!/usr/bin/python #coding: utf-8 -*- # (c) 2013, Benno Joy <[email protected]> # # This module is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['deprecated'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: quantum_subnet author: "Benno Joy (@bennojoy)" deprecated: Deprecated in 2.0. Use M(os_subnet) instead. version_added: "1.2" short_description: Add/remove subnet from a network description: - Add/remove subnet from a network options: login_username: description: - login username to authenticate to keystone required: true default: admin login_password: description: - Password of login user required: true default: True login_tenant_name: description: - The tenant name of the login user required: true default: True auth_url: description: - The keystone URL for authentication required: false default: http://127.0.0.1:35357/v2.0/ region_name: description: - Name of the region required: false default: None state: description: - Indicate desired state of the resource choices: ['present', 'absent'] default: present network_name: description: - Name of the network to which the subnet should be attached required: true default: None name: description: - The name of the subnet that should be created required: true default: None cidr: description: - The CIDR representation of the subnet that should be assigned to the subnet required: true default: None tenant_name: description: - The name of the tenant for whom the subnet should be created required: false default: None ip_version: description: - The IP version of the subnet 4 or 6 required: false default: 4 enable_dhcp: description: - Whether DHCP should be enabled for this subnet. required: false default: true gateway_ip: description: - The ip that would be assigned to the gateway for this subnet required: false default: None dns_nameservers: description: - DNS nameservers for this subnet, comma-separated required: false default: None version_added: "1.4" allocation_pool_start: description: - From the subnet pool the starting address from which the IP should be allocated required: false default: None allocation_pool_end: description: - From the subnet pool the last IP that should be assigned to the virtual machines required: false default: None requirements: - "python >= 2.6" - "python-neutronclient or python-quantumclient" - "python-keystoneclient" ''' EXAMPLES = ''' - name: Create a subnet for a tenant with the specified subnet quantum_subnet: state: present login_username: admin login_password: admin login_tenant_name: admin tenant_name: tenant1 network_name: network1 name: net1subnet cidr: 192.168.0.0/24 ''' try: try: from neutronclient.neutron import client except ImportError: from quantumclient.quantum import client from keystoneclient.v2_0 import client as ksclient HAVE_DEPS = True except ImportError: HAVE_DEPS = False _os_keystone = None _os_tenant_id = None _os_network_id = None def _get_ksclient(module, kwargs): try: kclient = ksclient.Client(username=kwargs.get('login_username'), password=kwargs.get('login_password'), tenant_name=kwargs.get('login_tenant_name'), auth_url=kwargs.get('auth_url')) except Exception as e: module.fail_json(msg = "Error authenticating to the keystone: %s" %e.message) global _os_keystone _os_keystone = kclient return kclient def _get_endpoint(module, ksclient): try: endpoint = ksclient.service_catalog.url_for(service_type='network', endpoint_type='publicURL') except Exception as e: module.fail_json(msg = "Error getting network endpoint: %s" % e.message) return endpoint def _get_neutron_client(module, kwargs): _ksclient = _get_ksclient(module, kwargs) token = _ksclient.auth_token endpoint = _get_endpoint(module, _ksclient) kwargs = { 'token': token, 'endpoint_url': endpoint } try: neutron = client.Client('2.0', **kwargs) except Exception as e: module.fail_json(msg = " Error in connecting to neutron: %s" % e.message) return neutron def _set_tenant_id(module): global _os_tenant_id if not module.params['tenant_name']: _os_tenant_id = _os_keystone.tenant_id else: tenant_name = module.params['tenant_name'] for tenant in _os_keystone.tenants.list(): if tenant.name == tenant_name: _os_tenant_id = tenant.id break if not _os_tenant_id: module.fail_json(msg = "The tenant id cannot be found, please check the parameters") def _get_net_id(neutron, module): kwargs = { 'tenant_id': _os_tenant_id, 'name': module.params['network_name'], } try: networks = neutron.list_networks(**kwargs) except Exception as e: module.fail_json(msg="Error in listing neutron networks: %s" % e.message) if not networks['networks']: return None return networks['networks'][0]['id'] def _get_subnet_id(module, neutron): global _os_network_id subnet_id = None _os_network_id = _get_net_id(neutron, module) if not _os_network_id: module.fail_json(msg = "network id of network not found.") else: kwargs = { 'tenant_id': _os_tenant_id, 'name': module.params['name'], } try: subnets = neutron.list_subnets(**kwargs) except Exception as e: module.fail_json( msg = " Error in getting the subnet list:%s " % e.message) if not subnets['subnets']: return None return subnets['subnets'][0]['id'] def _create_subnet(module, neutron): neutron.format = 'json' subnet = { 'name': module.params['name'], 'ip_version': module.params['ip_version'], 'enable_dhcp': module.params['enable_dhcp'], 'tenant_id': _os_tenant_id, 'gateway_ip': module.params['gateway_ip'], 'dns_nameservers': module.params['dns_nameservers'], 'network_id': _os_network_id, 'cidr': module.params['cidr'], } if module.params['allocation_pool_start'] and module.params['allocation_pool_end']: allocation_pools = [ { 'start' : module.params['allocation_pool_start'], 'end' : module.params['allocation_pool_end'] } ] subnet.update({'allocation_pools': allocation_pools}) if not module.params['gateway_ip']: subnet.pop('gateway_ip') if module.params['dns_nameservers']: subnet['dns_nameservers'] = module.params['dns_nameservers'].split(',') else: subnet.pop('dns_nameservers') try: new_subnet = neutron.create_subnet(dict(subnet=subnet)) except Exception as e: module.fail_json(msg = "Failure in creating subnet: %s" % e.message) return new_subnet['subnet']['id'] def _delete_subnet(module, neutron, subnet_id): try: neutron.delete_subnet(subnet_id) except Exception as e: module.fail_json( msg = "Error in deleting subnet: %s" % e.message) return True def main(): argument_spec = openstack_argument_spec() argument_spec.update(dict( name = dict(required=True), network_name = dict(required=True), cidr = dict(required=True), tenant_name = dict(default=None), state = dict(default='present', choices=['absent', 'present']), ip_version = dict(default='4', choices=['4', '6']), enable_dhcp = dict(default='true', type='bool'), gateway_ip = dict(default=None), dns_nameservers = dict(default=None), allocation_pool_start = dict(default=None), allocation_pool_end = dict(default=None), )) module = AnsibleModule(argument_spec=argument_spec) if not HAVE_DEPS: module.fail_json(msg='python-keystoneclient and either python-neutronclient or python-quantumclient are required') neutron = _get_neutron_client(module, module.params) _set_tenant_id(module) if module.params['state'] == 'present': subnet_id = _get_subnet_id(module, neutron) if not subnet_id: subnet_id = _create_subnet(module, neutron) module.exit_json(changed = True, result = "Created" , id = subnet_id) else: module.exit_json(changed = False, result = "success" , id = subnet_id) else: subnet_id = _get_subnet_id(module, neutron) if not subnet_id: module.exit_json(changed = False, result = "success") else: _delete_subnet(module, neutron, subnet_id) module.exit_json(changed = True, result = "deleted") # this is magic, see lib/ansible/module.params['common.py from ansible.module_utils.basic import * from ansible.module_utils.openstack import * if __name__ == '__main__': main()
gpl-3.0
IronLanguages/ironpython3
Src/StdLib/Lib/email/encoders.py
146
1786
# Copyright (C) 2001-2006 Python Software Foundation # Author: Barry Warsaw # Contact: [email protected] """Encodings and related functions.""" __all__ = [ 'encode_7or8bit', 'encode_base64', 'encode_noop', 'encode_quopri', ] from base64 import encodebytes as _bencode from quopri import encodestring as _encodestring def _qencode(s): enc = _encodestring(s, quotetabs=True) # Must encode spaces, which quopri.encodestring() doesn't do return enc.replace(b' ', b'=20') def encode_base64(msg): """Encode the message's payload in Base64. Also, add an appropriate Content-Transfer-Encoding header. """ orig = msg.get_payload(decode=True) encdata = str(_bencode(orig), 'ascii') msg.set_payload(encdata) msg['Content-Transfer-Encoding'] = 'base64' def encode_quopri(msg): """Encode the message's payload in quoted-printable. Also, add an appropriate Content-Transfer-Encoding header. """ orig = msg.get_payload(decode=True) encdata = _qencode(orig) msg.set_payload(encdata) msg['Content-Transfer-Encoding'] = 'quoted-printable' def encode_7or8bit(msg): """Set the Content-Transfer-Encoding header to 7bit or 8bit.""" orig = msg.get_payload(decode=True) if orig is None: # There's no payload. For backwards compatibility we use 7bit msg['Content-Transfer-Encoding'] = '7bit' return # We play a trick to make this go fast. If decoding from ASCII succeeds, # we know the data must be 7bit, otherwise treat it as 8bit. try: orig.decode('ascii') except UnicodeError: msg['Content-Transfer-Encoding'] = '8bit' else: msg['Content-Transfer-Encoding'] = '7bit' def encode_noop(msg): """Do nothing."""
apache-2.0
YehudaItkin/virt-test
virttest/staging/backports/__init__.py
23
3497
""" This module contains backported functions that are not present in Python 2.4 but are standard in more recent versions. """ import re import sys # Import backported modules import simplejson import collections import itertools if not hasattr(itertools, 'product'): import _itertools itertools.product = _itertools.product # pylint: disable=I0011,W0622 # noinspection PyShadowingBuiltins def _next(*args): """ Retrieve the next item from the iterator by calling its next() method. If default is given, it is returned if the iterator is exhausted, otherwise StopIteration is raised. New in version 2.6. :param iterator: the iterator :type iterator: iterator :param default: the value to return if the iterator raises StopIteration :type default: object :return: The object returned by iterator.next() :rtype: object """ if len(args) == 2: try: return args[0].next() except StopIteration: return args[1] elif len(args) > 2: raise TypeError("next expected at most 2 arguments, %s" % len(args)) else: return args[0].next() # pylint: disable=W0622 # noinspection PyShadowingBuiltins def _any(iterable): """ From http://stackoverflow.com/questions/3785433/python-backports-for-some-methods :codeauthor: Tim Pietzcker http://stackoverflow.com/users/20670/tim-pietzcker licensed under cc-wiki with attribution required """ for element in iterable: if element: return True return False # pylint: disable=W0622 # noinspection PyShadowingBuiltins def _all(iterable): """ From http://stackoverflow.com/questions/3785433/python-backports-for-some-methods :codeauthor: Tim Pietzcker http://stackoverflow.com/users/20670/tim-pietzcker licensed under cc-wiki with attribution required """ for element in iterable: if not element: return False return True # Adapted from http://code.activestate.com/recipes/576847/ # :codeauthor: Vishal Sapre # :license: MIT BIN_HEX_DICT = { '0': '0000', '1': '0001', '2': '0010', '3': '0011', '4': '0100', '5': '0101', '6': '0110', '7': '0111', '8': '1000', '9': '1001', 'a': '1010', 'b': '1011', 'c': '1100', 'd': '1101', 'e': '1110', 'f': '1111', 'L': ''} # match left leading zeroes, but don't match a single 0 for the case of # bin(0) == '0b0' BIN_ZSTRIP = re.compile(r'^0*(?=[01])') # pylint: disable=W0622 # noinspection PyShadowingBuiltins def _bin(number): """ Adapted from http://code.activestate.com/recipes/576847/ :codeauthor: Vishal Sapre :license: MIT A foolishly simple look-up method of getting binary string from an integer This happens to be faster than all other ways!!! """ # ========================================================= # create hex of int, remove '0x'. now for each hex char, # look up binary string, append in list and join at the end. # ========================================================= # replace leading left zeroes with '0b' tmp = [BIN_HEX_DICT[hstr] for hstr in hex(number)[2:]] return BIN_ZSTRIP.sub('0b', ''.join(tmp)) if not hasattr(__builtins__, 'next'): next = _next else: next = next if not hasattr(__builtins__, 'any'): any = _any else: any = any if not hasattr(__builtins__, 'all'): all = _all else: all = all if not hasattr(__builtins__, 'bin'): bin = _bin else: bin = bin
gpl-2.0
EndyKaufman/django-postgres-angularjs-blog
app/manager/migrations/0006_properties.py
1
1170
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-04-24 14:05 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('manager', '0005_add_fields_and_set_defaults'), ] operations = [ migrations.CreateModel( name='Properties', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.TextField(max_length=512, unique=True)), ('value', models.TextField(blank=True, null=True)), ('created', models.DateTimeField(auto_now_add=True, null=True, verbose_name='date created')), ('updated', models.DateTimeField(auto_now=True, null=True, verbose_name='date updated')), ('created_user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), ]
mit
interfect/cjdns
node_build/dependencies/libuv/build/gyp/pylib/gyp/input.py
292
114315
# Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from compiler.ast import Const from compiler.ast import Dict from compiler.ast import Discard from compiler.ast import List from compiler.ast import Module from compiler.ast import Node from compiler.ast import Stmt import compiler import gyp.common import gyp.simple_copy import multiprocessing import optparse import os.path import re import shlex import signal import subprocess import sys import threading import time import traceback from gyp.common import GypError from gyp.common import OrderedSet # A list of types that are treated as linkable. linkable_types = ['executable', 'shared_library', 'loadable_module'] # A list of sections that contain links to other targets. dependency_sections = ['dependencies', 'export_dependent_settings'] # base_path_sections is a list of sections defined by GYP that contain # pathnames. The generators can provide more keys, the two lists are merged # into path_sections, but you should call IsPathSection instead of using either # list directly. base_path_sections = [ 'destination', 'files', 'include_dirs', 'inputs', 'libraries', 'outputs', 'sources', ] path_sections = set() # These per-process dictionaries are used to cache build file data when loading # in parallel mode. per_process_data = {} per_process_aux_data = {} def IsPathSection(section): # If section ends in one of the '=+?!' characters, it's applied to a section # without the trailing characters. '/' is notably absent from this list, # because there's no way for a regular expression to be treated as a path. while section[-1:] in '=+?!': section = section[:-1] if section in path_sections: return True # Sections mathing the regexp '_(dir|file|path)s?$' are also # considered PathSections. Using manual string matching since that # is much faster than the regexp and this can be called hundreds of # thousands of times so micro performance matters. if "_" in section: tail = section[-6:] if tail[-1] == 's': tail = tail[:-1] if tail[-5:] in ('_file', '_path'): return True return tail[-4:] == '_dir' return False # base_non_configuration_keys is a list of key names that belong in the target # itself and should not be propagated into its configurations. It is merged # with a list that can come from the generator to # create non_configuration_keys. base_non_configuration_keys = [ # Sections that must exist inside targets and not configurations. 'actions', 'configurations', 'copies', 'default_configuration', 'dependencies', 'dependencies_original', 'libraries', 'postbuilds', 'product_dir', 'product_extension', 'product_name', 'product_prefix', 'rules', 'run_as', 'sources', 'standalone_static_library', 'suppress_wildcard', 'target_name', 'toolset', 'toolsets', 'type', # Sections that can be found inside targets or configurations, but that # should not be propagated from targets into their configurations. 'variables', ] non_configuration_keys = [] # Keys that do not belong inside a configuration dictionary. invalid_configuration_keys = [ 'actions', 'all_dependent_settings', 'configurations', 'dependencies', 'direct_dependent_settings', 'libraries', 'link_settings', 'sources', 'standalone_static_library', 'target_name', 'type', ] # Controls whether or not the generator supports multiple toolsets. multiple_toolsets = False # Paths for converting filelist paths to output paths: { # toplevel, # qualified_output_dir, # } generator_filelist_paths = None def GetIncludedBuildFiles(build_file_path, aux_data, included=None): """Return a list of all build files included into build_file_path. The returned list will contain build_file_path as well as all other files that it included, either directly or indirectly. Note that the list may contain files that were included into a conditional section that evaluated to false and was not merged into build_file_path's dict. aux_data is a dict containing a key for each build file or included build file. Those keys provide access to dicts whose "included" keys contain lists of all other files included by the build file. included should be left at its default None value by external callers. It is used for recursion. The returned list will not contain any duplicate entries. Each build file in the list will be relative to the current directory. """ if included == None: included = [] if build_file_path in included: return included included.append(build_file_path) for included_build_file in aux_data[build_file_path].get('included', []): GetIncludedBuildFiles(included_build_file, aux_data, included) return included def CheckedEval(file_contents): """Return the eval of a gyp file. The gyp file is restricted to dictionaries and lists only, and repeated keys are not allowed. Note that this is slower than eval() is. """ ast = compiler.parse(file_contents) assert isinstance(ast, Module) c1 = ast.getChildren() assert c1[0] is None assert isinstance(c1[1], Stmt) c2 = c1[1].getChildren() assert isinstance(c2[0], Discard) c3 = c2[0].getChildren() assert len(c3) == 1 return CheckNode(c3[0], []) def CheckNode(node, keypath): if isinstance(node, Dict): c = node.getChildren() dict = {} for n in range(0, len(c), 2): assert isinstance(c[n], Const) key = c[n].getChildren()[0] if key in dict: raise GypError("Key '" + key + "' repeated at level " + repr(len(keypath) + 1) + " with key path '" + '.'.join(keypath) + "'") kp = list(keypath) # Make a copy of the list for descending this node. kp.append(key) dict[key] = CheckNode(c[n + 1], kp) return dict elif isinstance(node, List): c = node.getChildren() children = [] for index, child in enumerate(c): kp = list(keypath) # Copy list. kp.append(repr(index)) children.append(CheckNode(child, kp)) return children elif isinstance(node, Const): return node.getChildren()[0] else: raise TypeError("Unknown AST node at key path '" + '.'.join(keypath) + "': " + repr(node)) def LoadOneBuildFile(build_file_path, data, aux_data, includes, is_target, check): if build_file_path in data: return data[build_file_path] if os.path.exists(build_file_path): build_file_contents = open(build_file_path).read() else: raise GypError("%s not found (cwd: %s)" % (build_file_path, os.getcwd())) build_file_data = None try: if check: build_file_data = CheckedEval(build_file_contents) else: build_file_data = eval(build_file_contents, {'__builtins__': None}, None) except SyntaxError, e: e.filename = build_file_path raise except Exception, e: gyp.common.ExceptionAppend(e, 'while reading ' + build_file_path) raise if type(build_file_data) is not dict: raise GypError("%s does not evaluate to a dictionary." % build_file_path) data[build_file_path] = build_file_data aux_data[build_file_path] = {} # Scan for includes and merge them in. if ('skip_includes' not in build_file_data or not build_file_data['skip_includes']): try: if is_target: LoadBuildFileIncludesIntoDict(build_file_data, build_file_path, data, aux_data, includes, check) else: LoadBuildFileIncludesIntoDict(build_file_data, build_file_path, data, aux_data, None, check) except Exception, e: gyp.common.ExceptionAppend(e, 'while reading includes of ' + build_file_path) raise return build_file_data def LoadBuildFileIncludesIntoDict(subdict, subdict_path, data, aux_data, includes, check): includes_list = [] if includes != None: includes_list.extend(includes) if 'includes' in subdict: for include in subdict['includes']: # "include" is specified relative to subdict_path, so compute the real # path to include by appending the provided "include" to the directory # in which subdict_path resides. relative_include = \ os.path.normpath(os.path.join(os.path.dirname(subdict_path), include)) includes_list.append(relative_include) # Unhook the includes list, it's no longer needed. del subdict['includes'] # Merge in the included files. for include in includes_list: if not 'included' in aux_data[subdict_path]: aux_data[subdict_path]['included'] = [] aux_data[subdict_path]['included'].append(include) gyp.DebugOutput(gyp.DEBUG_INCLUDES, "Loading Included File: '%s'", include) MergeDicts(subdict, LoadOneBuildFile(include, data, aux_data, None, False, check), subdict_path, include) # Recurse into subdictionaries. for k, v in subdict.iteritems(): if type(v) is dict: LoadBuildFileIncludesIntoDict(v, subdict_path, data, aux_data, None, check) elif type(v) is list: LoadBuildFileIncludesIntoList(v, subdict_path, data, aux_data, check) # This recurses into lists so that it can look for dicts. def LoadBuildFileIncludesIntoList(sublist, sublist_path, data, aux_data, check): for item in sublist: if type(item) is dict: LoadBuildFileIncludesIntoDict(item, sublist_path, data, aux_data, None, check) elif type(item) is list: LoadBuildFileIncludesIntoList(item, sublist_path, data, aux_data, check) # Processes toolsets in all the targets. This recurses into condition entries # since they can contain toolsets as well. def ProcessToolsetsInDict(data): if 'targets' in data: target_list = data['targets'] new_target_list = [] for target in target_list: # If this target already has an explicit 'toolset', and no 'toolsets' # list, don't modify it further. if 'toolset' in target and 'toolsets' not in target: new_target_list.append(target) continue if multiple_toolsets: toolsets = target.get('toolsets', ['target']) else: toolsets = ['target'] # Make sure this 'toolsets' definition is only processed once. if 'toolsets' in target: del target['toolsets'] if len(toolsets) > 0: # Optimization: only do copies if more than one toolset is specified. for build in toolsets[1:]: new_target = gyp.simple_copy.deepcopy(target) new_target['toolset'] = build new_target_list.append(new_target) target['toolset'] = toolsets[0] new_target_list.append(target) data['targets'] = new_target_list if 'conditions' in data: for condition in data['conditions']: if type(condition) is list: for condition_dict in condition[1:]: if type(condition_dict) is dict: ProcessToolsetsInDict(condition_dict) # TODO(mark): I don't love this name. It just means that it's going to load # a build file that contains targets and is expected to provide a targets dict # that contains the targets... def LoadTargetBuildFile(build_file_path, data, aux_data, variables, includes, depth, check, load_dependencies): # If depth is set, predefine the DEPTH variable to be a relative path from # this build file's directory to the directory identified by depth. if depth: # TODO(dglazkov) The backslash/forward-slash replacement at the end is a # temporary measure. This should really be addressed by keeping all paths # in POSIX until actual project generation. d = gyp.common.RelativePath(depth, os.path.dirname(build_file_path)) if d == '': variables['DEPTH'] = '.' else: variables['DEPTH'] = d.replace('\\', '/') # The 'target_build_files' key is only set when loading target build files in # the non-parallel code path, where LoadTargetBuildFile is called # recursively. In the parallel code path, we don't need to check whether the # |build_file_path| has already been loaded, because the 'scheduled' set in # ParallelState guarantees that we never load the same |build_file_path| # twice. if 'target_build_files' in data: if build_file_path in data['target_build_files']: # Already loaded. return False data['target_build_files'].add(build_file_path) gyp.DebugOutput(gyp.DEBUG_INCLUDES, "Loading Target Build File '%s'", build_file_path) build_file_data = LoadOneBuildFile(build_file_path, data, aux_data, includes, True, check) # Store DEPTH for later use in generators. build_file_data['_DEPTH'] = depth # Set up the included_files key indicating which .gyp files contributed to # this target dict. if 'included_files' in build_file_data: raise GypError(build_file_path + ' must not contain included_files key') included = GetIncludedBuildFiles(build_file_path, aux_data) build_file_data['included_files'] = [] for included_file in included: # included_file is relative to the current directory, but it needs to # be made relative to build_file_path's directory. included_relative = \ gyp.common.RelativePath(included_file, os.path.dirname(build_file_path)) build_file_data['included_files'].append(included_relative) # Do a first round of toolsets expansion so that conditions can be defined # per toolset. ProcessToolsetsInDict(build_file_data) # Apply "pre"/"early" variable expansions and condition evaluations. ProcessVariablesAndConditionsInDict( build_file_data, PHASE_EARLY, variables, build_file_path) # Since some toolsets might have been defined conditionally, perform # a second round of toolsets expansion now. ProcessToolsetsInDict(build_file_data) # Look at each project's target_defaults dict, and merge settings into # targets. if 'target_defaults' in build_file_data: if 'targets' not in build_file_data: raise GypError("Unable to find targets in build file %s" % build_file_path) index = 0 while index < len(build_file_data['targets']): # This procedure needs to give the impression that target_defaults is # used as defaults, and the individual targets inherit from that. # The individual targets need to be merged into the defaults. Make # a deep copy of the defaults for each target, merge the target dict # as found in the input file into that copy, and then hook up the # copy with the target-specific data merged into it as the replacement # target dict. old_target_dict = build_file_data['targets'][index] new_target_dict = gyp.simple_copy.deepcopy( build_file_data['target_defaults']) MergeDicts(new_target_dict, old_target_dict, build_file_path, build_file_path) build_file_data['targets'][index] = new_target_dict index += 1 # No longer needed. del build_file_data['target_defaults'] # Look for dependencies. This means that dependency resolution occurs # after "pre" conditionals and variable expansion, but before "post" - # in other words, you can't put a "dependencies" section inside a "post" # conditional within a target. dependencies = [] if 'targets' in build_file_data: for target_dict in build_file_data['targets']: if 'dependencies' not in target_dict: continue for dependency in target_dict['dependencies']: dependencies.append( gyp.common.ResolveTarget(build_file_path, dependency, None)[0]) if load_dependencies: for dependency in dependencies: try: LoadTargetBuildFile(dependency, data, aux_data, variables, includes, depth, check, load_dependencies) except Exception, e: gyp.common.ExceptionAppend( e, 'while loading dependencies of %s' % build_file_path) raise else: return (build_file_path, dependencies) def CallLoadTargetBuildFile(global_flags, build_file_path, variables, includes, depth, check, generator_input_info): """Wrapper around LoadTargetBuildFile for parallel processing. This wrapper is used when LoadTargetBuildFile is executed in a worker process. """ try: signal.signal(signal.SIGINT, signal.SIG_IGN) # Apply globals so that the worker process behaves the same. for key, value in global_flags.iteritems(): globals()[key] = value SetGeneratorGlobals(generator_input_info) result = LoadTargetBuildFile(build_file_path, per_process_data, per_process_aux_data, variables, includes, depth, check, False) if not result: return result (build_file_path, dependencies) = result # We can safely pop the build_file_data from per_process_data because it # will never be referenced by this process again, so we don't need to keep # it in the cache. build_file_data = per_process_data.pop(build_file_path) # This gets serialized and sent back to the main process via a pipe. # It's handled in LoadTargetBuildFileCallback. return (build_file_path, build_file_data, dependencies) except GypError, e: sys.stderr.write("gyp: %s\n" % e) return None except Exception, e: print >>sys.stderr, 'Exception:', e print >>sys.stderr, traceback.format_exc() return None class ParallelProcessingError(Exception): pass class ParallelState(object): """Class to keep track of state when processing input files in parallel. If build files are loaded in parallel, use this to keep track of state during farming out and processing parallel jobs. It's stored in a global so that the callback function can have access to it. """ def __init__(self): # The multiprocessing pool. self.pool = None # The condition variable used to protect this object and notify # the main loop when there might be more data to process. self.condition = None # The "data" dict that was passed to LoadTargetBuildFileParallel self.data = None # The number of parallel calls outstanding; decremented when a response # was received. self.pending = 0 # The set of all build files that have been scheduled, so we don't # schedule the same one twice. self.scheduled = set() # A list of dependency build file paths that haven't been scheduled yet. self.dependencies = [] # Flag to indicate if there was an error in a child process. self.error = False def LoadTargetBuildFileCallback(self, result): """Handle the results of running LoadTargetBuildFile in another process. """ self.condition.acquire() if not result: self.error = True self.condition.notify() self.condition.release() return (build_file_path0, build_file_data0, dependencies0) = result self.data[build_file_path0] = build_file_data0 self.data['target_build_files'].add(build_file_path0) for new_dependency in dependencies0: if new_dependency not in self.scheduled: self.scheduled.add(new_dependency) self.dependencies.append(new_dependency) self.pending -= 1 self.condition.notify() self.condition.release() def LoadTargetBuildFilesParallel(build_files, data, variables, includes, depth, check, generator_input_info): parallel_state = ParallelState() parallel_state.condition = threading.Condition() # Make copies of the build_files argument that we can modify while working. parallel_state.dependencies = list(build_files) parallel_state.scheduled = set(build_files) parallel_state.pending = 0 parallel_state.data = data try: parallel_state.condition.acquire() while parallel_state.dependencies or parallel_state.pending: if parallel_state.error: break if not parallel_state.dependencies: parallel_state.condition.wait() continue dependency = parallel_state.dependencies.pop() parallel_state.pending += 1 global_flags = { 'path_sections': globals()['path_sections'], 'non_configuration_keys': globals()['non_configuration_keys'], 'multiple_toolsets': globals()['multiple_toolsets']} if not parallel_state.pool: parallel_state.pool = multiprocessing.Pool(multiprocessing.cpu_count()) parallel_state.pool.apply_async( CallLoadTargetBuildFile, args = (global_flags, dependency, variables, includes, depth, check, generator_input_info), callback = parallel_state.LoadTargetBuildFileCallback) except KeyboardInterrupt, e: parallel_state.pool.terminate() raise e parallel_state.condition.release() parallel_state.pool.close() parallel_state.pool.join() parallel_state.pool = None if parallel_state.error: sys.exit(1) # Look for the bracket that matches the first bracket seen in a # string, and return the start and end as a tuple. For example, if # the input is something like "<(foo <(bar)) blah", then it would # return (1, 13), indicating the entire string except for the leading # "<" and trailing " blah". LBRACKETS= set('{[(') BRACKETS = {'}': '{', ']': '[', ')': '('} def FindEnclosingBracketGroup(input_str): stack = [] start = -1 for index, char in enumerate(input_str): if char in LBRACKETS: stack.append(char) if start == -1: start = index elif char in BRACKETS: if not stack: return (-1, -1) if stack.pop() != BRACKETS[char]: return (-1, -1) if not stack: return (start, index + 1) return (-1, -1) def IsStrCanonicalInt(string): """Returns True if |string| is in its canonical integer form. The canonical form is such that str(int(string)) == string. """ if type(string) is str: # This function is called a lot so for maximum performance, avoid # involving regexps which would otherwise make the code much # shorter. Regexps would need twice the time of this function. if string: if string == "0": return True if string[0] == "-": string = string[1:] if not string: return False if '1' <= string[0] <= '9': return string.isdigit() return False # This matches things like "<(asdf)", "<!(cmd)", "<!@(cmd)", "<|(list)", # "<!interpreter(arguments)", "<([list])", and even "<([)" and "<(<())". # In the last case, the inner "<()" is captured in match['content']. early_variable_re = re.compile( r'(?P<replace>(?P<type><(?:(?:!?@?)|\|)?)' r'(?P<command_string>[-a-zA-Z0-9_.]+)?' r'\((?P<is_array>\s*\[?)' r'(?P<content>.*?)(\]?)\))') # This matches the same as early_variable_re, but with '>' instead of '<'. late_variable_re = re.compile( r'(?P<replace>(?P<type>>(?:(?:!?@?)|\|)?)' r'(?P<command_string>[-a-zA-Z0-9_.]+)?' r'\((?P<is_array>\s*\[?)' r'(?P<content>.*?)(\]?)\))') # This matches the same as early_variable_re, but with '^' instead of '<'. latelate_variable_re = re.compile( r'(?P<replace>(?P<type>[\^](?:(?:!?@?)|\|)?)' r'(?P<command_string>[-a-zA-Z0-9_.]+)?' r'\((?P<is_array>\s*\[?)' r'(?P<content>.*?)(\]?)\))') # Global cache of results from running commands so they don't have to be run # more then once. cached_command_results = {} def FixupPlatformCommand(cmd): if sys.platform == 'win32': if type(cmd) is list: cmd = [re.sub('^cat ', 'type ', cmd[0])] + cmd[1:] else: cmd = re.sub('^cat ', 'type ', cmd) return cmd PHASE_EARLY = 0 PHASE_LATE = 1 PHASE_LATELATE = 2 def ExpandVariables(input, phase, variables, build_file): # Look for the pattern that gets expanded into variables if phase == PHASE_EARLY: variable_re = early_variable_re expansion_symbol = '<' elif phase == PHASE_LATE: variable_re = late_variable_re expansion_symbol = '>' elif phase == PHASE_LATELATE: variable_re = latelate_variable_re expansion_symbol = '^' else: assert False input_str = str(input) if IsStrCanonicalInt(input_str): return int(input_str) # Do a quick scan to determine if an expensive regex search is warranted. if expansion_symbol not in input_str: return input_str # Get the entire list of matches as a list of MatchObject instances. # (using findall here would return strings instead of MatchObjects). matches = list(variable_re.finditer(input_str)) if not matches: return input_str output = input_str # Reverse the list of matches so that replacements are done right-to-left. # That ensures that earlier replacements won't mess up the string in a # way that causes later calls to find the earlier substituted text instead # of what's intended for replacement. matches.reverse() for match_group in matches: match = match_group.groupdict() gyp.DebugOutput(gyp.DEBUG_VARIABLES, "Matches: %r", match) # match['replace'] is the substring to look for, match['type'] # is the character code for the replacement type (< > <! >! <| >| <@ # >@ <!@ >!@), match['is_array'] contains a '[' for command # arrays, and match['content'] is the name of the variable (< >) # or command to run (<! >!). match['command_string'] is an optional # command string. Currently, only 'pymod_do_main' is supported. # run_command is true if a ! variant is used. run_command = '!' in match['type'] command_string = match['command_string'] # file_list is true if a | variant is used. file_list = '|' in match['type'] # Capture these now so we can adjust them later. replace_start = match_group.start('replace') replace_end = match_group.end('replace') # Find the ending paren, and re-evaluate the contained string. (c_start, c_end) = FindEnclosingBracketGroup(input_str[replace_start:]) # Adjust the replacement range to match the entire command # found by FindEnclosingBracketGroup (since the variable_re # probably doesn't match the entire command if it contained # nested variables). replace_end = replace_start + c_end # Find the "real" replacement, matching the appropriate closing # paren, and adjust the replacement start and end. replacement = input_str[replace_start:replace_end] # Figure out what the contents of the variable parens are. contents_start = replace_start + c_start + 1 contents_end = replace_end - 1 contents = input_str[contents_start:contents_end] # Do filter substitution now for <|(). # Admittedly, this is different than the evaluation order in other # contexts. However, since filtration has no chance to run on <|(), # this seems like the only obvious way to give them access to filters. if file_list: processed_variables = gyp.simple_copy.deepcopy(variables) ProcessListFiltersInDict(contents, processed_variables) # Recurse to expand variables in the contents contents = ExpandVariables(contents, phase, processed_variables, build_file) else: # Recurse to expand variables in the contents contents = ExpandVariables(contents, phase, variables, build_file) # Strip off leading/trailing whitespace so that variable matches are # simpler below (and because they are rarely needed). contents = contents.strip() # expand_to_list is true if an @ variant is used. In that case, # the expansion should result in a list. Note that the caller # is to be expecting a list in return, and not all callers do # because not all are working in list context. Also, for list # expansions, there can be no other text besides the variable # expansion in the input string. expand_to_list = '@' in match['type'] and input_str == replacement if run_command or file_list: # Find the build file's directory, so commands can be run or file lists # generated relative to it. build_file_dir = os.path.dirname(build_file) if build_file_dir == '' and not file_list: # If build_file is just a leaf filename indicating a file in the # current directory, build_file_dir might be an empty string. Set # it to None to signal to subprocess.Popen that it should run the # command in the current directory. build_file_dir = None # Support <|(listfile.txt ...) which generates a file # containing items from a gyp list, generated at gyp time. # This works around actions/rules which have more inputs than will # fit on the command line. if file_list: if type(contents) is list: contents_list = contents else: contents_list = contents.split(' ') replacement = contents_list[0] if os.path.isabs(replacement): raise GypError('| cannot handle absolute paths, got "%s"' % replacement) if not generator_filelist_paths: path = os.path.join(build_file_dir, replacement) else: if os.path.isabs(build_file_dir): toplevel = generator_filelist_paths['toplevel'] rel_build_file_dir = gyp.common.RelativePath(build_file_dir, toplevel) else: rel_build_file_dir = build_file_dir qualified_out_dir = generator_filelist_paths['qualified_out_dir'] path = os.path.join(qualified_out_dir, rel_build_file_dir, replacement) gyp.common.EnsureDirExists(path) replacement = gyp.common.RelativePath(path, build_file_dir) f = gyp.common.WriteOnDiff(path) for i in contents_list[1:]: f.write('%s\n' % i) f.close() elif run_command: use_shell = True if match['is_array']: contents = eval(contents) use_shell = False # Check for a cached value to avoid executing commands, or generating # file lists more than once. The cache key contains the command to be # run as well as the directory to run it from, to account for commands # that depend on their current directory. # TODO(http://code.google.com/p/gyp/issues/detail?id=111): In theory, # someone could author a set of GYP files where each time the command # is invoked it produces different output by design. When the need # arises, the syntax should be extended to support no caching off a # command's output so it is run every time. cache_key = (str(contents), build_file_dir) cached_value = cached_command_results.get(cache_key, None) if cached_value is None: gyp.DebugOutput(gyp.DEBUG_VARIABLES, "Executing command '%s' in directory '%s'", contents, build_file_dir) replacement = '' if command_string == 'pymod_do_main': # <!pymod_do_main(modulename param eters) loads |modulename| as a # python module and then calls that module's DoMain() function, # passing ["param", "eters"] as a single list argument. For modules # that don't load quickly, this can be faster than # <!(python modulename param eters). Do this in |build_file_dir|. oldwd = os.getcwd() # Python doesn't like os.open('.'): no fchdir. if build_file_dir: # build_file_dir may be None (see above). os.chdir(build_file_dir) try: parsed_contents = shlex.split(contents) try: py_module = __import__(parsed_contents[0]) except ImportError as e: raise GypError("Error importing pymod_do_main" "module (%s): %s" % (parsed_contents[0], e)) replacement = str(py_module.DoMain(parsed_contents[1:])).rstrip() finally: os.chdir(oldwd) assert replacement != None elif command_string: raise GypError("Unknown command string '%s' in '%s'." % (command_string, contents)) else: # Fix up command with platform specific workarounds. contents = FixupPlatformCommand(contents) p = subprocess.Popen(contents, shell=use_shell, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, cwd=build_file_dir) p_stdout, p_stderr = p.communicate('') if p.wait() != 0 or p_stderr: sys.stderr.write(p_stderr) # Simulate check_call behavior, since check_call only exists # in python 2.5 and later. raise GypError("Call to '%s' returned exit status %d." % (contents, p.returncode)) replacement = p_stdout.rstrip() cached_command_results[cache_key] = replacement else: gyp.DebugOutput(gyp.DEBUG_VARIABLES, "Had cache value for command '%s' in directory '%s'", contents,build_file_dir) replacement = cached_value else: if not contents in variables: if contents[-1] in ['!', '/']: # In order to allow cross-compiles (nacl) to happen more naturally, # we will allow references to >(sources/) etc. to resolve to # and empty list if undefined. This allows actions to: # 'action!': [ # '>@(_sources!)', # ], # 'action/': [ # '>@(_sources/)', # ], replacement = [] else: raise GypError('Undefined variable ' + contents + ' in ' + build_file) else: replacement = variables[contents] if type(replacement) is list: for item in replacement: if not contents[-1] == '/' and type(item) not in (str, int): raise GypError('Variable ' + contents + ' must expand to a string or list of strings; ' + 'list contains a ' + item.__class__.__name__) # Run through the list and handle variable expansions in it. Since # the list is guaranteed not to contain dicts, this won't do anything # with conditions sections. ProcessVariablesAndConditionsInList(replacement, phase, variables, build_file) elif type(replacement) not in (str, int): raise GypError('Variable ' + contents + ' must expand to a string or list of strings; ' + 'found a ' + replacement.__class__.__name__) if expand_to_list: # Expanding in list context. It's guaranteed that there's only one # replacement to do in |input_str| and that it's this replacement. See # above. if type(replacement) is list: # If it's already a list, make a copy. output = replacement[:] else: # Split it the same way sh would split arguments. output = shlex.split(str(replacement)) else: # Expanding in string context. encoded_replacement = '' if type(replacement) is list: # When expanding a list into string context, turn the list items # into a string in a way that will work with a subprocess call. # # TODO(mark): This isn't completely correct. This should # call a generator-provided function that observes the # proper list-to-argument quoting rules on a specific # platform instead of just calling the POSIX encoding # routine. encoded_replacement = gyp.common.EncodePOSIXShellList(replacement) else: encoded_replacement = replacement output = output[:replace_start] + str(encoded_replacement) + \ output[replace_end:] # Prepare for the next match iteration. input_str = output if output == input: gyp.DebugOutput(gyp.DEBUG_VARIABLES, "Found only identity matches on %r, avoiding infinite " "recursion.", output) else: # Look for more matches now that we've replaced some, to deal with # expanding local variables (variables defined in the same # variables block as this one). gyp.DebugOutput(gyp.DEBUG_VARIABLES, "Found output %r, recursing.", output) if type(output) is list: if output and type(output[0]) is list: # Leave output alone if it's a list of lists. # We don't want such lists to be stringified. pass else: new_output = [] for item in output: new_output.append( ExpandVariables(item, phase, variables, build_file)) output = new_output else: output = ExpandVariables(output, phase, variables, build_file) # Convert all strings that are canonically-represented integers into integers. if type(output) is list: for index in xrange(0, len(output)): if IsStrCanonicalInt(output[index]): output[index] = int(output[index]) elif IsStrCanonicalInt(output): output = int(output) return output # The same condition is often evaluated over and over again so it # makes sense to cache as much as possible between evaluations. cached_conditions_asts = {} def EvalCondition(condition, conditions_key, phase, variables, build_file): """Returns the dict that should be used or None if the result was that nothing should be used.""" if type(condition) is not list: raise GypError(conditions_key + ' must be a list') if len(condition) < 2: # It's possible that condition[0] won't work in which case this # attempt will raise its own IndexError. That's probably fine. raise GypError(conditions_key + ' ' + condition[0] + ' must be at least length 2, not ' + str(len(condition))) i = 0 result = None while i < len(condition): cond_expr = condition[i] true_dict = condition[i + 1] if type(true_dict) is not dict: raise GypError('{} {} must be followed by a dictionary, not {}'.format( conditions_key, cond_expr, type(true_dict))) if len(condition) > i + 2 and type(condition[i + 2]) is dict: false_dict = condition[i + 2] i = i + 3 if i != len(condition): raise GypError('{} {} has {} unexpected trailing items'.format( conditions_key, cond_expr, len(condition) - i)) else: false_dict = None i = i + 2 if result == None: result = EvalSingleCondition( cond_expr, true_dict, false_dict, phase, variables, build_file) return result def EvalSingleCondition( cond_expr, true_dict, false_dict, phase, variables, build_file): """Returns true_dict if cond_expr evaluates to true, and false_dict otherwise.""" # Do expansions on the condition itself. Since the conditon can naturally # contain variable references without needing to resort to GYP expansion # syntax, this is of dubious value for variables, but someone might want to # use a command expansion directly inside a condition. cond_expr_expanded = ExpandVariables(cond_expr, phase, variables, build_file) if type(cond_expr_expanded) not in (str, int): raise ValueError( 'Variable expansion in this context permits str and int ' + \ 'only, found ' + cond_expr_expanded.__class__.__name__) try: if cond_expr_expanded in cached_conditions_asts: ast_code = cached_conditions_asts[cond_expr_expanded] else: ast_code = compile(cond_expr_expanded, '<string>', 'eval') cached_conditions_asts[cond_expr_expanded] = ast_code if eval(ast_code, {'__builtins__': None}, variables): return true_dict return false_dict except SyntaxError, e: syntax_error = SyntaxError('%s while evaluating condition \'%s\' in %s ' 'at character %d.' % (str(e.args[0]), e.text, build_file, e.offset), e.filename, e.lineno, e.offset, e.text) raise syntax_error except NameError, e: gyp.common.ExceptionAppend(e, 'while evaluating condition \'%s\' in %s' % (cond_expr_expanded, build_file)) raise GypError(e) def ProcessConditionsInDict(the_dict, phase, variables, build_file): # Process a 'conditions' or 'target_conditions' section in the_dict, # depending on phase. # early -> conditions # late -> target_conditions # latelate -> no conditions # # Each item in a conditions list consists of cond_expr, a string expression # evaluated as the condition, and true_dict, a dict that will be merged into # the_dict if cond_expr evaluates to true. Optionally, a third item, # false_dict, may be present. false_dict is merged into the_dict if # cond_expr evaluates to false. # # Any dict merged into the_dict will be recursively processed for nested # conditionals and other expansions, also according to phase, immediately # prior to being merged. if phase == PHASE_EARLY: conditions_key = 'conditions' elif phase == PHASE_LATE: conditions_key = 'target_conditions' elif phase == PHASE_LATELATE: return else: assert False if not conditions_key in the_dict: return conditions_list = the_dict[conditions_key] # Unhook the conditions list, it's no longer needed. del the_dict[conditions_key] for condition in conditions_list: merge_dict = EvalCondition(condition, conditions_key, phase, variables, build_file) if merge_dict != None: # Expand variables and nested conditinals in the merge_dict before # merging it. ProcessVariablesAndConditionsInDict(merge_dict, phase, variables, build_file) MergeDicts(the_dict, merge_dict, build_file, build_file) def LoadAutomaticVariablesFromDict(variables, the_dict): # Any keys with plain string values in the_dict become automatic variables. # The variable name is the key name with a "_" character prepended. for key, value in the_dict.iteritems(): if type(value) in (str, int, list): variables['_' + key] = value def LoadVariablesFromVariablesDict(variables, the_dict, the_dict_key): # Any keys in the_dict's "variables" dict, if it has one, becomes a # variable. The variable name is the key name in the "variables" dict. # Variables that end with the % character are set only if they are unset in # the variables dict. the_dict_key is the name of the key that accesses # the_dict in the_dict's parent dict. If the_dict's parent is not a dict # (it could be a list or it could be parentless because it is a root dict), # the_dict_key will be None. for key, value in the_dict.get('variables', {}).iteritems(): if type(value) not in (str, int, list): continue if key.endswith('%'): variable_name = key[:-1] if variable_name in variables: # If the variable is already set, don't set it. continue if the_dict_key is 'variables' and variable_name in the_dict: # If the variable is set without a % in the_dict, and the_dict is a # variables dict (making |variables| a varaibles sub-dict of a # variables dict), use the_dict's definition. value = the_dict[variable_name] else: variable_name = key variables[variable_name] = value def ProcessVariablesAndConditionsInDict(the_dict, phase, variables_in, build_file, the_dict_key=None): """Handle all variable and command expansion and conditional evaluation. This function is the public entry point for all variable expansions and conditional evaluations. The variables_in dictionary will not be modified by this function. """ # Make a copy of the variables_in dict that can be modified during the # loading of automatics and the loading of the variables dict. variables = variables_in.copy() LoadAutomaticVariablesFromDict(variables, the_dict) if 'variables' in the_dict: # Make sure all the local variables are added to the variables # list before we process them so that you can reference one # variable from another. They will be fully expanded by recursion # in ExpandVariables. for key, value in the_dict['variables'].iteritems(): variables[key] = value # Handle the associated variables dict first, so that any variable # references within can be resolved prior to using them as variables. # Pass a copy of the variables dict to avoid having it be tainted. # Otherwise, it would have extra automatics added for everything that # should just be an ordinary variable in this scope. ProcessVariablesAndConditionsInDict(the_dict['variables'], phase, variables, build_file, 'variables') LoadVariablesFromVariablesDict(variables, the_dict, the_dict_key) for key, value in the_dict.iteritems(): # Skip "variables", which was already processed if present. if key != 'variables' and type(value) is str: expanded = ExpandVariables(value, phase, variables, build_file) if type(expanded) not in (str, int): raise ValueError( 'Variable expansion in this context permits str and int ' + \ 'only, found ' + expanded.__class__.__name__ + ' for ' + key) the_dict[key] = expanded # Variable expansion may have resulted in changes to automatics. Reload. # TODO(mark): Optimization: only reload if no changes were made. variables = variables_in.copy() LoadAutomaticVariablesFromDict(variables, the_dict) LoadVariablesFromVariablesDict(variables, the_dict, the_dict_key) # Process conditions in this dict. This is done after variable expansion # so that conditions may take advantage of expanded variables. For example, # if the_dict contains: # {'type': '<(library_type)', # 'conditions': [['_type=="static_library"', { ... }]]}, # _type, as used in the condition, will only be set to the value of # library_type if variable expansion is performed before condition # processing. However, condition processing should occur prior to recursion # so that variables (both automatic and "variables" dict type) may be # adjusted by conditions sections, merged into the_dict, and have the # intended impact on contained dicts. # # This arrangement means that a "conditions" section containing a "variables" # section will only have those variables effective in subdicts, not in # the_dict. The workaround is to put a "conditions" section within a # "variables" section. For example: # {'conditions': [['os=="mac"', {'variables': {'define': 'IS_MAC'}}]], # 'defines': ['<(define)'], # 'my_subdict': {'defines': ['<(define)']}}, # will not result in "IS_MAC" being appended to the "defines" list in the # current scope but would result in it being appended to the "defines" list # within "my_subdict". By comparison: # {'variables': {'conditions': [['os=="mac"', {'define': 'IS_MAC'}]]}, # 'defines': ['<(define)'], # 'my_subdict': {'defines': ['<(define)']}}, # will append "IS_MAC" to both "defines" lists. # Evaluate conditions sections, allowing variable expansions within them # as well as nested conditionals. This will process a 'conditions' or # 'target_conditions' section, perform appropriate merging and recursive # conditional and variable processing, and then remove the conditions section # from the_dict if it is present. ProcessConditionsInDict(the_dict, phase, variables, build_file) # Conditional processing may have resulted in changes to automatics or the # variables dict. Reload. variables = variables_in.copy() LoadAutomaticVariablesFromDict(variables, the_dict) LoadVariablesFromVariablesDict(variables, the_dict, the_dict_key) # Recurse into child dicts, or process child lists which may result in # further recursion into descendant dicts. for key, value in the_dict.iteritems(): # Skip "variables" and string values, which were already processed if # present. if key == 'variables' or type(value) is str: continue if type(value) is dict: # Pass a copy of the variables dict so that subdicts can't influence # parents. ProcessVariablesAndConditionsInDict(value, phase, variables, build_file, key) elif type(value) is list: # The list itself can't influence the variables dict, and # ProcessVariablesAndConditionsInList will make copies of the variables # dict if it needs to pass it to something that can influence it. No # copy is necessary here. ProcessVariablesAndConditionsInList(value, phase, variables, build_file) elif type(value) is not int: raise TypeError('Unknown type ' + value.__class__.__name__ + \ ' for ' + key) def ProcessVariablesAndConditionsInList(the_list, phase, variables, build_file): # Iterate using an index so that new values can be assigned into the_list. index = 0 while index < len(the_list): item = the_list[index] if type(item) is dict: # Make a copy of the variables dict so that it won't influence anything # outside of its own scope. ProcessVariablesAndConditionsInDict(item, phase, variables, build_file) elif type(item) is list: ProcessVariablesAndConditionsInList(item, phase, variables, build_file) elif type(item) is str: expanded = ExpandVariables(item, phase, variables, build_file) if type(expanded) in (str, int): the_list[index] = expanded elif type(expanded) is list: the_list[index:index+1] = expanded index += len(expanded) # index now identifies the next item to examine. Continue right now # without falling into the index increment below. continue else: raise ValueError( 'Variable expansion in this context permits strings and ' + \ 'lists only, found ' + expanded.__class__.__name__ + ' at ' + \ index) elif type(item) is not int: raise TypeError('Unknown type ' + item.__class__.__name__ + \ ' at index ' + index) index = index + 1 def BuildTargetsDict(data): """Builds a dict mapping fully-qualified target names to their target dicts. |data| is a dict mapping loaded build files by pathname relative to the current directory. Values in |data| are build file contents. For each |data| value with a "targets" key, the value of the "targets" key is taken as a list containing target dicts. Each target's fully-qualified name is constructed from the pathname of the build file (|data| key) and its "target_name" property. These fully-qualified names are used as the keys in the returned dict. These keys provide access to the target dicts, the dicts in the "targets" lists. """ targets = {} for build_file in data['target_build_files']: for target in data[build_file].get('targets', []): target_name = gyp.common.QualifiedTarget(build_file, target['target_name'], target['toolset']) if target_name in targets: raise GypError('Duplicate target definitions for ' + target_name) targets[target_name] = target return targets def QualifyDependencies(targets): """Make dependency links fully-qualified relative to the current directory. |targets| is a dict mapping fully-qualified target names to their target dicts. For each target in this dict, keys known to contain dependency links are examined, and any dependencies referenced will be rewritten so that they are fully-qualified and relative to the current directory. All rewritten dependencies are suitable for use as keys to |targets| or a similar dict. """ all_dependency_sections = [dep + op for dep in dependency_sections for op in ('', '!', '/')] for target, target_dict in targets.iteritems(): target_build_file = gyp.common.BuildFile(target) toolset = target_dict['toolset'] for dependency_key in all_dependency_sections: dependencies = target_dict.get(dependency_key, []) for index in xrange(0, len(dependencies)): dep_file, dep_target, dep_toolset = gyp.common.ResolveTarget( target_build_file, dependencies[index], toolset) if not multiple_toolsets: # Ignore toolset specification in the dependency if it is specified. dep_toolset = toolset dependency = gyp.common.QualifiedTarget(dep_file, dep_target, dep_toolset) dependencies[index] = dependency # Make sure anything appearing in a list other than "dependencies" also # appears in the "dependencies" list. if dependency_key != 'dependencies' and \ dependency not in target_dict['dependencies']: raise GypError('Found ' + dependency + ' in ' + dependency_key + ' of ' + target + ', but not in dependencies') def ExpandWildcardDependencies(targets, data): """Expands dependencies specified as build_file:*. For each target in |targets|, examines sections containing links to other targets. If any such section contains a link of the form build_file:*, it is taken as a wildcard link, and is expanded to list each target in build_file. The |data| dict provides access to build file dicts. Any target that does not wish to be included by wildcard can provide an optional "suppress_wildcard" key in its target dict. When present and true, a wildcard dependency link will not include such targets. All dependency names, including the keys to |targets| and the values in each dependency list, must be qualified when this function is called. """ for target, target_dict in targets.iteritems(): toolset = target_dict['toolset'] target_build_file = gyp.common.BuildFile(target) for dependency_key in dependency_sections: dependencies = target_dict.get(dependency_key, []) # Loop this way instead of "for dependency in" or "for index in xrange" # because the dependencies list will be modified within the loop body. index = 0 while index < len(dependencies): (dependency_build_file, dependency_target, dependency_toolset) = \ gyp.common.ParseQualifiedTarget(dependencies[index]) if dependency_target != '*' and dependency_toolset != '*': # Not a wildcard. Keep it moving. index = index + 1 continue if dependency_build_file == target_build_file: # It's an error for a target to depend on all other targets in # the same file, because a target cannot depend on itself. raise GypError('Found wildcard in ' + dependency_key + ' of ' + target + ' referring to same build file') # Take the wildcard out and adjust the index so that the next # dependency in the list will be processed the next time through the # loop. del dependencies[index] index = index - 1 # Loop through the targets in the other build file, adding them to # this target's list of dependencies in place of the removed # wildcard. dependency_target_dicts = data[dependency_build_file]['targets'] for dependency_target_dict in dependency_target_dicts: if int(dependency_target_dict.get('suppress_wildcard', False)): continue dependency_target_name = dependency_target_dict['target_name'] if (dependency_target != '*' and dependency_target != dependency_target_name): continue dependency_target_toolset = dependency_target_dict['toolset'] if (dependency_toolset != '*' and dependency_toolset != dependency_target_toolset): continue dependency = gyp.common.QualifiedTarget(dependency_build_file, dependency_target_name, dependency_target_toolset) index = index + 1 dependencies.insert(index, dependency) index = index + 1 def Unify(l): """Removes duplicate elements from l, keeping the first element.""" seen = {} return [seen.setdefault(e, e) for e in l if e not in seen] def RemoveDuplicateDependencies(targets): """Makes sure every dependency appears only once in all targets's dependency lists.""" for target_name, target_dict in targets.iteritems(): for dependency_key in dependency_sections: dependencies = target_dict.get(dependency_key, []) if dependencies: target_dict[dependency_key] = Unify(dependencies) def Filter(l, item): """Removes item from l.""" res = {} return [res.setdefault(e, e) for e in l if e != item] def RemoveSelfDependencies(targets): """Remove self dependencies from targets that have the prune_self_dependency variable set.""" for target_name, target_dict in targets.iteritems(): for dependency_key in dependency_sections: dependencies = target_dict.get(dependency_key, []) if dependencies: for t in dependencies: if t == target_name: if targets[t].get('variables', {}).get('prune_self_dependency', 0): target_dict[dependency_key] = Filter(dependencies, target_name) def RemoveLinkDependenciesFromNoneTargets(targets): """Remove dependencies having the 'link_dependency' attribute from the 'none' targets.""" for target_name, target_dict in targets.iteritems(): for dependency_key in dependency_sections: dependencies = target_dict.get(dependency_key, []) if dependencies: for t in dependencies: if target_dict.get('type', None) == 'none': if targets[t].get('variables', {}).get('link_dependency', 0): target_dict[dependency_key] = \ Filter(target_dict[dependency_key], t) class DependencyGraphNode(object): """ Attributes: ref: A reference to an object that this DependencyGraphNode represents. dependencies: List of DependencyGraphNodes on which this one depends. dependents: List of DependencyGraphNodes that depend on this one. """ class CircularException(GypError): pass def __init__(self, ref): self.ref = ref self.dependencies = [] self.dependents = [] def __repr__(self): return '<DependencyGraphNode: %r>' % self.ref def FlattenToList(self): # flat_list is the sorted list of dependencies - actually, the list items # are the "ref" attributes of DependencyGraphNodes. Every target will # appear in flat_list after all of its dependencies, and before all of its # dependents. flat_list = OrderedSet() # in_degree_zeros is the list of DependencyGraphNodes that have no # dependencies not in flat_list. Initially, it is a copy of the children # of this node, because when the graph was built, nodes with no # dependencies were made implicit dependents of the root node. in_degree_zeros = set(self.dependents[:]) while in_degree_zeros: # Nodes in in_degree_zeros have no dependencies not in flat_list, so they # can be appended to flat_list. Take these nodes out of in_degree_zeros # as work progresses, so that the next node to process from the list can # always be accessed at a consistent position. node = in_degree_zeros.pop() flat_list.add(node.ref) # Look at dependents of the node just added to flat_list. Some of them # may now belong in in_degree_zeros. for node_dependent in node.dependents: is_in_degree_zero = True # TODO: We want to check through the # node_dependent.dependencies list but if it's long and we # always start at the beginning, then we get O(n^2) behaviour. for node_dependent_dependency in node_dependent.dependencies: if not node_dependent_dependency.ref in flat_list: # The dependent one or more dependencies not in flat_list. There # will be more chances to add it to flat_list when examining # it again as a dependent of those other dependencies, provided # that there are no cycles. is_in_degree_zero = False break if is_in_degree_zero: # All of the dependent's dependencies are already in flat_list. Add # it to in_degree_zeros where it will be processed in a future # iteration of the outer loop. in_degree_zeros.add(node_dependent) return list(flat_list) def FindCycles(self): """ Returns a list of cycles in the graph, where each cycle is its own list. """ results = [] visited = set() def Visit(node, path): for child in node.dependents: if child in path: results.append([child] + path[:path.index(child) + 1]) elif not child in visited: visited.add(child) Visit(child, [child] + path) visited.add(self) Visit(self, [self]) return results def DirectDependencies(self, dependencies=None): """Returns a list of just direct dependencies.""" if dependencies == None: dependencies = [] for dependency in self.dependencies: # Check for None, corresponding to the root node. if dependency.ref != None and dependency.ref not in dependencies: dependencies.append(dependency.ref) return dependencies def _AddImportedDependencies(self, targets, dependencies=None): """Given a list of direct dependencies, adds indirect dependencies that other dependencies have declared to export their settings. This method does not operate on self. Rather, it operates on the list of dependencies in the |dependencies| argument. For each dependency in that list, if any declares that it exports the settings of one of its own dependencies, those dependencies whose settings are "passed through" are added to the list. As new items are added to the list, they too will be processed, so it is possible to import settings through multiple levels of dependencies. This method is not terribly useful on its own, it depends on being "primed" with a list of direct dependencies such as one provided by DirectDependencies. DirectAndImportedDependencies is intended to be the public entry point. """ if dependencies == None: dependencies = [] index = 0 while index < len(dependencies): dependency = dependencies[index] dependency_dict = targets[dependency] # Add any dependencies whose settings should be imported to the list # if not already present. Newly-added items will be checked for # their own imports when the list iteration reaches them. # Rather than simply appending new items, insert them after the # dependency that exported them. This is done to more closely match # the depth-first method used by DeepDependencies. add_index = 1 for imported_dependency in \ dependency_dict.get('export_dependent_settings', []): if imported_dependency not in dependencies: dependencies.insert(index + add_index, imported_dependency) add_index = add_index + 1 index = index + 1 return dependencies def DirectAndImportedDependencies(self, targets, dependencies=None): """Returns a list of a target's direct dependencies and all indirect dependencies that a dependency has advertised settings should be exported through the dependency for. """ dependencies = self.DirectDependencies(dependencies) return self._AddImportedDependencies(targets, dependencies) def DeepDependencies(self, dependencies=None): """Returns an OrderedSet of all of a target's dependencies, recursively.""" if dependencies is None: # Using a list to get ordered output and a set to do fast "is it # already added" checks. dependencies = OrderedSet() for dependency in self.dependencies: # Check for None, corresponding to the root node. if dependency.ref is None: continue if dependency.ref not in dependencies: dependencies.add(dependency.ref) dependency.DeepDependencies(dependencies) return dependencies def _LinkDependenciesInternal(self, targets, include_shared_libraries, dependencies=None, initial=True): """Returns an OrderedSet of dependency targets that are linked into this target. This function has a split personality, depending on the setting of |initial|. Outside callers should always leave |initial| at its default setting. When adding a target to the list of dependencies, this function will recurse into itself with |initial| set to False, to collect dependencies that are linked into the linkable target for which the list is being built. If |include_shared_libraries| is False, the resulting dependencies will not include shared_library targets that are linked into this target. """ if dependencies is None: # Using a list to get ordered output and a set to do fast "is it # already added" checks. dependencies = OrderedSet() # Check for None, corresponding to the root node. if self.ref is None: return dependencies # It's kind of sucky that |targets| has to be passed into this function, # but that's presently the easiest way to access the target dicts so that # this function can find target types. if 'target_name' not in targets[self.ref]: raise GypError("Missing 'target_name' field in target.") if 'type' not in targets[self.ref]: raise GypError("Missing 'type' field in target %s" % targets[self.ref]['target_name']) target_type = targets[self.ref]['type'] is_linkable = target_type in linkable_types if initial and not is_linkable: # If this is the first target being examined and it's not linkable, # return an empty list of link dependencies, because the link # dependencies are intended to apply to the target itself (initial is # True) and this target won't be linked. return dependencies # Don't traverse 'none' targets if explicitly excluded. if (target_type == 'none' and not targets[self.ref].get('dependencies_traverse', True)): dependencies.add(self.ref) return dependencies # Executables and loadable modules are already fully and finally linked. # Nothing else can be a link dependency of them, there can only be # dependencies in the sense that a dependent target might run an # executable or load the loadable_module. if not initial and target_type in ('executable', 'loadable_module'): return dependencies # Shared libraries are already fully linked. They should only be included # in |dependencies| when adjusting static library dependencies (in order to # link against the shared_library's import lib), but should not be included # in |dependencies| when propagating link_settings. # The |include_shared_libraries| flag controls which of these two cases we # are handling. if (not initial and target_type == 'shared_library' and not include_shared_libraries): return dependencies # The target is linkable, add it to the list of link dependencies. if self.ref not in dependencies: dependencies.add(self.ref) if initial or not is_linkable: # If this is a subsequent target and it's linkable, don't look any # further for linkable dependencies, as they'll already be linked into # this target linkable. Always look at dependencies of the initial # target, and always look at dependencies of non-linkables. for dependency in self.dependencies: dependency._LinkDependenciesInternal(targets, include_shared_libraries, dependencies, False) return dependencies def DependenciesForLinkSettings(self, targets): """ Returns a list of dependency targets whose link_settings should be merged into this target. """ # TODO(sbaig) Currently, chrome depends on the bug that shared libraries' # link_settings are propagated. So for now, we will allow it, unless the # 'allow_sharedlib_linksettings_propagation' flag is explicitly set to # False. Once chrome is fixed, we can remove this flag. include_shared_libraries = \ targets[self.ref].get('allow_sharedlib_linksettings_propagation', True) return self._LinkDependenciesInternal(targets, include_shared_libraries) def DependenciesToLinkAgainst(self, targets): """ Returns a list of dependency targets that are linked into this target. """ return self._LinkDependenciesInternal(targets, True) def BuildDependencyList(targets): # Create a DependencyGraphNode for each target. Put it into a dict for easy # access. dependency_nodes = {} for target, spec in targets.iteritems(): if target not in dependency_nodes: dependency_nodes[target] = DependencyGraphNode(target) # Set up the dependency links. Targets that have no dependencies are treated # as dependent on root_node. root_node = DependencyGraphNode(None) for target, spec in targets.iteritems(): target_node = dependency_nodes[target] target_build_file = gyp.common.BuildFile(target) dependencies = spec.get('dependencies') if not dependencies: target_node.dependencies = [root_node] root_node.dependents.append(target_node) else: for dependency in dependencies: dependency_node = dependency_nodes.get(dependency) if not dependency_node: raise GypError("Dependency '%s' not found while " "trying to load target %s" % (dependency, target)) target_node.dependencies.append(dependency_node) dependency_node.dependents.append(target_node) flat_list = root_node.FlattenToList() # If there's anything left unvisited, there must be a circular dependency # (cycle). if len(flat_list) != len(targets): if not root_node.dependents: # If all targets have dependencies, add the first target as a dependent # of root_node so that the cycle can be discovered from root_node. target = targets.keys()[0] target_node = dependency_nodes[target] target_node.dependencies.append(root_node) root_node.dependents.append(target_node) cycles = [] for cycle in root_node.FindCycles(): paths = [node.ref for node in cycle] cycles.append('Cycle: %s' % ' -> '.join(paths)) raise DependencyGraphNode.CircularException( 'Cycles in dependency graph detected:\n' + '\n'.join(cycles)) return [dependency_nodes, flat_list] def VerifyNoGYPFileCircularDependencies(targets): # Create a DependencyGraphNode for each gyp file containing a target. Put # it into a dict for easy access. dependency_nodes = {} for target in targets.iterkeys(): build_file = gyp.common.BuildFile(target) if not build_file in dependency_nodes: dependency_nodes[build_file] = DependencyGraphNode(build_file) # Set up the dependency links. for target, spec in targets.iteritems(): build_file = gyp.common.BuildFile(target) build_file_node = dependency_nodes[build_file] target_dependencies = spec.get('dependencies', []) for dependency in target_dependencies: try: dependency_build_file = gyp.common.BuildFile(dependency) except GypError, e: gyp.common.ExceptionAppend( e, 'while computing dependencies of .gyp file %s' % build_file) raise if dependency_build_file == build_file: # A .gyp file is allowed to refer back to itself. continue dependency_node = dependency_nodes.get(dependency_build_file) if not dependency_node: raise GypError("Dependancy '%s' not found" % dependency_build_file) if dependency_node not in build_file_node.dependencies: build_file_node.dependencies.append(dependency_node) dependency_node.dependents.append(build_file_node) # Files that have no dependencies are treated as dependent on root_node. root_node = DependencyGraphNode(None) for build_file_node in dependency_nodes.itervalues(): if len(build_file_node.dependencies) == 0: build_file_node.dependencies.append(root_node) root_node.dependents.append(build_file_node) flat_list = root_node.FlattenToList() # If there's anything left unvisited, there must be a circular dependency # (cycle). if len(flat_list) != len(dependency_nodes): if not root_node.dependents: # If all files have dependencies, add the first file as a dependent # of root_node so that the cycle can be discovered from root_node. file_node = dependency_nodes.values()[0] file_node.dependencies.append(root_node) root_node.dependents.append(file_node) cycles = [] for cycle in root_node.FindCycles(): paths = [node.ref for node in cycle] cycles.append('Cycle: %s' % ' -> '.join(paths)) raise DependencyGraphNode.CircularException( 'Cycles in .gyp file dependency graph detected:\n' + '\n'.join(cycles)) def DoDependentSettings(key, flat_list, targets, dependency_nodes): # key should be one of all_dependent_settings, direct_dependent_settings, # or link_settings. for target in flat_list: target_dict = targets[target] build_file = gyp.common.BuildFile(target) if key == 'all_dependent_settings': dependencies = dependency_nodes[target].DeepDependencies() elif key == 'direct_dependent_settings': dependencies = \ dependency_nodes[target].DirectAndImportedDependencies(targets) elif key == 'link_settings': dependencies = \ dependency_nodes[target].DependenciesForLinkSettings(targets) else: raise GypError("DoDependentSettings doesn't know how to determine " 'dependencies for ' + key) for dependency in dependencies: dependency_dict = targets[dependency] if not key in dependency_dict: continue dependency_build_file = gyp.common.BuildFile(dependency) MergeDicts(target_dict, dependency_dict[key], build_file, dependency_build_file) def AdjustStaticLibraryDependencies(flat_list, targets, dependency_nodes, sort_dependencies): # Recompute target "dependencies" properties. For each static library # target, remove "dependencies" entries referring to other static libraries, # unless the dependency has the "hard_dependency" attribute set. For each # linkable target, add a "dependencies" entry referring to all of the # target's computed list of link dependencies (including static libraries # if no such entry is already present. for target in flat_list: target_dict = targets[target] target_type = target_dict['type'] if target_type == 'static_library': if not 'dependencies' in target_dict: continue target_dict['dependencies_original'] = target_dict.get( 'dependencies', [])[:] # A static library should not depend on another static library unless # the dependency relationship is "hard," which should only be done when # a dependent relies on some side effect other than just the build # product, like a rule or action output. Further, if a target has a # non-hard dependency, but that dependency exports a hard dependency, # the non-hard dependency can safely be removed, but the exported hard # dependency must be added to the target to keep the same dependency # ordering. dependencies = \ dependency_nodes[target].DirectAndImportedDependencies(targets) index = 0 while index < len(dependencies): dependency = dependencies[index] dependency_dict = targets[dependency] # Remove every non-hard static library dependency and remove every # non-static library dependency that isn't a direct dependency. if (dependency_dict['type'] == 'static_library' and \ not dependency_dict.get('hard_dependency', False)) or \ (dependency_dict['type'] != 'static_library' and \ not dependency in target_dict['dependencies']): # Take the dependency out of the list, and don't increment index # because the next dependency to analyze will shift into the index # formerly occupied by the one being removed. del dependencies[index] else: index = index + 1 # Update the dependencies. If the dependencies list is empty, it's not # needed, so unhook it. if len(dependencies) > 0: target_dict['dependencies'] = dependencies else: del target_dict['dependencies'] elif target_type in linkable_types: # Get a list of dependency targets that should be linked into this # target. Add them to the dependencies list if they're not already # present. link_dependencies = \ dependency_nodes[target].DependenciesToLinkAgainst(targets) for dependency in link_dependencies: if dependency == target: continue if not 'dependencies' in target_dict: target_dict['dependencies'] = [] if not dependency in target_dict['dependencies']: target_dict['dependencies'].append(dependency) # Sort the dependencies list in the order from dependents to dependencies. # e.g. If A and B depend on C and C depends on D, sort them in A, B, C, D. # Note: flat_list is already sorted in the order from dependencies to # dependents. if sort_dependencies and 'dependencies' in target_dict: target_dict['dependencies'] = [dep for dep in reversed(flat_list) if dep in target_dict['dependencies']] # Initialize this here to speed up MakePathRelative. exception_re = re.compile(r'''["']?[-/$<>^]''') def MakePathRelative(to_file, fro_file, item): # If item is a relative path, it's relative to the build file dict that it's # coming from. Fix it up to make it relative to the build file dict that # it's going into. # Exception: any |item| that begins with these special characters is # returned without modification. # / Used when a path is already absolute (shortcut optimization; # such paths would be returned as absolute anyway) # $ Used for build environment variables # - Used for some build environment flags (such as -lapr-1 in a # "libraries" section) # < Used for our own variable and command expansions (see ExpandVariables) # > Used for our own variable and command expansions (see ExpandVariables) # ^ Used for our own variable and command expansions (see ExpandVariables) # # "/' Used when a value is quoted. If these are present, then we # check the second character instead. # if to_file == fro_file or exception_re.match(item): return item else: # TODO(dglazkov) The backslash/forward-slash replacement at the end is a # temporary measure. This should really be addressed by keeping all paths # in POSIX until actual project generation. ret = os.path.normpath(os.path.join( gyp.common.RelativePath(os.path.dirname(fro_file), os.path.dirname(to_file)), item)).replace('\\', '/') if item[-1] == '/': ret += '/' return ret def MergeLists(to, fro, to_file, fro_file, is_paths=False, append=True): # Python documentation recommends objects which do not support hash # set this value to None. Python library objects follow this rule. is_hashable = lambda val: val.__hash__ # If x is hashable, returns whether x is in s. Else returns whether x is in l. def is_in_set_or_list(x, s, l): if is_hashable(x): return x in s return x in l prepend_index = 0 # Make membership testing of hashables in |to| (in particular, strings) # faster. hashable_to_set = set(x for x in to if is_hashable(x)) for item in fro: singleton = False if type(item) in (str, int): # The cheap and easy case. if is_paths: to_item = MakePathRelative(to_file, fro_file, item) else: to_item = item if not (type(item) is str and item.startswith('-')): # Any string that doesn't begin with a "-" is a singleton - it can # only appear once in a list, to be enforced by the list merge append # or prepend. singleton = True elif type(item) is dict: # Make a copy of the dictionary, continuing to look for paths to fix. # The other intelligent aspects of merge processing won't apply because # item is being merged into an empty dict. to_item = {} MergeDicts(to_item, item, to_file, fro_file) elif type(item) is list: # Recurse, making a copy of the list. If the list contains any # descendant dicts, path fixing will occur. Note that here, custom # values for is_paths and append are dropped; those are only to be # applied to |to| and |fro|, not sublists of |fro|. append shouldn't # matter anyway because the new |to_item| list is empty. to_item = [] MergeLists(to_item, item, to_file, fro_file) else: raise TypeError( 'Attempt to merge list item of unsupported type ' + \ item.__class__.__name__) if append: # If appending a singleton that's already in the list, don't append. # This ensures that the earliest occurrence of the item will stay put. if not singleton or not is_in_set_or_list(to_item, hashable_to_set, to): to.append(to_item) if is_hashable(to_item): hashable_to_set.add(to_item) else: # If prepending a singleton that's already in the list, remove the # existing instance and proceed with the prepend. This ensures that the # item appears at the earliest possible position in the list. while singleton and to_item in to: to.remove(to_item) # Don't just insert everything at index 0. That would prepend the new # items to the list in reverse order, which would be an unwelcome # surprise. to.insert(prepend_index, to_item) if is_hashable(to_item): hashable_to_set.add(to_item) prepend_index = prepend_index + 1 def MergeDicts(to, fro, to_file, fro_file): # I wanted to name the parameter "from" but it's a Python keyword... for k, v in fro.iteritems(): # It would be nice to do "if not k in to: to[k] = v" but that wouldn't give # copy semantics. Something else may want to merge from the |fro| dict # later, and having the same dict ref pointed to twice in the tree isn't # what anyone wants considering that the dicts may subsequently be # modified. if k in to: bad_merge = False if type(v) in (str, int): if type(to[k]) not in (str, int): bad_merge = True elif type(v) is not type(to[k]): bad_merge = True if bad_merge: raise TypeError( 'Attempt to merge dict value of type ' + v.__class__.__name__ + \ ' into incompatible type ' + to[k].__class__.__name__ + \ ' for key ' + k) if type(v) in (str, int): # Overwrite the existing value, if any. Cheap and easy. is_path = IsPathSection(k) if is_path: to[k] = MakePathRelative(to_file, fro_file, v) else: to[k] = v elif type(v) is dict: # Recurse, guaranteeing copies will be made of objects that require it. if not k in to: to[k] = {} MergeDicts(to[k], v, to_file, fro_file) elif type(v) is list: # Lists in dicts can be merged with different policies, depending on # how the key in the "from" dict (k, the from-key) is written. # # If the from-key has ...the to-list will have this action # this character appended:... applied when receiving the from-list: # = replace # + prepend # ? set, only if to-list does not yet exist # (none) append # # This logic is list-specific, but since it relies on the associated # dict key, it's checked in this dict-oriented function. ext = k[-1] append = True if ext == '=': list_base = k[:-1] lists_incompatible = [list_base, list_base + '?'] to[list_base] = [] elif ext == '+': list_base = k[:-1] lists_incompatible = [list_base + '=', list_base + '?'] append = False elif ext == '?': list_base = k[:-1] lists_incompatible = [list_base, list_base + '=', list_base + '+'] else: list_base = k lists_incompatible = [list_base + '=', list_base + '?'] # Some combinations of merge policies appearing together are meaningless. # It's stupid to replace and append simultaneously, for example. Append # and prepend are the only policies that can coexist. for list_incompatible in lists_incompatible: if list_incompatible in fro: raise GypError('Incompatible list policies ' + k + ' and ' + list_incompatible) if list_base in to: if ext == '?': # If the key ends in "?", the list will only be merged if it doesn't # already exist. continue elif type(to[list_base]) is not list: # This may not have been checked above if merging in a list with an # extension character. raise TypeError( 'Attempt to merge dict value of type ' + v.__class__.__name__ + \ ' into incompatible type ' + to[list_base].__class__.__name__ + \ ' for key ' + list_base + '(' + k + ')') else: to[list_base] = [] # Call MergeLists, which will make copies of objects that require it. # MergeLists can recurse back into MergeDicts, although this will be # to make copies of dicts (with paths fixed), there will be no # subsequent dict "merging" once entering a list because lists are # always replaced, appended to, or prepended to. is_paths = IsPathSection(list_base) MergeLists(to[list_base], v, to_file, fro_file, is_paths, append) else: raise TypeError( 'Attempt to merge dict value of unsupported type ' + \ v.__class__.__name__ + ' for key ' + k) def MergeConfigWithInheritance(new_configuration_dict, build_file, target_dict, configuration, visited): # Skip if previously visted. if configuration in visited: return # Look at this configuration. configuration_dict = target_dict['configurations'][configuration] # Merge in parents. for parent in configuration_dict.get('inherit_from', []): MergeConfigWithInheritance(new_configuration_dict, build_file, target_dict, parent, visited + [configuration]) # Merge it into the new config. MergeDicts(new_configuration_dict, configuration_dict, build_file, build_file) # Drop abstract. if 'abstract' in new_configuration_dict: del new_configuration_dict['abstract'] def SetUpConfigurations(target, target_dict): # key_suffixes is a list of key suffixes that might appear on key names. # These suffixes are handled in conditional evaluations (for =, +, and ?) # and rules/exclude processing (for ! and /). Keys with these suffixes # should be treated the same as keys without. key_suffixes = ['=', '+', '?', '!', '/'] build_file = gyp.common.BuildFile(target) # Provide a single configuration by default if none exists. # TODO(mark): Signal an error if default_configurations exists but # configurations does not. if not 'configurations' in target_dict: target_dict['configurations'] = {'Default': {}} if not 'default_configuration' in target_dict: concrete = [i for (i, config) in target_dict['configurations'].iteritems() if not config.get('abstract')] target_dict['default_configuration'] = sorted(concrete)[0] merged_configurations = {} configs = target_dict['configurations'] for (configuration, old_configuration_dict) in configs.iteritems(): # Skip abstract configurations (saves work only). if old_configuration_dict.get('abstract'): continue # Configurations inherit (most) settings from the enclosing target scope. # Get the inheritance relationship right by making a copy of the target # dict. new_configuration_dict = {} for (key, target_val) in target_dict.iteritems(): key_ext = key[-1:] if key_ext in key_suffixes: key_base = key[:-1] else: key_base = key if not key_base in non_configuration_keys: new_configuration_dict[key] = gyp.simple_copy.deepcopy(target_val) # Merge in configuration (with all its parents first). MergeConfigWithInheritance(new_configuration_dict, build_file, target_dict, configuration, []) merged_configurations[configuration] = new_configuration_dict # Put the new configurations back into the target dict as a configuration. for configuration in merged_configurations.keys(): target_dict['configurations'][configuration] = ( merged_configurations[configuration]) # Now drop all the abstract ones. for configuration in target_dict['configurations'].keys(): old_configuration_dict = target_dict['configurations'][configuration] if old_configuration_dict.get('abstract'): del target_dict['configurations'][configuration] # Now that all of the target's configurations have been built, go through # the target dict's keys and remove everything that's been moved into a # "configurations" section. delete_keys = [] for key in target_dict: key_ext = key[-1:] if key_ext in key_suffixes: key_base = key[:-1] else: key_base = key if not key_base in non_configuration_keys: delete_keys.append(key) for key in delete_keys: del target_dict[key] # Check the configurations to see if they contain invalid keys. for configuration in target_dict['configurations'].keys(): configuration_dict = target_dict['configurations'][configuration] for key in configuration_dict.keys(): if key in invalid_configuration_keys: raise GypError('%s not allowed in the %s configuration, found in ' 'target %s' % (key, configuration, target)) def ProcessListFiltersInDict(name, the_dict): """Process regular expression and exclusion-based filters on lists. An exclusion list is in a dict key named with a trailing "!", like "sources!". Every item in such a list is removed from the associated main list, which in this example, would be "sources". Removed items are placed into a "sources_excluded" list in the dict. Regular expression (regex) filters are contained in dict keys named with a trailing "/", such as "sources/" to operate on the "sources" list. Regex filters in a dict take the form: 'sources/': [ ['exclude', '_(linux|mac|win)\\.cc$'], ['include', '_mac\\.cc$'] ], The first filter says to exclude all files ending in _linux.cc, _mac.cc, and _win.cc. The second filter then includes all files ending in _mac.cc that are now or were once in the "sources" list. Items matching an "exclude" filter are subject to the same processing as would occur if they were listed by name in an exclusion list (ending in "!"). Items matching an "include" filter are brought back into the main list if previously excluded by an exclusion list or exclusion regex filter. Subsequent matching "exclude" patterns can still cause items to be excluded after matching an "include". """ # Look through the dictionary for any lists whose keys end in "!" or "/". # These are lists that will be treated as exclude lists and regular # expression-based exclude/include lists. Collect the lists that are # needed first, looking for the lists that they operate on, and assemble # then into |lists|. This is done in a separate loop up front, because # the _included and _excluded keys need to be added to the_dict, and that # can't be done while iterating through it. lists = [] del_lists = [] for key, value in the_dict.iteritems(): operation = key[-1] if operation != '!' and operation != '/': continue if type(value) is not list: raise ValueError(name + ' key ' + key + ' must be list, not ' + \ value.__class__.__name__) list_key = key[:-1] if list_key not in the_dict: # This happens when there's a list like "sources!" but no corresponding # "sources" list. Since there's nothing for it to operate on, queue up # the "sources!" list for deletion now. del_lists.append(key) continue if type(the_dict[list_key]) is not list: value = the_dict[list_key] raise ValueError(name + ' key ' + list_key + \ ' must be list, not ' + \ value.__class__.__name__ + ' when applying ' + \ {'!': 'exclusion', '/': 'regex'}[operation]) if not list_key in lists: lists.append(list_key) # Delete the lists that are known to be unneeded at this point. for del_list in del_lists: del the_dict[del_list] for list_key in lists: the_list = the_dict[list_key] # Initialize the list_actions list, which is parallel to the_list. Each # item in list_actions identifies whether the corresponding item in # the_list should be excluded, unconditionally preserved (included), or # whether no exclusion or inclusion has been applied. Items for which # no exclusion or inclusion has been applied (yet) have value -1, items # excluded have value 0, and items included have value 1. Includes and # excludes override previous actions. All items in list_actions are # initialized to -1 because no excludes or includes have been processed # yet. list_actions = list((-1,) * len(the_list)) exclude_key = list_key + '!' if exclude_key in the_dict: for exclude_item in the_dict[exclude_key]: for index in xrange(0, len(the_list)): if exclude_item == the_list[index]: # This item matches the exclude_item, so set its action to 0 # (exclude). list_actions[index] = 0 # The "whatever!" list is no longer needed, dump it. del the_dict[exclude_key] regex_key = list_key + '/' if regex_key in the_dict: for regex_item in the_dict[regex_key]: [action, pattern] = regex_item pattern_re = re.compile(pattern) if action == 'exclude': # This item matches an exclude regex, so set its value to 0 (exclude). action_value = 0 elif action == 'include': # This item matches an include regex, so set its value to 1 (include). action_value = 1 else: # This is an action that doesn't make any sense. raise ValueError('Unrecognized action ' + action + ' in ' + name + \ ' key ' + regex_key) for index in xrange(0, len(the_list)): list_item = the_list[index] if list_actions[index] == action_value: # Even if the regex matches, nothing will change so continue (regex # searches are expensive). continue if pattern_re.search(list_item): # Regular expression match. list_actions[index] = action_value # The "whatever/" list is no longer needed, dump it. del the_dict[regex_key] # Add excluded items to the excluded list. # # Note that exclude_key ("sources!") is different from excluded_key # ("sources_excluded"). The exclude_key list is input and it was already # processed and deleted; the excluded_key list is output and it's about # to be created. excluded_key = list_key + '_excluded' if excluded_key in the_dict: raise GypError(name + ' key ' + excluded_key + ' must not be present prior ' ' to applying exclusion/regex filters for ' + list_key) excluded_list = [] # Go backwards through the list_actions list so that as items are deleted, # the indices of items that haven't been seen yet don't shift. That means # that things need to be prepended to excluded_list to maintain them in the # same order that they existed in the_list. for index in xrange(len(list_actions) - 1, -1, -1): if list_actions[index] == 0: # Dump anything with action 0 (exclude). Keep anything with action 1 # (include) or -1 (no include or exclude seen for the item). excluded_list.insert(0, the_list[index]) del the_list[index] # If anything was excluded, put the excluded list into the_dict at # excluded_key. if len(excluded_list) > 0: the_dict[excluded_key] = excluded_list # Now recurse into subdicts and lists that may contain dicts. for key, value in the_dict.iteritems(): if type(value) is dict: ProcessListFiltersInDict(key, value) elif type(value) is list: ProcessListFiltersInList(key, value) def ProcessListFiltersInList(name, the_list): for item in the_list: if type(item) is dict: ProcessListFiltersInDict(name, item) elif type(item) is list: ProcessListFiltersInList(name, item) def ValidateTargetType(target, target_dict): """Ensures the 'type' field on the target is one of the known types. Arguments: target: string, name of target. target_dict: dict, target spec. Raises an exception on error. """ VALID_TARGET_TYPES = ('executable', 'loadable_module', 'static_library', 'shared_library', 'none') target_type = target_dict.get('type', None) if target_type not in VALID_TARGET_TYPES: raise GypError("Target %s has an invalid target type '%s'. " "Must be one of %s." % (target, target_type, '/'.join(VALID_TARGET_TYPES))) if (target_dict.get('standalone_static_library', 0) and not target_type == 'static_library'): raise GypError('Target %s has type %s but standalone_static_library flag is' ' only valid for static_library type.' % (target, target_type)) def ValidateRulesInTarget(target, target_dict, extra_sources_for_rules): """Ensures that the rules sections in target_dict are valid and consistent, and determines which sources they apply to. Arguments: target: string, name of target. target_dict: dict, target spec containing "rules" and "sources" lists. extra_sources_for_rules: a list of keys to scan for rule matches in addition to 'sources'. """ # Dicts to map between values found in rules' 'rule_name' and 'extension' # keys and the rule dicts themselves. rule_names = {} rule_extensions = {} rules = target_dict.get('rules', []) for rule in rules: # Make sure that there's no conflict among rule names and extensions. rule_name = rule['rule_name'] if rule_name in rule_names: raise GypError('rule %s exists in duplicate, target %s' % (rule_name, target)) rule_names[rule_name] = rule rule_extension = rule['extension'] if rule_extension.startswith('.'): rule_extension = rule_extension[1:] if rule_extension in rule_extensions: raise GypError(('extension %s associated with multiple rules, ' + 'target %s rules %s and %s') % (rule_extension, target, rule_extensions[rule_extension]['rule_name'], rule_name)) rule_extensions[rule_extension] = rule # Make sure rule_sources isn't already there. It's going to be # created below if needed. if 'rule_sources' in rule: raise GypError( 'rule_sources must not exist in input, target %s rule %s' % (target, rule_name)) rule_sources = [] source_keys = ['sources'] source_keys.extend(extra_sources_for_rules) for source_key in source_keys: for source in target_dict.get(source_key, []): (source_root, source_extension) = os.path.splitext(source) if source_extension.startswith('.'): source_extension = source_extension[1:] if source_extension == rule_extension: rule_sources.append(source) if len(rule_sources) > 0: rule['rule_sources'] = rule_sources def ValidateRunAsInTarget(target, target_dict, build_file): target_name = target_dict.get('target_name') run_as = target_dict.get('run_as') if not run_as: return if type(run_as) is not dict: raise GypError("The 'run_as' in target %s from file %s should be a " "dictionary." % (target_name, build_file)) action = run_as.get('action') if not action: raise GypError("The 'run_as' in target %s from file %s must have an " "'action' section." % (target_name, build_file)) if type(action) is not list: raise GypError("The 'action' for 'run_as' in target %s from file %s " "must be a list." % (target_name, build_file)) working_directory = run_as.get('working_directory') if working_directory and type(working_directory) is not str: raise GypError("The 'working_directory' for 'run_as' in target %s " "in file %s should be a string." % (target_name, build_file)) environment = run_as.get('environment') if environment and type(environment) is not dict: raise GypError("The 'environment' for 'run_as' in target %s " "in file %s should be a dictionary." % (target_name, build_file)) def ValidateActionsInTarget(target, target_dict, build_file): '''Validates the inputs to the actions in a target.''' target_name = target_dict.get('target_name') actions = target_dict.get('actions', []) for action in actions: action_name = action.get('action_name') if not action_name: raise GypError("Anonymous action in target %s. " "An action must have an 'action_name' field." % target_name) inputs = action.get('inputs', None) if inputs is None: raise GypError('Action in target %s has no inputs.' % target_name) action_command = action.get('action') if action_command and not action_command[0]: raise GypError("Empty action as command in target %s." % target_name) def TurnIntIntoStrInDict(the_dict): """Given dict the_dict, recursively converts all integers into strings. """ # Use items instead of iteritems because there's no need to try to look at # reinserted keys and their associated values. for k, v in the_dict.items(): if type(v) is int: v = str(v) the_dict[k] = v elif type(v) is dict: TurnIntIntoStrInDict(v) elif type(v) is list: TurnIntIntoStrInList(v) if type(k) is int: del the_dict[k] the_dict[str(k)] = v def TurnIntIntoStrInList(the_list): """Given list the_list, recursively converts all integers into strings. """ for index in xrange(0, len(the_list)): item = the_list[index] if type(item) is int: the_list[index] = str(item) elif type(item) is dict: TurnIntIntoStrInDict(item) elif type(item) is list: TurnIntIntoStrInList(item) def PruneUnwantedTargets(targets, flat_list, dependency_nodes, root_targets, data): """Return only the targets that are deep dependencies of |root_targets|.""" qualified_root_targets = [] for target in root_targets: target = target.strip() qualified_targets = gyp.common.FindQualifiedTargets(target, flat_list) if not qualified_targets: raise GypError("Could not find target %s" % target) qualified_root_targets.extend(qualified_targets) wanted_targets = {} for target in qualified_root_targets: wanted_targets[target] = targets[target] for dependency in dependency_nodes[target].DeepDependencies(): wanted_targets[dependency] = targets[dependency] wanted_flat_list = [t for t in flat_list if t in wanted_targets] # Prune unwanted targets from each build_file's data dict. for build_file in data['target_build_files']: if not 'targets' in data[build_file]: continue new_targets = [] for target in data[build_file]['targets']: qualified_name = gyp.common.QualifiedTarget(build_file, target['target_name'], target['toolset']) if qualified_name in wanted_targets: new_targets.append(target) data[build_file]['targets'] = new_targets return wanted_targets, wanted_flat_list def VerifyNoCollidingTargets(targets): """Verify that no two targets in the same directory share the same name. Arguments: targets: A list of targets in the form 'path/to/file.gyp:target_name'. """ # Keep a dict going from 'subdirectory:target_name' to 'foo.gyp'. used = {} for target in targets: # Separate out 'path/to/file.gyp, 'target_name' from # 'path/to/file.gyp:target_name'. path, name = target.rsplit(':', 1) # Separate out 'path/to', 'file.gyp' from 'path/to/file.gyp'. subdir, gyp = os.path.split(path) # Use '.' for the current directory '', so that the error messages make # more sense. if not subdir: subdir = '.' # Prepare a key like 'path/to:target_name'. key = subdir + ':' + name if key in used: # Complain if this target is already used. raise GypError('Duplicate target name "%s" in directory "%s" used both ' 'in "%s" and "%s".' % (name, subdir, gyp, used[key])) used[key] = gyp def SetGeneratorGlobals(generator_input_info): # Set up path_sections and non_configuration_keys with the default data plus # the generator-specific data. global path_sections path_sections = set(base_path_sections) path_sections.update(generator_input_info['path_sections']) global non_configuration_keys non_configuration_keys = base_non_configuration_keys[:] non_configuration_keys.extend(generator_input_info['non_configuration_keys']) global multiple_toolsets multiple_toolsets = generator_input_info[ 'generator_supports_multiple_toolsets'] global generator_filelist_paths generator_filelist_paths = generator_input_info['generator_filelist_paths'] def Load(build_files, variables, includes, depth, generator_input_info, check, circular_check, parallel, root_targets): SetGeneratorGlobals(generator_input_info) # A generator can have other lists (in addition to sources) be processed # for rules. extra_sources_for_rules = generator_input_info['extra_sources_for_rules'] # Load build files. This loads every target-containing build file into # the |data| dictionary such that the keys to |data| are build file names, # and the values are the entire build file contents after "early" or "pre" # processing has been done and includes have been resolved. # NOTE: data contains both "target" files (.gyp) and "includes" (.gypi), as # well as meta-data (e.g. 'included_files' key). 'target_build_files' keeps # track of the keys corresponding to "target" files. data = {'target_build_files': set()} # Normalize paths everywhere. This is important because paths will be # used as keys to the data dict and for references between input files. build_files = set(map(os.path.normpath, build_files)) if parallel: LoadTargetBuildFilesParallel(build_files, data, variables, includes, depth, check, generator_input_info) else: aux_data = {} for build_file in build_files: try: LoadTargetBuildFile(build_file, data, aux_data, variables, includes, depth, check, True) except Exception, e: gyp.common.ExceptionAppend(e, 'while trying to load %s' % build_file) raise # Build a dict to access each target's subdict by qualified name. targets = BuildTargetsDict(data) # Fully qualify all dependency links. QualifyDependencies(targets) # Remove self-dependencies from targets that have 'prune_self_dependencies' # set to 1. RemoveSelfDependencies(targets) # Expand dependencies specified as build_file:*. ExpandWildcardDependencies(targets, data) # Remove all dependencies marked as 'link_dependency' from the targets of # type 'none'. RemoveLinkDependenciesFromNoneTargets(targets) # Apply exclude (!) and regex (/) list filters only for dependency_sections. for target_name, target_dict in targets.iteritems(): tmp_dict = {} for key_base in dependency_sections: for op in ('', '!', '/'): key = key_base + op if key in target_dict: tmp_dict[key] = target_dict[key] del target_dict[key] ProcessListFiltersInDict(target_name, tmp_dict) # Write the results back to |target_dict|. for key in tmp_dict: target_dict[key] = tmp_dict[key] # Make sure every dependency appears at most once. RemoveDuplicateDependencies(targets) if circular_check: # Make sure that any targets in a.gyp don't contain dependencies in other # .gyp files that further depend on a.gyp. VerifyNoGYPFileCircularDependencies(targets) [dependency_nodes, flat_list] = BuildDependencyList(targets) if root_targets: # Remove, from |targets| and |flat_list|, the targets that are not deep # dependencies of the targets specified in |root_targets|. targets, flat_list = PruneUnwantedTargets( targets, flat_list, dependency_nodes, root_targets, data) # Check that no two targets in the same directory have the same name. VerifyNoCollidingTargets(flat_list) # Handle dependent settings of various types. for settings_type in ['all_dependent_settings', 'direct_dependent_settings', 'link_settings']: DoDependentSettings(settings_type, flat_list, targets, dependency_nodes) # Take out the dependent settings now that they've been published to all # of the targets that require them. for target in flat_list: if settings_type in targets[target]: del targets[target][settings_type] # Make sure static libraries don't declare dependencies on other static # libraries, but that linkables depend on all unlinked static libraries # that they need so that their link steps will be correct. gii = generator_input_info if gii['generator_wants_static_library_dependencies_adjusted']: AdjustStaticLibraryDependencies(flat_list, targets, dependency_nodes, gii['generator_wants_sorted_dependencies']) # Apply "post"/"late"/"target" variable expansions and condition evaluations. for target in flat_list: target_dict = targets[target] build_file = gyp.common.BuildFile(target) ProcessVariablesAndConditionsInDict( target_dict, PHASE_LATE, variables, build_file) # Move everything that can go into a "configurations" section into one. for target in flat_list: target_dict = targets[target] SetUpConfigurations(target, target_dict) # Apply exclude (!) and regex (/) list filters. for target in flat_list: target_dict = targets[target] ProcessListFiltersInDict(target, target_dict) # Apply "latelate" variable expansions and condition evaluations. for target in flat_list: target_dict = targets[target] build_file = gyp.common.BuildFile(target) ProcessVariablesAndConditionsInDict( target_dict, PHASE_LATELATE, variables, build_file) # Make sure that the rules make sense, and build up rule_sources lists as # needed. Not all generators will need to use the rule_sources lists, but # some may, and it seems best to build the list in a common spot. # Also validate actions and run_as elements in targets. for target in flat_list: target_dict = targets[target] build_file = gyp.common.BuildFile(target) ValidateTargetType(target, target_dict) ValidateRulesInTarget(target, target_dict, extra_sources_for_rules) ValidateRunAsInTarget(target, target_dict, build_file) ValidateActionsInTarget(target, target_dict, build_file) # Generators might not expect ints. Turn them into strs. TurnIntIntoStrInDict(data) # TODO(mark): Return |data| for now because the generator needs a list of # build files that came in. In the future, maybe it should just accept # a list, and not the whole data dict. return [flat_list, targets, data]
gpl-3.0
Andy-Amoy/shadowsocks
shadowsocks/asyncdns.py
655
17416
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2014-2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, \ with_statement import os import socket import struct import re import logging from shadowsocks import common, lru_cache, eventloop, shell CACHE_SWEEP_INTERVAL = 30 VALID_HOSTNAME = re.compile(br"(?!-)[A-Z\d-]{1,63}(?<!-)$", re.IGNORECASE) common.patch_socket() # rfc1035 # format # +---------------------+ # | Header | # +---------------------+ # | Question | the question for the name server # +---------------------+ # | Answer | RRs answering the question # +---------------------+ # | Authority | RRs pointing toward an authority # +---------------------+ # | Additional | RRs holding additional information # +---------------------+ # # header # 1 1 1 1 1 1 # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | ID | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # |QR| Opcode |AA|TC|RD|RA| Z | RCODE | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | QDCOUNT | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | ANCOUNT | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | NSCOUNT | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | ARCOUNT | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ QTYPE_ANY = 255 QTYPE_A = 1 QTYPE_AAAA = 28 QTYPE_CNAME = 5 QTYPE_NS = 2 QCLASS_IN = 1 def build_address(address): address = address.strip(b'.') labels = address.split(b'.') results = [] for label in labels: l = len(label) if l > 63: return None results.append(common.chr(l)) results.append(label) results.append(b'\0') return b''.join(results) def build_request(address, qtype): request_id = os.urandom(2) header = struct.pack('!BBHHHH', 1, 0, 1, 0, 0, 0) addr = build_address(address) qtype_qclass = struct.pack('!HH', qtype, QCLASS_IN) return request_id + header + addr + qtype_qclass def parse_ip(addrtype, data, length, offset): if addrtype == QTYPE_A: return socket.inet_ntop(socket.AF_INET, data[offset:offset + length]) elif addrtype == QTYPE_AAAA: return socket.inet_ntop(socket.AF_INET6, data[offset:offset + length]) elif addrtype in [QTYPE_CNAME, QTYPE_NS]: return parse_name(data, offset)[1] else: return data[offset:offset + length] def parse_name(data, offset): p = offset labels = [] l = common.ord(data[p]) while l > 0: if (l & (128 + 64)) == (128 + 64): # pointer pointer = struct.unpack('!H', data[p:p + 2])[0] pointer &= 0x3FFF r = parse_name(data, pointer) labels.append(r[1]) p += 2 # pointer is the end return p - offset, b'.'.join(labels) else: labels.append(data[p + 1:p + 1 + l]) p += 1 + l l = common.ord(data[p]) return p - offset + 1, b'.'.join(labels) # rfc1035 # record # 1 1 1 1 1 1 # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | | # / / # / NAME / # | | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | TYPE | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | CLASS | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | TTL | # | | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ # | RDLENGTH | # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--| # / RDATA / # / / # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ def parse_record(data, offset, question=False): nlen, name = parse_name(data, offset) if not question: record_type, record_class, record_ttl, record_rdlength = struct.unpack( '!HHiH', data[offset + nlen:offset + nlen + 10] ) ip = parse_ip(record_type, data, record_rdlength, offset + nlen + 10) return nlen + 10 + record_rdlength, \ (name, ip, record_type, record_class, record_ttl) else: record_type, record_class = struct.unpack( '!HH', data[offset + nlen:offset + nlen + 4] ) return nlen + 4, (name, None, record_type, record_class, None, None) def parse_header(data): if len(data) >= 12: header = struct.unpack('!HBBHHHH', data[:12]) res_id = header[0] res_qr = header[1] & 128 res_tc = header[1] & 2 res_ra = header[2] & 128 res_rcode = header[2] & 15 # assert res_tc == 0 # assert res_rcode in [0, 3] res_qdcount = header[3] res_ancount = header[4] res_nscount = header[5] res_arcount = header[6] return (res_id, res_qr, res_tc, res_ra, res_rcode, res_qdcount, res_ancount, res_nscount, res_arcount) return None def parse_response(data): try: if len(data) >= 12: header = parse_header(data) if not header: return None res_id, res_qr, res_tc, res_ra, res_rcode, res_qdcount, \ res_ancount, res_nscount, res_arcount = header qds = [] ans = [] offset = 12 for i in range(0, res_qdcount): l, r = parse_record(data, offset, True) offset += l if r: qds.append(r) for i in range(0, res_ancount): l, r = parse_record(data, offset) offset += l if r: ans.append(r) for i in range(0, res_nscount): l, r = parse_record(data, offset) offset += l for i in range(0, res_arcount): l, r = parse_record(data, offset) offset += l response = DNSResponse() if qds: response.hostname = qds[0][0] for an in qds: response.questions.append((an[1], an[2], an[3])) for an in ans: response.answers.append((an[1], an[2], an[3])) return response except Exception as e: shell.print_exception(e) return None def is_valid_hostname(hostname): if len(hostname) > 255: return False if hostname[-1] == b'.': hostname = hostname[:-1] return all(VALID_HOSTNAME.match(x) for x in hostname.split(b'.')) class DNSResponse(object): def __init__(self): self.hostname = None self.questions = [] # each: (addr, type, class) self.answers = [] # each: (addr, type, class) def __str__(self): return '%s: %s' % (self.hostname, str(self.answers)) STATUS_IPV4 = 0 STATUS_IPV6 = 1 class DNSResolver(object): def __init__(self, server_list=None): self._loop = None self._hosts = {} self._hostname_status = {} self._hostname_to_cb = {} self._cb_to_hostname = {} self._cache = lru_cache.LRUCache(timeout=300) self._sock = None if server_list is None: self._servers = None self._parse_resolv() else: self._servers = server_list self._parse_hosts() # TODO monitor hosts change and reload hosts # TODO parse /etc/gai.conf and follow its rules def _parse_resolv(self): self._servers = [] try: with open('/etc/resolv.conf', 'rb') as f: content = f.readlines() for line in content: line = line.strip() if line: if line.startswith(b'nameserver'): parts = line.split() if len(parts) >= 2: server = parts[1] if common.is_ip(server) == socket.AF_INET: if type(server) != str: server = server.decode('utf8') self._servers.append(server) except IOError: pass if not self._servers: self._servers = ['8.8.4.4', '8.8.8.8'] def _parse_hosts(self): etc_path = '/etc/hosts' if 'WINDIR' in os.environ: etc_path = os.environ['WINDIR'] + '/system32/drivers/etc/hosts' try: with open(etc_path, 'rb') as f: for line in f.readlines(): line = line.strip() parts = line.split() if len(parts) >= 2: ip = parts[0] if common.is_ip(ip): for i in range(1, len(parts)): hostname = parts[i] if hostname: self._hosts[hostname] = ip except IOError: self._hosts['localhost'] = '127.0.0.1' def add_to_loop(self, loop): if self._loop: raise Exception('already add to loop') self._loop = loop # TODO when dns server is IPv6 self._sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.SOL_UDP) self._sock.setblocking(False) loop.add(self._sock, eventloop.POLL_IN, self) loop.add_periodic(self.handle_periodic) def _call_callback(self, hostname, ip, error=None): callbacks = self._hostname_to_cb.get(hostname, []) for callback in callbacks: if callback in self._cb_to_hostname: del self._cb_to_hostname[callback] if ip or error: callback((hostname, ip), error) else: callback((hostname, None), Exception('unknown hostname %s' % hostname)) if hostname in self._hostname_to_cb: del self._hostname_to_cb[hostname] if hostname in self._hostname_status: del self._hostname_status[hostname] def _handle_data(self, data): response = parse_response(data) if response and response.hostname: hostname = response.hostname ip = None for answer in response.answers: if answer[1] in (QTYPE_A, QTYPE_AAAA) and \ answer[2] == QCLASS_IN: ip = answer[0] break if not ip and self._hostname_status.get(hostname, STATUS_IPV6) \ == STATUS_IPV4: self._hostname_status[hostname] = STATUS_IPV6 self._send_req(hostname, QTYPE_AAAA) else: if ip: self._cache[hostname] = ip self._call_callback(hostname, ip) elif self._hostname_status.get(hostname, None) == STATUS_IPV6: for question in response.questions: if question[1] == QTYPE_AAAA: self._call_callback(hostname, None) break def handle_event(self, sock, fd, event): if sock != self._sock: return if event & eventloop.POLL_ERR: logging.error('dns socket err') self._loop.remove(self._sock) self._sock.close() # TODO when dns server is IPv6 self._sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.SOL_UDP) self._sock.setblocking(False) self._loop.add(self._sock, eventloop.POLL_IN, self) else: data, addr = sock.recvfrom(1024) if addr[0] not in self._servers: logging.warn('received a packet other than our dns') return self._handle_data(data) def handle_periodic(self): self._cache.sweep() def remove_callback(self, callback): hostname = self._cb_to_hostname.get(callback) if hostname: del self._cb_to_hostname[callback] arr = self._hostname_to_cb.get(hostname, None) if arr: arr.remove(callback) if not arr: del self._hostname_to_cb[hostname] if hostname in self._hostname_status: del self._hostname_status[hostname] def _send_req(self, hostname, qtype): req = build_request(hostname, qtype) for server in self._servers: logging.debug('resolving %s with type %d using server %s', hostname, qtype, server) self._sock.sendto(req, (server, 53)) def resolve(self, hostname, callback): if type(hostname) != bytes: hostname = hostname.encode('utf8') if not hostname: callback(None, Exception('empty hostname')) elif common.is_ip(hostname): callback((hostname, hostname), None) elif hostname in self._hosts: logging.debug('hit hosts: %s', hostname) ip = self._hosts[hostname] callback((hostname, ip), None) elif hostname in self._cache: logging.debug('hit cache: %s', hostname) ip = self._cache[hostname] callback((hostname, ip), None) else: if not is_valid_hostname(hostname): callback(None, Exception('invalid hostname: %s' % hostname)) return arr = self._hostname_to_cb.get(hostname, None) if not arr: self._hostname_status[hostname] = STATUS_IPV4 self._send_req(hostname, QTYPE_A) self._hostname_to_cb[hostname] = [callback] self._cb_to_hostname[callback] = hostname else: arr.append(callback) # TODO send again only if waited too long self._send_req(hostname, QTYPE_A) def close(self): if self._sock: if self._loop: self._loop.remove_periodic(self.handle_periodic) self._loop.remove(self._sock) self._sock.close() self._sock = None def test(): dns_resolver = DNSResolver() loop = eventloop.EventLoop() dns_resolver.add_to_loop(loop) global counter counter = 0 def make_callback(): global counter def callback(result, error): global counter # TODO: what can we assert? print(result, error) counter += 1 if counter == 9: dns_resolver.close() loop.stop() a_callback = callback return a_callback assert(make_callback() != make_callback()) dns_resolver.resolve(b'google.com', make_callback()) dns_resolver.resolve('google.com', make_callback()) dns_resolver.resolve('example.com', make_callback()) dns_resolver.resolve('ipv6.google.com', make_callback()) dns_resolver.resolve('www.facebook.com', make_callback()) dns_resolver.resolve('ns2.google.com', make_callback()) dns_resolver.resolve('invalid.@!#$%^&[email protected]', make_callback()) dns_resolver.resolve('toooooooooooooooooooooooooooooooooooooooooooooooooo' 'ooooooooooooooooooooooooooooooooooooooooooooooooooo' 'long.hostname', make_callback()) dns_resolver.resolve('toooooooooooooooooooooooooooooooooooooooooooooooooo' 'ooooooooooooooooooooooooooooooooooooooooooooooooooo' 'ooooooooooooooooooooooooooooooooooooooooooooooooooo' 'ooooooooooooooooooooooooooooooooooooooooooooooooooo' 'ooooooooooooooooooooooooooooooooooooooooooooooooooo' 'ooooooooooooooooooooooooooooooooooooooooooooooooooo' 'long.hostname', make_callback()) loop.run() if __name__ == '__main__': test()
apache-2.0
robinro/ansible-modules-extras
network/f5/bigip_sys_db.py
23
5861
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2016 F5 Networks Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: bigip_sys_db short_description: Manage BIG-IP system database variables description: - Manage BIG-IP system database variables version_added: "2.2" options: key: description: - The database variable to manipulate. required: true state: description: - The state of the variable on the system. When C(present), guarantees that an existing variable is set to C(value). When C(reset) sets the variable back to the default value. At least one of value and state C(reset) are required. required: false default: present choices: - present - reset value: description: - The value to set the key to. At least one of value and state C(reset) are required. required: false notes: - Requires the f5-sdk Python package on the host. This is as easy as pip install f5-sdk. - Requires BIG-IP version 12.0.0 or greater extends_documentation_fragment: f5 requirements: - f5-sdk author: - Tim Rupp (@caphrim007) ''' EXAMPLES = ''' - name: Set the boot.quiet DB variable on the BIG-IP bigip_sys_db: user: "admin" password: "secret" server: "lb.mydomain.com" key: "boot.quiet" value: "disable" delegate_to: localhost - name: Disable the initial setup screen bigip_sys_db: user: "admin" password: "secret" server: "lb.mydomain.com" key: "setup.run" value: "false" delegate_to: localhost - name: Reset the initial setup screen bigip_sys_db: user: "admin" password: "secret" server: "lb.mydomain.com" key: "setup.run" state: "reset" delegate_to: localhost ''' RETURN = ''' name: description: The key in the system database that was specified returned: changed and success type: string sample: "setup.run" default_value: description: The default value of the key returned: changed and success type: string sample: "true" value: description: The value that you set the key to returned: changed and success type: string sample: "false" ''' try: from f5.bigip import ManagementRoot HAS_F5SDK = True except ImportError: HAS_F5SDK = False class BigIpSysDb(object): def __init__(self, *args, **kwargs): if not HAS_F5SDK: raise F5ModuleError("The python f5-sdk module is required") self.params = kwargs self.api = ManagementRoot(kwargs['server'], kwargs['user'], kwargs['password'], port=kwargs['server_port']) def flush(self): result = dict() state = self.params['state'] value = self.params['value'] if not state == 'reset' and not value: raise F5ModuleError( "When setting a key, a value must be supplied" ) current = self.read() if self.params['check_mode']: if value == current: changed = False else: changed = True else: if state == "present": changed = self.present() elif state == "reset": changed = self.reset() current = self.read() result.update( name=current.name, default_value=current.defaultValue, value=current.value ) result.update(dict(changed=changed)) return result def read(self): dbs = self.api.tm.sys.dbs.db.load( name=self.params['key'] ) return dbs def present(self): current = self.read() if current.value == self.params['value']: return False current.update(value=self.params['value']) current.refresh() if current.value != self.params['value']: raise F5ModuleError( "Failed to set the DB variable" ) return True def reset(self): current = self.read() default = current.defaultValue if current.value == default: return False current.update(value=default) current.refresh() if current.value != current.defaultValue: raise F5ModuleError( "Failed to reset the DB variable" ) return True def main(): argument_spec = f5_argument_spec() meta_args = dict( key=dict(required=True), state=dict(default='present', choices=['present', 'reset']), value=dict(required=False, default=None) ) argument_spec.update(meta_args) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True ) try: obj = BigIpSysDb(check_mode=module.check_mode, **module.params) result = obj.flush() module.exit_json(**result) except F5ModuleError as e: module.fail_json(msg=str(e)) from ansible.module_utils.basic import * from ansible.module_utils.f5 import * if __name__ == '__main__': main()
gpl-3.0
bert9bert/statsmodels
statsmodels/tsa/statespace/kalman_filter.py
2
86079
""" State Space Representation and Kalman Filter Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function from warnings import warn import numpy as np from .representation import OptionWrapper, Representation, FrozenRepresentation from .tools import (validate_vector_shape, validate_matrix_shape, reorder_missing_matrix, reorder_missing_vector) from . import tools from statsmodels.tools.sm_exceptions import ValueWarning # Define constants FILTER_CONVENTIONAL = 0x01 # Durbin and Koopman (2012), Chapter 4 FILTER_EXACT_INITIAL = 0x02 # ibid., Chapter 5.6 FILTER_AUGMENTED = 0x04 # ibid., Chapter 5.7 FILTER_SQUARE_ROOT = 0x08 # ibid., Chapter 6.3 FILTER_UNIVARIATE = 0x10 # ibid., Chapter 6.4 FILTER_COLLAPSED = 0x20 # ibid., Chapter 6.5 FILTER_EXTENDED = 0x40 # ibid., Chapter 10.2 FILTER_UNSCENTED = 0x80 # ibid., Chapter 10.3 INVERT_UNIVARIATE = 0x01 SOLVE_LU = 0x02 INVERT_LU = 0x04 SOLVE_CHOLESKY = 0x08 INVERT_CHOLESKY = 0x10 STABILITY_FORCE_SYMMETRY = 0x01 MEMORY_STORE_ALL = 0 MEMORY_NO_FORECAST = 0x01 MEMORY_NO_PREDICTED = 0x02 MEMORY_NO_FILTERED = 0x04 MEMORY_NO_LIKELIHOOD = 0x08 MEMORY_NO_GAIN = 0x10 MEMORY_NO_SMOOTHING = 0x20 MEMORY_NO_STD_FORECAST = 0x40 MEMORY_CONSERVE = ( MEMORY_NO_FORECAST | MEMORY_NO_PREDICTED | MEMORY_NO_FILTERED | MEMORY_NO_LIKELIHOOD | MEMORY_NO_GAIN | MEMORY_NO_SMOOTHING | MEMORY_NO_STD_FORECAST ) TIMING_INIT_PREDICTED = 0 TIMING_INIT_FILTERED = 1 class KalmanFilter(Representation): r""" State space representation of a time series process, with Kalman filter Parameters ---------- k_endog : array_like or integer The observed time-series process :math:`y` if array like or the number of variables in the process if an integer. k_states : int The dimension of the unobserved state process. k_posdef : int, optional The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. Must be less than or equal to `k_states`. Default is `k_states`. loglikelihood_burn : int, optional The number of initial periods during which the loglikelihood is not recorded. Default is 0. tolerance : float, optional The tolerance at which the Kalman filter determines convergence to steady-state. Default is 1e-19. results_class : class, optional Default results class to use to save filtering output. Default is `FilterResults`. If specified, class must extend from `FilterResults`. **kwargs Keyword arguments may be used to provide values for the filter, inversion, and stability methods. See `set_filter_method`, `set_inversion_method`, and `set_stability_method`. Keyword arguments may be used to provide default values for state space matrices. See `Representation` for more details. Notes ----- There are several types of options available for controlling the Kalman filter operation. All options are internally held as bitmasks, but can be manipulated by setting class attributes, which act like boolean flags. For more information, see the `set_*` class method documentation. The options are: filter_method The filtering method controls aspects of which Kalman filtering approach will be used. inversion_method The Kalman filter may contain one matrix inversion: that of the forecast error covariance matrix. The inversion method controls how and if that inverse is performed. stability_method The Kalman filter is a recursive algorithm that may in some cases suffer issues with numerical stability. The stability method controls what, if any, measures are taken to promote stability. conserve_memory By default, the Kalman filter computes a number of intermediate matrices at each iteration. The memory conservation options control which of those matrices are stored. filter_timing By default, the Kalman filter follows Durbin and Koopman, 2012, in initializing the filter with predicted values. Kim and Nelson, 1999, instead initialize the filter with filtered values, which is essentially just a different timing convention. The `filter_method` and `inversion_method` options intentionally allow the possibility that multiple methods will be indicated. In the case that multiple methods are selected, the underlying Kalman filter will attempt to select the optional method given the input data. For example, it may be that INVERT_UNIVARIATE and SOLVE_CHOLESKY are indicated (this is in fact the default case). In this case, if the endogenous vector is 1-dimensional (`k_endog` = 1), then INVERT_UNIVARIATE is used and inversion reduces to simple division, and if it has a larger dimension, the Cholesky decomposition along with linear solving (rather than explicit matrix inversion) is used. If only SOLVE_CHOLESKY had been set, then the Cholesky decomposition method would *always* be used, even in the case of 1-dimensional data. See Also -------- FilterResults statsmodels.tsa.statespace.representation.Representation """ filter_methods = [ 'filter_conventional', 'filter_exact_initial', 'filter_augmented', 'filter_square_root', 'filter_univariate', 'filter_collapsed', 'filter_extended', 'filter_unscented' ] filter_conventional = OptionWrapper('filter_method', FILTER_CONVENTIONAL) """ (bool) Flag for conventional Kalman filtering. """ filter_exact_initial = OptionWrapper('filter_method', FILTER_EXACT_INITIAL) """ (bool) Flag for exact initial Kalman filtering. Not implemented. """ filter_augmented = OptionWrapper('filter_method', FILTER_AUGMENTED) """ (bool) Flag for augmented Kalman filtering. Not implemented. """ filter_square_root = OptionWrapper('filter_method', FILTER_SQUARE_ROOT) """ (bool) Flag for square-root Kalman filtering. Not implemented. """ filter_univariate = OptionWrapper('filter_method', FILTER_UNIVARIATE) """ (bool) Flag for univariate filtering of multivariate observation vector. """ filter_collapsed = OptionWrapper('filter_method', FILTER_COLLAPSED) """ (bool) Flag for Kalman filtering with collapsed observation vector. """ filter_extended = OptionWrapper('filter_method', FILTER_EXTENDED) """ (bool) Flag for extended Kalman filtering. Not implemented. """ filter_unscented = OptionWrapper('filter_method', FILTER_UNSCENTED) """ (bool) Flag for unscented Kalman filtering. Not implemented. """ inversion_methods = [ 'invert_univariate', 'solve_lu', 'invert_lu', 'solve_cholesky', 'invert_cholesky' ] invert_univariate = OptionWrapper('inversion_method', INVERT_UNIVARIATE) """ (bool) Flag for univariate inversion method (recommended). """ solve_lu = OptionWrapper('inversion_method', SOLVE_LU) """ (bool) Flag for LU and linear solver inversion method. """ invert_lu = OptionWrapper('inversion_method', INVERT_LU) """ (bool) Flag for LU inversion method. """ solve_cholesky = OptionWrapper('inversion_method', SOLVE_CHOLESKY) """ (bool) Flag for Cholesky and linear solver inversion method (recommended). """ invert_cholesky = OptionWrapper('inversion_method', INVERT_CHOLESKY) """ (bool) Flag for Cholesky inversion method. """ stability_methods = ['stability_force_symmetry'] stability_force_symmetry = ( OptionWrapper('stability_method', STABILITY_FORCE_SYMMETRY) ) """ (bool) Flag for enforcing covariance matrix symmetry """ memory_options = [ 'memory_store_all', 'memory_no_forecast', 'memory_no_predicted', 'memory_no_filtered', 'memory_no_likelihood', 'memory_no_gain', 'memory_no_smoothing', 'memory_no_std_forecast', 'memory_conserve' ] memory_store_all = OptionWrapper('conserve_memory', MEMORY_STORE_ALL) """ (bool) Flag for storing all intermediate results in memory (default). """ memory_no_forecast = OptionWrapper('conserve_memory', MEMORY_NO_FORECAST) """ (bool) Flag to prevent storing forecasts. """ memory_no_predicted = OptionWrapper('conserve_memory', MEMORY_NO_PREDICTED) """ (bool) Flag to prevent storing predicted state and covariance matrices. """ memory_no_filtered = OptionWrapper('conserve_memory', MEMORY_NO_FILTERED) """ (bool) Flag to prevent storing filtered state and covariance matrices. """ memory_no_likelihood = ( OptionWrapper('conserve_memory', MEMORY_NO_LIKELIHOOD) ) """ (bool) Flag to prevent storing likelihood values for each observation. """ memory_no_gain = OptionWrapper('conserve_memory', MEMORY_NO_GAIN) """ (bool) Flag to prevent storing the Kalman gain matrices. """ memory_no_smoothing = OptionWrapper('conserve_memory', MEMORY_NO_SMOOTHING) """ (bool) Flag to prevent storing likelihood values for each observation. """ memory_no_std_forecast = ( OptionWrapper('conserve_memory', MEMORY_NO_STD_FORECAST)) """ (bool) Flag to prevent storing standardized forecast errors. """ memory_conserve = OptionWrapper('conserve_memory', MEMORY_CONSERVE) """ (bool) Flag to conserve the maximum amount of memory. """ timing_options = [ 'timing_init_predicted', 'timing_init_filtered' ] timing_init_predicted = OptionWrapper('filter_timing', TIMING_INIT_PREDICTED) """ (bool) Flag for the default timing convention (Durbin and Koopman, 2012). """ timing_init_filtered = OptionWrapper('filter_timing', TIMING_INIT_FILTERED) """ (bool) Flag for the alternate timing convention (Kim and Nelson, 2012). """ # Default filter options filter_method = FILTER_CONVENTIONAL """ (int) Filtering method bitmask. """ inversion_method = INVERT_UNIVARIATE | SOLVE_CHOLESKY """ (int) Inversion method bitmask. """ stability_method = STABILITY_FORCE_SYMMETRY """ (int) Stability method bitmask. """ conserve_memory = MEMORY_STORE_ALL """ (int) Memory conservation bitmask. """ filter_timing = TIMING_INIT_PREDICTED """ (int) Filter timing. """ def __init__(self, k_endog, k_states, k_posdef=None, loglikelihood_burn=0, tolerance=1e-19, results_class=None, kalman_filter_classes=None, **kwargs): super(KalmanFilter, self).__init__( k_endog, k_states, k_posdef, **kwargs ) # Setup the underlying Kalman filter storage self._kalman_filters = {} # Filter options self.loglikelihood_burn = loglikelihood_burn self.results_class = ( results_class if results_class is not None else FilterResults ) # Options self.prefix_kalman_filter_map = ( kalman_filter_classes if kalman_filter_classes is not None else tools.prefix_kalman_filter_map.copy()) self.set_filter_method(**kwargs) self.set_inversion_method(**kwargs) self.set_stability_method(**kwargs) self.set_conserve_memory(**kwargs) self.set_filter_timing(**kwargs) self.tolerance = tolerance @property def _kalman_filter(self): prefix = self.prefix if prefix in self._kalman_filters: return self._kalman_filters[prefix] return None def _initialize_filter(self, filter_method=None, inversion_method=None, stability_method=None, conserve_memory=None, tolerance=None, filter_timing=None, loglikelihood_burn=None): if filter_method is None: filter_method = self.filter_method if inversion_method is None: inversion_method = self.inversion_method if stability_method is None: stability_method = self.stability_method if conserve_memory is None: conserve_memory = self.conserve_memory if loglikelihood_burn is None: loglikelihood_burn = self.loglikelihood_burn if filter_timing is None: filter_timing = self.filter_timing if tolerance is None: tolerance = self.tolerance # Make sure we have endog if self.endog is None: raise RuntimeError('Must bind a dataset to the model before' ' filtering or smoothing.') # Initialize the representation matrices prefix, dtype, create_statespace = self._initialize_representation() # Determine if we need to (re-)create the filter # (definitely need to recreate if we recreated the _statespace object) create_filter = create_statespace or prefix not in self._kalman_filters if not create_filter: kalman_filter = self._kalman_filters[prefix] create_filter = ( not kalman_filter.conserve_memory == conserve_memory or not kalman_filter.loglikelihood_burn == loglikelihood_burn ) # If the dtype-specific _kalman_filter does not exist (or if we need # to re-create it), create it if create_filter: if prefix in self._kalman_filters: # Delete the old filter del self._kalman_filters[prefix] # Setup the filter cls = self.prefix_kalman_filter_map[prefix] self._kalman_filters[prefix] = cls( self._statespaces[prefix], filter_method, inversion_method, stability_method, conserve_memory, filter_timing, tolerance, loglikelihood_burn ) # Otherwise, update the filter parameters else: kalman_filter = self._kalman_filters[prefix] kalman_filter.set_filter_method(filter_method, False) kalman_filter.inversion_method = inversion_method kalman_filter.stability_method = stability_method kalman_filter.filter_timing = filter_timing kalman_filter.tolerance = tolerance # conserve_memory and loglikelihood_burn changes always lead to # re-created filters return prefix, dtype, create_filter, create_statespace def set_filter_method(self, filter_method=None, **kwargs): r""" Set the filtering method The filtering method controls aspects of which Kalman filtering approach will be used. Parameters ---------- filter_method : integer, optional Bitmask value to set the filter method to. See notes for details. **kwargs Keyword arguments may be used to influence the filter method by setting individual boolean flags. See notes for details. Notes ----- The filtering method is defined by a collection of boolean flags, and is internally stored as a bitmask. The methods available are: FILTER_CONVENTIONAL = 0x01 Conventional Kalman filter. FILTER_UNIVARIATE = 0x10 Univariate approach to Kalman filtering. Overrides conventional method if both are specified. FILTER_COLLAPSED = 0x20 Collapsed approach to Kalman filtering. Will be used *in addition* to conventional or univariate filtering. Note that only the first method is available if using a Scipy version older than 0.16. If the bitmask is set directly via the `filter_method` argument, then the full method must be provided. If keyword arguments are used to set individual boolean flags, then the lowercase of the method must be used as an argument name, and the value is the desired value of the boolean flag (True or False). Note that the filter method may also be specified by directly modifying the class attributes which are defined similarly to the keyword arguments. The default filtering method is FILTER_CONVENTIONAL. Examples -------- >>> mod = sm.tsa.statespace.SARIMAX(range(10)) >>> mod.ssm.filter_method 1 >>> mod.ssm.filter_conventional True >>> mod.ssm.filter_univariate = True >>> mod.ssm.filter_method 17 >>> mod.ssm.set_filter_method(filter_univariate=False, ... filter_collapsed=True) >>> mod.ssm.filter_method 33 >>> mod.ssm.set_filter_method(filter_method=1) >>> mod.ssm.filter_conventional True >>> mod.ssm.filter_univariate False >>> mod.ssm.filter_collapsed False >>> mod.ssm.filter_univariate = True >>> mod.ssm.filter_method 17 """ if filter_method is not None: self.filter_method = filter_method for name in KalmanFilter.filter_methods: if name in kwargs: setattr(self, name, kwargs[name]) if self._compatibility_mode and not self.filter_method == 1: raise NotImplementedError('Only conventional Kalman filtering' ' is available. Consider updating' ' dependencies for more options.') def set_inversion_method(self, inversion_method=None, **kwargs): r""" Set the inversion method The Kalman filter may contain one matrix inversion: that of the forecast error covariance matrix. The inversion method controls how and if that inverse is performed. Parameters ---------- inversion_method : integer, optional Bitmask value to set the inversion method to. See notes for details. **kwargs Keyword arguments may be used to influence the inversion method by setting individual boolean flags. See notes for details. Notes ----- The inversion method is defined by a collection of boolean flags, and is internally stored as a bitmask. The methods available are: INVERT_UNIVARIATE = 0x01 If the endogenous time series is univariate, then inversion can be performed by simple division. If this flag is set and the time series is univariate, then division will always be used even if other flags are also set. SOLVE_LU = 0x02 Use an LU decomposition along with a linear solver (rather than ever actually inverting the matrix). INVERT_LU = 0x04 Use an LU decomposition along with typical matrix inversion. SOLVE_CHOLESKY = 0x08 Use a Cholesky decomposition along with a linear solver. INVERT_CHOLESKY = 0x10 Use an Cholesky decomposition along with typical matrix inversion. If the bitmask is set directly via the `inversion_method` argument, then the full method must be provided. If keyword arguments are used to set individual boolean flags, then the lowercase of the method must be used as an argument name, and the value is the desired value of the boolean flag (True or False). Note that the inversion method may also be specified by directly modifying the class attributes which are defined similarly to the keyword arguments. The default inversion method is `INVERT_UNIVARIATE | SOLVE_CHOLESKY` Several things to keep in mind are: - If the filtering method is specified to be univariate, then simple division is always used regardless of the dimension of the endogenous time series. - Cholesky decomposition is about twice as fast as LU decomposition, but it requires that the matrix be positive definite. While this should generally be true, it may not be in every case. - Using a linear solver rather than true matrix inversion is generally faster and is numerically more stable. Examples -------- >>> mod = sm.tsa.statespace.SARIMAX(range(10)) >>> mod.ssm.inversion_method 1 >>> mod.ssm.solve_cholesky True >>> mod.ssm.invert_univariate True >>> mod.ssm.invert_lu False >>> mod.ssm.invert_univariate = False >>> mod.ssm.inversion_method 8 >>> mod.ssm.set_inversion_method(solve_cholesky=False, ... invert_cholesky=True) >>> mod.ssm.inversion_method 16 """ if inversion_method is not None: self.inversion_method = inversion_method for name in KalmanFilter.inversion_methods: if name in kwargs: setattr(self, name, kwargs[name]) def set_stability_method(self, stability_method=None, **kwargs): r""" Set the numerical stability method The Kalman filter is a recursive algorithm that may in some cases suffer issues with numerical stability. The stability method controls what, if any, measures are taken to promote stability. Parameters ---------- stability_method : integer, optional Bitmask value to set the stability method to. See notes for details. **kwargs Keyword arguments may be used to influence the stability method by setting individual boolean flags. See notes for details. Notes ----- The stability method is defined by a collection of boolean flags, and is internally stored as a bitmask. The methods available are: STABILITY_FORCE_SYMMETRY = 0x01 If this flag is set, symmetry of the predicted state covariance matrix is enforced at each iteration of the filter, where each element is set to the average of the corresponding elements in the upper and lower triangle. If the bitmask is set directly via the `stability_method` argument, then the full method must be provided. If keyword arguments are used to set individual boolean flags, then the lowercase of the method must be used as an argument name, and the value is the desired value of the boolean flag (True or False). Note that the stability method may also be specified by directly modifying the class attributes which are defined similarly to the keyword arguments. The default stability method is `STABILITY_FORCE_SYMMETRY` Examples -------- >>> mod = sm.tsa.statespace.SARIMAX(range(10)) >>> mod.ssm.stability_method 1 >>> mod.ssm.stability_force_symmetry True >>> mod.ssm.stability_force_symmetry = False >>> mod.ssm.stability_method 0 """ if stability_method is not None: self.stability_method = stability_method for name in KalmanFilter.stability_methods: if name in kwargs: setattr(self, name, kwargs[name]) def set_conserve_memory(self, conserve_memory=None, **kwargs): r""" Set the memory conservation method By default, the Kalman filter computes a number of intermediate matrices at each iteration. The memory conservation options control which of those matrices are stored. Parameters ---------- conserve_memory : integer, optional Bitmask value to set the memory conservation method to. See notes for details. **kwargs Keyword arguments may be used to influence the memory conservation method by setting individual boolean flags. See notes for details. Notes ----- The memory conservation method is defined by a collection of boolean flags, and is internally stored as a bitmask. The methods available are: MEMORY_STORE_ALL = 0 Store all intermediate matrices. This is the default value. MEMORY_NO_FORECAST = 0x01 Do not store the forecast, forecast error, or forecast error covariance matrices. If this option is used, the `predict` method from the results class is unavailable. MEMORY_NO_PREDICTED = 0x02 Do not store the predicted state or predicted state covariance matrices. MEMORY_NO_FILTERED = 0x04 Do not store the filtered state or filtered state covariance matrices. MEMORY_NO_LIKELIHOOD = 0x08 Do not store the vector of loglikelihood values for each observation. Only the sum of the loglikelihood values is stored. MEMORY_NO_GAIN = 0x10 Do not store the Kalman gain matrices. MEMORY_NO_SMOOTHING = 0x20 Do not store temporary variables related to Klaman smoothing. If this option is used, smoothing is unavailable. MEMORY_NO_SMOOTHING = 0x20 Do not store standardized forecast errors. MEMORY_CONSERVE Do not store any intermediate matrices. Note that if using a Scipy version less than 0.16, the options MEMORY_NO_GAIN, MEMORY_NO_SMOOTHING, and MEMORY_NO_STD_FORECAST have no effect. If the bitmask is set directly via the `conserve_memory` argument, then the full method must be provided. If keyword arguments are used to set individual boolean flags, then the lowercase of the method must be used as an argument name, and the value is the desired value of the boolean flag (True or False). Note that the memory conservation method may also be specified by directly modifying the class attributes which are defined similarly to the keyword arguments. The default memory conservation method is `MEMORY_STORE_ALL`, so that all intermediate matrices are stored. Examples -------- >>> mod = sm.tsa.statespace.SARIMAX(range(10)) >>> mod.ssm..conserve_memory 0 >>> mod.ssm.memory_no_predicted False >>> mod.ssm.memory_no_predicted = True >>> mod.ssm.conserve_memory 2 >>> mod.ssm.set_conserve_memory(memory_no_filtered=True, ... memory_no_forecast=True) >>> mod.ssm.conserve_memory 7 """ if conserve_memory is not None: self.conserve_memory = conserve_memory for name in KalmanFilter.memory_options: if name in kwargs: setattr(self, name, kwargs[name]) def set_filter_timing(self, alternate_timing=None, **kwargs): r""" Set the filter timing convention By default, the Kalman filter follows Durbin and Koopman, 2012, in initializing the filter with predicted values. Kim and Nelson, 1999, instead initialize the filter with filtered values, which is essentially just a different timing convention. Parameters ---------- alternate_timing : integer, optional Whether or not to use the alternate timing convention. Default is unspecified. **kwargs Keyword arguments may be used to influence the memory conservation method by setting individual boolean flags. See notes for details. """ if alternate_timing is not None: self.filter_timing = int(alternate_timing) if 'timing_init_predicted' in kwargs: self.filter_timing = int(not kwargs['timing_init_predicted']) if 'timing_init_filtered' in kwargs: self.filter_timing = int(kwargs['timing_init_filtered']) if (self._compatibility_mode and self.filter_timing == TIMING_INIT_FILTERED): raise NotImplementedError('Only "predicted" Kalman filter' ' timing is available. Consider' ' updating dependencies for more' ' options.') def _filter(self, filter_method=None, inversion_method=None, stability_method=None, conserve_memory=None, filter_timing=None, tolerance=None, loglikelihood_burn=None, complex_step=False): # Initialize the filter prefix, dtype, create_filter, create_statespace = ( self._initialize_filter( filter_method, inversion_method, stability_method, conserve_memory, filter_timing, tolerance, loglikelihood_burn ) ) kfilter = self._kalman_filters[prefix] # Initialize the state self._initialize_state(prefix=prefix, complex_step=complex_step) # Run the filter kfilter() tmp = np.array(kfilter.loglikelihood) tmp2 = np.array(kfilter.predicted_state) return kfilter def filter(self, filter_method=None, inversion_method=None, stability_method=None, conserve_memory=None, filter_timing=None, tolerance=None, loglikelihood_burn=None, complex_step=False): r""" Apply the Kalman filter to the statespace model. Parameters ---------- filter_method : int, optional Determines which Kalman filter to use. Default is conventional. inversion_method : int, optional Determines which inversion technique to use. Default is by Cholesky decomposition. stability_method : int, optional Determines which numerical stability techniques to use. Default is to enforce symmetry of the predicted state covariance matrix. conserve_memory : int, optional Determines what output from the filter to store. Default is to store everything. filter_timing : int, optional Determines the timing convention of the filter. Default is that from Durbin and Koopman (2012), in which the filter is initialized with predicted values. tolerance : float, optional The tolerance at which the Kalman filter determines convergence to steady-state. Default is 1e-19. loglikelihood_burn : int, optional The number of initial periods during which the loglikelihood is not recorded. Default is 0. Notes ----- This function by default does not compute variables required for smoothing. """ if conserve_memory is None: conserve_memory = self.conserve_memory | MEMORY_NO_SMOOTHING # Run the filter kfilter = self._filter( filter_method, inversion_method, stability_method, conserve_memory, filter_timing, tolerance, loglikelihood_burn, complex_step) tmp = np.array(kfilter.loglikelihood) # Create the results object results = self.results_class(self) results.update_representation(self) results.update_filter(kfilter) return results def loglike(self, **kwargs): r""" Calculate the loglikelihood associated with the statespace model. Parameters ---------- **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Returns ------- loglike : float The joint loglikelihood. """ if self.memory_no_likelihood: raise RuntimeError('Cannot compute loglikelihood if' ' MEMORY_NO_LIKELIHOOD option is selected.') kwargs['conserve_memory'] = MEMORY_CONSERVE ^ MEMORY_NO_LIKELIHOOD kfilter = self._filter(**kwargs) loglikelihood_burn = kwargs.get('loglikelihood_burn', self.loglikelihood_burn) return np.sum(kfilter.loglikelihood[loglikelihood_burn:]) def loglikeobs(self, **kwargs): r""" Calculate the loglikelihood for each observation associated with the statespace model. Parameters ---------- **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- If `loglikelihood_burn` is positive, then the entries in the returned loglikelihood vector are set to be zero for those initial time periods. Returns ------- loglike : array of float Array of loglikelihood values for each observation. """ if self.memory_no_likelihood: raise RuntimeError('Cannot compute loglikelihood if' ' MEMORY_NO_LIKELIHOOD option is selected.') kwargs['conserve_memory'] = MEMORY_CONSERVE ^ MEMORY_NO_LIKELIHOOD kfilter = self._filter(**kwargs) llf_obs = np.array(kfilter.loglikelihood, copy=True) # Set any burned observations to have zero likelihood loglikelihood_burn = kwargs.get('loglikelihood_burn', self.loglikelihood_burn) llf_obs[:loglikelihood_burn] = 0 return llf_obs def simulate(self, nsimulations, measurement_shocks=None, state_shocks=None, initial_state=None): r""" Simulate a new time series following the state space model Parameters ---------- nsimulations : int The number of observations to simulate. If the model is time-invariant this can be any number. If the model is time-varying, then this number must be less than or equal to the number measurement_shocks : array_like, optional If specified, these are the shocks to the measurement equation, :math:`\varepsilon_t`. If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped `nsimulations` x `k_endog`, where `k_endog` is the same as in the state space model. state_shocks : array_like, optional If specified, these are the shocks to the state equation, :math:`\eta_t`. If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the same as in the state space model. initial_state : array_like, optional If specified, this is the state vector at time zero, which should be shaped (`k_states` x 1), where `k_states` is the same as in the state space model. If unspecified, but the model has been initialized, then that initialization is used. If unspecified and the model has not been initialized, then a vector of zeros is used. Note that this is not included in the returned `simulated_states` array. Returns ------- simulated_obs : array An (nsimulations x k_endog) array of simulated observations. simulated_states : array An (nsimulations x k_states) array of simulated states. """ time_invariant = self.time_invariant # Check for valid number of simulations if not time_invariant and nsimulations > self.nobs: raise ValueError('In a time-varying model, cannot create more' ' simulations than there are observations.') # Check / generate measurement shocks if measurement_shocks is not None: measurement_shocks = np.array(measurement_shocks) if measurement_shocks.ndim == 0: measurement_shocks = measurement_shocks[np.newaxis, np.newaxis] elif measurement_shocks.ndim == 1: measurement_shocks = measurement_shocks[:, np.newaxis] if not measurement_shocks.shape == (nsimulations, self.k_endog): raise ValueError('Invalid shape of provided measurement' ' shocks. Required (%d, %d)' % (nsimulations, self.k_endog)) elif self.shapes['obs_cov'][-1] == 1: measurement_shocks = np.random.multivariate_normal( mean=np.zeros(self.k_endog), cov=self['obs_cov'], size=nsimulations) # Check / generate state shocks if state_shocks is not None: state_shocks = np.array(state_shocks) if state_shocks.ndim == 0: state_shocks = state_shocks[np.newaxis, np.newaxis] elif state_shocks.ndim == 1: state_shocks = state_shocks[:, np.newaxis] if not state_shocks.shape == (nsimulations, self.k_posdef): raise ValueError('Invalid shape of provided state shocks.' ' Required (%d, %d).' % (nsimulations, self.k_posdef)) elif self.shapes['state_cov'][-1] == 1: state_shocks = np.random.multivariate_normal( mean=np.zeros(self.k_posdef), cov=self['state_cov'], size=nsimulations) # Get the initial states if initial_state is not None: initial_state = np.array(initial_state) if initial_state.ndim == 0: initial_state = initial_state[np.newaxis] elif (initial_state.ndim > 1 and not initial_state.shape == (self.k_states, 1)): raise ValueError('Invalid shape of provided initial state' ' vector. Required (%d, 1)' % self.k_states) elif self.initialization == 'known': initial_state = np.random.multivariate_normal( self._initial_state, self._initial_state_cov) elif self.initialization == 'stationary': from scipy.linalg import solve_discrete_lyapunov # (I - T)^{-1} c = x => (I - T) x = c initial_state_mean = np.linalg.solve( np.eye(self.k_states) - self['transition', :, :, 0], self['state_intercept', :, 0]) R = self['selection', :, :, 0] Q = self['state_cov', :, :, 0] selected_state_cov = R.dot(Q).dot(R.T) initial_state_cov = solve_discrete_lyapunov( self['transition', :, :, 0], selected_state_cov) initial_state = np.random.multivariate_normal( initial_state_mean, initial_state_cov) elif self.initialization == 'approximate_diffuse': initial_state = np.zeros(self.k_states) else: initial_state = np.zeros(self.k_states) return self._simulate(nsimulations, measurement_shocks, state_shocks, initial_state) def _simulate(self, nsimulations, measurement_shocks, state_shocks, initial_state): time_invariant = self.time_invariant # Holding variables for the simulations simulated_obs = np.zeros((nsimulations, self.k_endog), dtype=self.dtype) simulated_states = np.zeros((nsimulations+1, self.k_states), dtype=self.dtype) simulated_states[0] = initial_state # Perform iterations to create the new time series obs_intercept_t = 0 design_t = 0 state_intercept_t = 0 transition_t = 0 selection_t = 0 for t in range(nsimulations): # Get the current shocks (this accomodates time-varying matrices) if measurement_shocks is None: measurement_shock = np.random.multivariate_normal( mean=np.zeros(self.k_endog), cov=self['obs_cov', :, :, t]) else: measurement_shock = measurement_shocks[t] if state_shocks is None: state_shock = np.random.multivariate_normal( mean=np.zeros(self.k_posdef), cov=self['state_cov', :, :, t]) else: state_shock = state_shocks[t] # Get current-iteration matrices if not time_invariant: obs_intercept_t = 0 if self.obs_intercept.shape[-1] == 1 else t design_t = 0 if self.design.shape[-1] == 1 else t state_intercept_t = ( 0 if self.state_intercept.shape[-1] == 1 else t) transition_t = 0 if self.transition.shape[-1] == 1 else t selection_t = 0 if self.selection.shape[-1] == 1 else t obs_intercept = self['obs_intercept', :, obs_intercept_t] design = self['design', :, :, design_t] state_intercept = self['state_intercept', :, state_intercept_t] transition = self['transition', :, :, transition_t] selection = self['selection', :, :, selection_t] # Iterate the measurement equation simulated_obs[t] = ( obs_intercept + np.dot(design, simulated_states[t]) + measurement_shock) # Iterate the state equation simulated_states[t+1] = ( state_intercept + np.dot(transition, simulated_states[t]) + np.dot(selection, state_shock)) return simulated_obs, simulated_states[:-1] def impulse_responses(self, steps=10, impulse=0, orthogonalized=False, cumulative=False, **kwargs): r""" Impulse response function Parameters ---------- steps : int, optional The number of steps for which impulse responses are calculated. Default is 10. Note that the initial impulse is not counted as a step, so if `steps=1`, the output will have 2 entries. impulse : int or array_like If an integer, the state innovation to pulse; must be between 0 and `k_posdef-1` where `k_posdef` is the same as in the state space model. Alternatively, a custom impulse vector may be provided; must be a column vector with shape `(k_posdef, 1)`. orthogonalized : boolean, optional Whether or not to perform impulse using orthogonalized innovations. Note that this will also affect custum `impulse` vectors. Default is False. cumulative : boolean, optional Whether or not to return cumulative impulse responses. Default is False. **kwargs If the model is time-varying and `steps` is greater than the number of observations, any of the state space representation matrices that are time-varying must have updated values provided for the out-of-sample steps. For example, if `design` is a time-varying component, `nobs` is 10, and `steps` is 15, a (`k_endog` x `k_states` x 5) matrix must be provided with the new design matrix values. Returns ------- impulse_responses : array Responses for each endogenous variable due to the impulse given by the `impulse` argument. A (steps + 1 x k_endog) array. Notes ----- Intercepts in the measurement and state equation are ignored when calculating impulse responses. """ # Since the first step is the impulse itself, we actually want steps+1 steps += 1 # Check for what kind of impulse we want if type(impulse) == int: if impulse >= self.k_posdef or impulse < 0: raise ValueError('Invalid value for `impulse`. Must be the' ' index of one of the state innovations.') # Create the (non-orthogonalized) impulse vector idx = impulse impulse = np.zeros(self.k_posdef) impulse[idx] = 1 else: impulse = np.array(impulse) if impulse.ndim > 1: impulse = np.squeeze(impulse) if not impulse.shape == (self.k_posdef,): raise ValueError('Invalid impulse vector. Must be shaped' ' (%d,)' % self.k_posdef) # Orthogonalize the impulses, if requested, using Cholesky on the # first state covariance matrix if orthogonalized: state_chol = np.linalg.cholesky(self.state_cov[:, :, 0]) impulse = np.dot(state_chol, impulse) # If we have a time-invariant system, we can solve for the IRF directly if self.time_invariant: # Get the state space matrices design = self.design[:, :, 0] transition = self.transition[:, :, 0] selection = self.selection[:, :, 0] # Holding arrays irf = np.zeros((steps, self.k_endog), dtype=self.dtype) states = np.zeros((steps, self.k_states), dtype=self.dtype) # First iteration states[0] = np.dot(selection, impulse) irf[0] = np.dot(design, states[0]) # Iterations for t in range(1, steps): states[t] = np.dot(transition, states[t-1]) irf[t] = np.dot(design, states[t]) # Otherwise, create a new model else: # Get the basic model components representation = {} for name, shape in self.shapes.items(): if name in ['obs', 'obs_intercept', 'state_intercept']: continue representation[name] = getattr(self, name) # Allow additional specification warning = ('Model has time-invariant %s matrix, so the %s' ' argument to `irf` has been ignored.') exception = ('Impulse response functions for models with' ' time-varying %s matrix requires an updated' ' time-varying matrix for any periods beyond those in' ' the original model.') for name, shape in self.shapes.items(): if name in ['obs', 'obs_intercept', 'state_intercept']: continue if representation[name].shape[-1] == 1: if name in kwargs: warn(warning % (name, name), ValueWarning) elif name not in kwargs: raise ValueError(exception % name) else: mat = np.asarray(kwargs[name]) validate_matrix_shape(name, mat.shape, shape[0], shape[1], steps) if mat.ndim < 3 or not mat.shape[2] == steps: raise ValueError(exception % name) representation[name] = np.c_[representation[name], mat] # Setup the new statespace representation model_kwargs = { 'filter_method': self.filter_method, 'inversion_method': self.inversion_method, 'stability_method': self.stability_method, 'conserve_memory': self.conserve_memory, 'tolerance': self.tolerance, 'loglikelihood_burn': self.loglikelihood_burn } model_kwargs.update(representation) model = KalmanFilter(np.zeros(self.endog.T.shape), self.k_states, self.k_posdef, **model_kwargs) model.initialize_approximate_diffuse() model._initialize_filter() model._initialize_state() # Get the impulse response function via simulation of the state # space model, but with other shocks set to zero # Since simulate returns the zero-th period, we need to simulate # steps + 1 periods and exclude the zero-th observation. steps += 1 measurement_shocks = np.zeros((steps, self.k_endog)) state_shocks = np.zeros((steps, self.k_posdef)) state_shocks[0] = impulse irf, _ = model.simulate( steps, measurement_shocks=measurement_shocks, state_shocks=state_shocks) irf = irf[1:] # Get the cumulative response if requested if cumulative: irf = np.cumsum(irf, axis=0) return irf class FilterResults(FrozenRepresentation): """ Results from applying the Kalman filter to a state space model. Parameters ---------- model : Representation A Statespace representation Attributes ---------- nobs : int Number of observations. k_endog : int The dimension of the observation series. k_states : int The dimension of the unobserved state process. k_posdef : int The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. dtype : dtype Datatype of representation matrices prefix : str BLAS prefix of representation matrices shapes : dictionary of name,tuple A dictionary recording the shapes of each of the representation matrices as tuples. endog : array The observation vector. design : array The design matrix, :math:`Z`. obs_intercept : array The intercept for the observation equation, :math:`d`. obs_cov : array The covariance matrix for the observation equation :math:`H`. transition : array The transition matrix, :math:`T`. state_intercept : array The intercept for the transition equation, :math:`c`. selection : array The selection matrix, :math:`R`. state_cov : array The covariance matrix for the state equation :math:`Q`. missing : array of bool An array of the same size as `endog`, filled with boolean values that are True if the corresponding entry in `endog` is NaN and False otherwise. nmissing : array of int An array of size `nobs`, where the ith entry is the number (between 0 and `k_endog`) of NaNs in the ith row of the `endog` array. time_invariant : bool Whether or not the representation matrices are time-invariant initialization : str Kalman filter initialization method. initial_state : array_like The state vector used to initialize the Kalamn filter. initial_state_cov : array_like The state covariance matrix used to initialize the Kalamn filter. filter_method : int Bitmask representing the Kalman filtering method inversion_method : int Bitmask representing the method used to invert the forecast error covariance matrix. stability_method : int Bitmask representing the methods used to promote numerical stability in the Kalman filter recursions. conserve_memory : int Bitmask representing the selected memory conservation method. filter_timing : int Whether or not to use the alternate timing convention. tolerance : float The tolerance at which the Kalman filter determines convergence to steady-state. loglikelihood_burn : int The number of initial periods during which the loglikelihood is not recorded. converged : bool Whether or not the Kalman filter converged. period_converged : int The time period in which the Kalman filter converged. filtered_state : array The filtered state vector at each time period. filtered_state_cov : array The filtered state covariance matrix at each time period. predicted_state : array The predicted state vector at each time period. predicted_state_cov : array The predicted state covariance matrix at each time period. kalman_gain : array The Kalman gain at each time period. forecasts : array The one-step-ahead forecasts of observations at each time period. forecasts_error : array The forecast errors at each time period. forecasts_error_cov : array The forecast error covariance matrices at each time period. llf_obs : array The loglikelihood values at each time period. """ _filter_attributes = [ 'filter_method', 'inversion_method', 'stability_method', 'conserve_memory', 'filter_timing', 'tolerance', 'loglikelihood_burn', 'converged', 'period_converged', 'filtered_state', 'filtered_state_cov', 'predicted_state', 'predicted_state_cov', 'tmp1', 'tmp2', 'tmp3', 'tmp4', 'forecasts', 'forecasts_error', 'forecasts_error_cov', 'llf_obs', 'collapsed_forecasts', 'collapsed_forecasts_error', 'collapsed_forecasts_error_cov', ] _filter_options = ( KalmanFilter.filter_methods + KalmanFilter.stability_methods + KalmanFilter.inversion_methods + KalmanFilter.memory_options ) _attributes = FrozenRepresentation._model_attributes + _filter_attributes def __init__(self, model): super(FilterResults, self).__init__(model) # Setup caches for uninitialized objects self._kalman_gain = None self._standardized_forecasts_error = None def update_representation(self, model, only_options=False): """ Update the results to match a given model Parameters ---------- model : Representation The model object from which to take the updated values. only_options : boolean, optional If set to true, only the filter options are updated, and the state space representation is not updated. Default is False. Notes ----- This method is rarely required except for internal usage. """ if not only_options: super(FilterResults, self).update_representation(model) # Save the options as boolean variables for name in self._filter_options: setattr(self, name, getattr(model, name, None)) def update_filter(self, kalman_filter): """ Update the filter results Parameters ---------- kalman_filter : KalmanFilter The model object from which to take the updated values. Notes ----- This method is rarely required except for internal usage. """ # State initialization self.initial_state = np.array( kalman_filter.model.initial_state, copy=True ) self.initial_state_cov = np.array( kalman_filter.model.initial_state_cov, copy=True ) # Save Kalman filter parameters self.filter_method = kalman_filter.filter_method self.inversion_method = kalman_filter.inversion_method self.stability_method = kalman_filter.stability_method self.conserve_memory = kalman_filter.conserve_memory self.filter_timing = kalman_filter.filter_timing self.tolerance = kalman_filter.tolerance self.loglikelihood_burn = kalman_filter.loglikelihood_burn # Save Kalman filter output self.converged = bool(kalman_filter.converged) self.period_converged = kalman_filter.period_converged self.filtered_state = np.array(kalman_filter.filtered_state, copy=True) self.filtered_state_cov = np.array( kalman_filter.filtered_state_cov, copy=True ) self.predicted_state = np.array( kalman_filter.predicted_state, copy=True ) self.predicted_state_cov = np.array( kalman_filter.predicted_state_cov, copy=True ) # Reset caches has_missing = np.sum(self.nmissing) > 0 if not self._compatibility_mode and not (self.memory_no_std_forecast or self.invert_lu or self.solve_lu or self.filter_collapsed): if has_missing: self._standardized_forecasts_error = np.array( reorder_missing_vector( kalman_filter.standardized_forecast_error, self.missing, prefix=self.prefix)) else: self._standardized_forecasts_error = np.array( kalman_filter.standardized_forecast_error, copy=True) else: self._standardized_forecasts_error = None if not self._compatibility_mode: # In the partially missing data case, all entries will # be in the upper left submatrix rather than the correct placement # Re-ordering does not make sense in the collapsed case. if has_missing and (not self.memory_no_gain and not self.filter_collapsed): self._kalman_gain = np.array(reorder_missing_matrix( kalman_filter.kalman_gain, self.missing, reorder_cols=True, prefix=self.prefix)) self.tmp1 = np.array(reorder_missing_matrix( kalman_filter.tmp1, self.missing, reorder_cols=True, prefix=self.prefix)) self.tmp2 = np.array(reorder_missing_vector( kalman_filter.tmp2, self.missing, prefix=self.prefix)) self.tmp3 = np.array(reorder_missing_matrix( kalman_filter.tmp3, self.missing, reorder_rows=True, prefix=self.prefix)) self.tmp4 = np.array(reorder_missing_matrix( kalman_filter.tmp4, self.missing, reorder_cols=True, reorder_rows=True, prefix=self.prefix)) else: self._kalman_gain = np.array( kalman_filter.kalman_gain, copy=True) self.tmp1 = np.array(kalman_filter.tmp1, copy=True) self.tmp2 = np.array(kalman_filter.tmp2, copy=True) self.tmp3 = np.array(kalman_filter.tmp3, copy=True) self.tmp4 = np.array(kalman_filter.tmp4, copy=True) else: self._kalman_gain = None # Note: use forecasts rather than forecast, so as not to interfer # with the `forecast` methods in subclasses self.forecasts = np.array(kalman_filter.forecast, copy=True) self.forecasts_error = np.array( kalman_filter.forecast_error, copy=True ) self.forecasts_error_cov = np.array( kalman_filter.forecast_error_cov, copy=True ) self.llf_obs = np.array(kalman_filter.loglikelihood, copy=True) # If there was missing data, save the original values from the Kalman # filter output, since below will set the values corresponding to # the missing observations to nans. self.missing_forecasts = None self.missing_forecasts_error = None self.missing_forecasts_error_cov = None if np.sum(self.nmissing) > 0: # Copy the provided arrays (which are as the Kalman filter dataset) # into new variables self.missing_forecasts = np.copy(self.forecasts) self.missing_forecasts_error = np.copy(self.forecasts_error) self.missing_forecasts_error_cov = ( np.copy(self.forecasts_error_cov) ) # Save the collapsed values self.collapsed_forecasts = None self.collapsed_forecasts_error = None self.collapsed_forecasts_error_cov = None if self.filter_collapsed: # Copy the provided arrays (which are from the collapsed dataset) # into new variables self.collapsed_forecasts = self.forecasts[:self.k_states, :] self.collapsed_forecasts_error = ( self.forecasts_error[:self.k_states, :] ) self.collapsed_forecasts_error_cov = ( self.forecasts_error_cov[:self.k_states, :self.k_states, :] ) # Recreate the original arrays (which should be from the original # dataset) in the appropriate dimension self.forecasts = np.zeros((self.k_endog, self.nobs)) self.forecasts_error = np.zeros((self.k_endog, self.nobs)) self.forecasts_error_cov = ( np.zeros((self.k_endog, self.k_endog, self.nobs)) ) # Fill in missing values in the forecast, forecast error, and # forecast error covariance matrix (this is required due to how the # Kalman filter implements observations that are either partly or # completely missing) # Construct the predictions, forecasts if not (self.memory_no_forecast or self.memory_no_predicted): for t in range(self.nobs): design_t = 0 if self.design.shape[2] == 1 else t obs_cov_t = 0 if self.obs_cov.shape[2] == 1 else t obs_intercept_t = 0 if self.obs_intercept.shape[1] == 1 else t # For completely missing observations, the Kalman filter will # produce forecasts, but forecast errors and the forecast # error covariance matrix will be zeros - make them nan to # improve clarity of results. if self.nmissing[t] > 0: mask = ~self.missing[:, t].astype(bool) # We can recover forecasts # For partially missing observations, the Kalman filter # will produce all elements (forecasts, forecast errors, # forecast error covariance matrices) as usual, but their # dimension will only be equal to the number of non-missing # elements, and their location in memory will be in the # first blocks (e.g. for the forecasts_error, the first # k_endog - nmissing[t] columns will be filled in), # regardless of which endogenous variables they refer to # (i.e. the non- missing endogenous variables for that # observation). Furthermore, the forecast error covariance # matrix is only valid for those elements. What is done is # to set all elements to nan for these observations so that # they are flagged as missing. The variables # missing_forecasts, etc. then provide the forecasts, etc. # provided by the Kalman filter, from which the data can be # retrieved if desired. self.forecasts[:, t] = np.dot( self.design[:, :, design_t], self.predicted_state[:, t] ) + self.obs_intercept[:, obs_intercept_t] self.forecasts_error[:, t] = np.nan self.forecasts_error[mask, t] = ( self.endog[mask, t] - self.forecasts[mask, t]) self.forecasts_error_cov[:, :, t] = np.dot( np.dot(self.design[:, :, design_t], self.predicted_state_cov[:, :, t]), self.design[:, :, design_t].T ) + self.obs_cov[:, :, obs_cov_t] # In the collapsed case, everything just needs to be rebuilt # for the original observed data, since the Kalman filter # produced these values for the collapsed data. elif self.filter_collapsed: self.forecasts[:, t] = np.dot( self.design[:, :, design_t], self.predicted_state[:, t] ) + self.obs_intercept[:, obs_intercept_t] self.forecasts_error[:, t] = ( self.endog[:, t] - self.forecasts[:, t] ) self.forecasts_error_cov[:, :, t] = np.dot( np.dot(self.design[:, :, design_t], self.predicted_state_cov[:, :, t]), self.design[:, :, design_t].T ) + self.obs_cov[:, :, obs_cov_t] @property def kalman_gain(self): """ Kalman gain matrices """ if self._kalman_gain is None: # k x n self._kalman_gain = np.zeros( (self.k_states, self.k_endog, self.nobs), dtype=self.dtype) for t in range(self.nobs): # In the case of entirely missing observations, let the Kalman # gain be zeros. if self.nmissing[t] == self.k_endog: continue design_t = 0 if self.design.shape[2] == 1 else t transition_t = 0 if self.transition.shape[2] == 1 else t if self.nmissing[t] == 0: self._kalman_gain[:, :, t] = np.dot( np.dot( self.transition[:, :, transition_t], self.predicted_state_cov[:, :, t] ), np.dot( np.transpose(self.design[:, :, design_t]), np.linalg.inv(self.forecasts_error_cov[:, :, t]) ) ) else: mask = ~self.missing[:, t].astype(bool) F = self.forecasts_error_cov[np.ix_(mask, mask, [t])] self._kalman_gain[:, mask, t] = np.dot( np.dot( self.transition[:, :, transition_t], self.predicted_state_cov[:, :, t] ), np.dot( np.transpose(self.design[mask, :, design_t]), np.linalg.inv(F[:, :, 0]) ) ) return self._kalman_gain @property def standardized_forecasts_error(self): """ Standardized forecast errors Notes ----- The forecast errors produced by the Kalman filter are .. math:: v_t \sim N(0, F_t) Hypothesis tests are usually applied to the standardized residuals .. math:: v_t^s = B_t v_t \sim N(0, I) where :math:`B_t = L_t^{-1}` and :math:`F_t = L_t L_t'`; then :math:`F_t^{-1} = (L_t')^{-1} L_t^{-1} = B_t' B_t`; :math:`B_t` and :math:`L_t` are lower triangular. Finally, :math:`B_t v_t \sim N(0, B_t F_t B_t')` and :math:`B_t F_t B_t' = L_t^{-1} L_t L_t' (L_t')^{-1} = I`. Thus we can rewrite :math:`v_t^s = L_t^{-1} v_t` or :math:`L_t v_t^s = v_t`; the latter equation is the form required to use a linear solver to recover :math:`v_t^s`. Since :math:`L_t` is lower triangular, we can use a triangular solver (?TRTRS). """ if self._standardized_forecasts_error is None: if self.k_endog == 1: self._standardized_forecasts_error = ( self.forecasts_error / self.forecasts_error_cov[0, 0, :]**0.5) else: from scipy import linalg self._standardized_forecasts_error = np.zeros( self.forecasts_error.shape, dtype=self.dtype) for t in range(self.forecasts_error_cov.shape[2]): if self.nmissing[t] > 0: self._standardized_forecasts_error[:, t] = np.nan if self.nmissing[t] < self.k_endog: mask = ~self.missing[:, t].astype(bool) F = self.forecasts_error_cov[np.ix_(mask, mask, [t])] upper, _ = linalg.cho_factor(F[:, :, 0]) self._standardized_forecasts_error[mask, t] = ( linalg.solve_triangular( upper, self.forecasts_error[mask, t], trans=1)) return self._standardized_forecasts_error def predict(self, start=None, end=None, dynamic=None, **kwargs): r""" In-sample and out-of-sample prediction for state space models generally Parameters ---------- start : int, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast will be at start. end : int, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast will be at end. dynamic : int, optional Offset relative to `start` at which to begin dynamic prediction. Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. **kwargs If the prediction range is outside of the sample range, any of the state space representation matrices that are time-varying must have updated values provided for the out-of-sample range. For example, of `obs_intercept` is a time-varying component and the prediction range extends 10 periods beyond the end of the sample, a (`k_endog` x 10) matrix must be provided with the new intercept values. Returns ------- results : PredictionResults A PredictionResults object. Notes ----- All prediction is performed by applying the deterministic part of the measurement equation using the predicted state variables. Out-of-sample prediction first applies the Kalman filter to missing data for the number of periods desired to obtain the predicted states. """ # Cannot predict if we do not have appropriate arrays if self.memory_no_forecast or self.memory_no_predicted: raise ValueError('Predict is not possible if memory conservation' ' has been used to avoid storing forecasts or' ' predicted values.') # Get the start and the end of the entire prediction range if start is None: start = 0 elif start < 0: raise ValueError('Cannot predict values previous to the sample.') if end is None: end = self.nobs # Prediction and forecasting is performed by iterating the Kalman # Kalman filter through the entire range [0, end] # Then, everything is returned corresponding to the range [start, end]. # In order to perform the calculations, the range is separately split # up into the following categories: # - static: (in-sample) the Kalman filter is run as usual # - dynamic: (in-sample) the Kalman filter is run, but on missing data # - forecast: (out-of-sample) the Kalman filter is run, but on missing # data # Short-circuit if end is before start if end <= start: raise ValueError('End of prediction must be after start.') # Get the number of forecasts to make after the end of the sample nforecast = max(0, end - self.nobs) # Get the number of dynamic prediction periods # If `dynamic=True`, then assume that we want to begin dynamic # prediction at the start of the sample prediction. if dynamic is True: dynamic = 0 # If `dynamic=False`, then assume we want no dynamic prediction if dynamic is False: dynamic = None ndynamic = 0 if dynamic is not None: # Replace the relative dynamic offset with an absolute offset dynamic = start + dynamic # Validate the `dynamic` parameter if dynamic < 0: raise ValueError('Dynamic prediction cannot begin prior to the' ' first observation in the sample.') elif dynamic > end: warn('Dynamic prediction specified to begin after the end of' ' prediction, and so has no effect.', ValueWarning) dynamic = None elif dynamic > self.nobs: warn('Dynamic prediction specified to begin during' ' out-of-sample forecasting period, and so has no' ' effect.', ValueWarning) dynamic = None # Get the total size of the desired dynamic forecasting component # Note: the first `dynamic` periods of prediction are actually # *not* dynamic, because dynamic prediction begins at observation # `dynamic`. if dynamic is not None: ndynamic = max(0, min(end, self.nobs) - dynamic) # Get the number of in-sample static predictions nstatic = min(end, self.nobs) if dynamic is None else dynamic # Construct the design and observation intercept and covariance # matrices for start-npadded:end. If not time-varying in the original # model, then they will be copied over if none are provided in # `kwargs`. Otherwise additional matrices must be provided in `kwargs`. representation = {} for name, shape in self.shapes.items(): if name == 'obs': continue representation[name] = getattr(self, name) # Update the matrices from kwargs for forecasts warning = ('Model has time-invariant %s matrix, so the %s' ' argument to `predict` has been ignored.') exception = ('Forecasting for models with time-varying %s matrix' ' requires an updated time-varying matrix for the' ' period to be forecasted.') if nforecast > 0: for name, shape in self.shapes.items(): if name == 'obs': continue if representation[name].shape[-1] == 1: if name in kwargs: warn(warning % (name, name), ValueWarning) elif name not in kwargs: raise ValueError(exception % name) else: mat = np.asarray(kwargs[name]) if len(shape) == 2: validate_vector_shape(name, mat.shape, shape[0], nforecast) if mat.ndim < 2 or not mat.shape[1] == nforecast: raise ValueError(exception % name) representation[name] = np.c_[representation[name], mat] else: validate_matrix_shape(name, mat.shape, shape[0], shape[1], nforecast) if mat.ndim < 3 or not mat.shape[2] == nforecast: raise ValueError(exception % name) representation[name] = np.c_[representation[name], mat] # Update the matrices from kwargs for dynamic prediction in the case # that `end` is less than `nobs` and `dynamic` is less than `end`. In # this case, any time-varying matrices in the default `representation` # will be too long, causing an error to be thrown below in the # KalmanFilter(...) construction call, because the endog has length # nstatic + ndynamic + nforecast, whereas the time-varying matrices # from `representation` have length nobs. if ndynamic > 0 and end < self.nobs: for name, shape in self.shapes.items(): if not name == 'obs' and representation[name].shape[-1] > 1: representation[name] = representation[name][..., :end] # Construct the predicted state and covariance matrix for each time # period depending on whether that time period corresponds to # one-step-ahead prediction, dynamic prediction, or out-of-sample # forecasting. # If we only have simple prediction, then we can use the already saved # Kalman filter output if ndynamic == 0 and nforecast == 0: results = self else: # Construct the new endogenous array. endog = np.empty((self.k_endog, ndynamic + nforecast)) endog.fill(np.nan) endog = np.asfortranarray(np.c_[self.endog[:, :nstatic], endog]) # Setup the new statespace representation model_kwargs = { 'filter_method': self.filter_method, 'inversion_method': self.inversion_method, 'stability_method': self.stability_method, 'conserve_memory': self.conserve_memory, 'filter_timing': self.filter_timing, 'tolerance': self.tolerance, 'loglikelihood_burn': self.loglikelihood_burn } model_kwargs.update(representation) model = KalmanFilter( endog, self.k_states, self.k_posdef, **model_kwargs ) model.initialize_known( self.initial_state, self.initial_state_cov ) model._initialize_filter() model._initialize_state() results = self._predict(nstatic, ndynamic, nforecast, model) return PredictionResults(results, start, end, nstatic, ndynamic, nforecast) def _predict(self, nstatic, ndynamic, nforecast, model): # Note: this doesn't use self, and can either be a static method or # moved outside the class altogether. # Get the underlying filter kfilter = model._kalman_filter # Save this (which shares memory with the memoryview on which the # Kalman filter will be operating) so that we can replace actual data # with predicted data during dynamic forecasting endog = model._representations[model.prefix]['obs'] for t in range(kfilter.model.nobs): # Run the Kalman filter for the first `nstatic` periods (for # which dynamic computation will not be performed) if t < nstatic: next(kfilter) # Perform dynamic prediction elif t < nstatic + ndynamic: design_t = 0 if model.design.shape[2] == 1 else t obs_intercept_t = 0 if model.obs_intercept.shape[1] == 1 else t # Unconditional value is the intercept (often zeros) endog[:, t] = model.obs_intercept[:, obs_intercept_t] # If t > 0, then we can condition the forecast on the state if t > 0: # Predict endog[:, t] given `predicted_state` calculated in # previous iteration (i.e. t-1) endog[:, t] += np.dot( model.design[:, :, design_t], kfilter.predicted_state[:, t] ) # Advance Kalman filter next(kfilter) # Perform any (one-step-ahead) forecasting else: next(kfilter) # Return the predicted state and predicted state covariance matrices results = FilterResults(model) results.update_representation(model) results.update_filter(kfilter) return results class PredictionResults(FilterResults): r""" Results of in-sample and out-of-sample prediction for state space models generally Parameters ---------- results : FilterResults Output from filtering, corresponding to the prediction desired start : int Zero-indexed observation number at which to start forecasting, i.e., the first forecast will be at start. end : int Zero-indexed observation number at which to end forecasting, i.e., the last forecast will be at end. nstatic : int Number of in-sample static predictions (these are always the first elements of the prediction output). ndynamic : int Number of in-sample dynamic predictions (these always follow the static predictions directly, and are directly followed by the forecasts). nforecast : int Number of in-sample forecasts (these always follow the dynamic predictions directly). Attributes ---------- npredictions : int Number of observations in the predicted series; this is not necessarily the same as the number of observations in the original model from which prediction was performed. start : int Zero-indexed observation number at which to start prediction, i.e., the first predict will be at `start`; this is relative to the original model from which prediction was performed. end : int Zero-indexed observation number at which to end prediction, i.e., the last predict will be at `end`; this is relative to the original model from which prediction was performed. nstatic : int Number of in-sample static predictions. ndynamic : int Number of in-sample dynamic predictions. nforecast : int Number of in-sample forecasts. endog : array The observation vector. design : array The design matrix, :math:`Z`. obs_intercept : array The intercept for the observation equation, :math:`d`. obs_cov : array The covariance matrix for the observation equation :math:`H`. transition : array The transition matrix, :math:`T`. state_intercept : array The intercept for the transition equation, :math:`c`. selection : array The selection matrix, :math:`R`. state_cov : array The covariance matrix for the state equation :math:`Q`. filtered_state : array The filtered state vector at each time period. filtered_state_cov : array The filtered state covariance matrix at each time period. predicted_state : array The predicted state vector at each time period. predicted_state_cov : array The predicted state covariance matrix at each time period. forecasts : array The one-step-ahead forecasts of observations at each time period. forecasts_error : array The forecast errors at each time period. forecasts_error_cov : array The forecast error covariance matrices at each time period. Notes ----- The provided ranges must be conformable, meaning that it must be that `end - start == nstatic + ndynamic + nforecast`. This class is essentially a view to the FilterResults object, but returning the appropriate ranges for everything. """ representation_attributes = [ 'endog', 'design', 'design', 'obs_intercept', 'obs_cov', 'transition', 'state_intercept', 'selection', 'state_cov' ] filter_attributes = [ 'filtered_state', 'filtered_state_cov', 'predicted_state', 'predicted_state_cov', 'forecasts', 'forecasts_error', 'forecasts_error_cov' ] def __init__(self, results, start, end, nstatic, ndynamic, nforecast): # Save the filter results object self.results = results # Save prediction ranges self.npredictions = start - end self.start = start self.end = end self.nstatic = nstatic self.ndynamic = ndynamic self.nforecast = nforecast def __getattr__(self, attr): """ Provide access to the representation and filtered output in the appropriate range (`start` - `end`). """ # Prevent infinite recursive lookups if attr[0] == '_': raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, attr)) _attr = '_' + attr # Cache the attribute if not hasattr(self, _attr): if attr == 'endog' or attr in self.filter_attributes: # Get a copy value = getattr(self.results, attr).copy() # Subset to the correct time frame value = value[..., self.start:self.end] elif attr in self.representation_attributes: value = getattr(self.results, attr).copy() # If a time-invariant matrix, return it. Otherwise, subset to # the correct period. if value.shape[-1] == 1: value = value[..., 0] else: value = value[..., self.start:self.end] else: raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, attr)) setattr(self, _attr, value) return getattr(self, _attr)
bsd-3-clause
rjw57/cubbie
migrations/versions/316bb58e84f_add_user_identities.py
1
1110
"""add user_identities Revision ID: 316bb58e84f Revises: 38c8ec357e0 Create Date: 2015-03-11 01:40:12.157458 """ # revision identifiers, used by Alembic. revision = '316bb58e84f' down_revision = '38c8ec357e0' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('user_identities', sa.Column('id', sa.Integer(), nullable=False), sa.Column('provider', sa.Text(), nullable=False), sa.Column('provider_user_id', sa.Text(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index('idx_user_identities_provider_provider_id', 'user_identities', ['provider', 'provider_user_id'], unique=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index('idx_user_identities_provider_provider_id', table_name='user_identities') op.drop_table('user_identities') ### end Alembic commands ###
mit
njl/pycon
symposion/schedule/tests/factories.py
3
1750
import datetime import factory import factory.fuzzy from pycon.tests.factories import PyConTutorialProposalFactory from symposion.conference.models import Section from symposion.conference.tests.factories import SectionFactory from symposion.speakers.tests.factories import SpeakerFactory from ..models import Presentation, Slot, SlotKind, Day, Schedule class ScheduleFactory(factory.DjangoModelFactory): class Meta: model = Schedule section = factory.SubFactory(SectionFactory) class DayFactory(factory.DjangoModelFactory): class Meta: model = Day schedule = factory.SubFactory(ScheduleFactory) date = factory.fuzzy.FuzzyDate(start_date=datetime.date(1900, 1, 1)) class SlotKindFactory(factory.DjangoModelFactory): class Meta: model = SlotKind schedule = factory.SubFactory(ScheduleFactory) label = factory.fuzzy.FuzzyText() class SlotFactory(factory.DjangoModelFactory): class Meta: model = Slot day = factory.SubFactory(DayFactory) # .kind and .day both need to point at the same schedule kind = factory.SubFactory( SlotKindFactory, schedule=factory.LazyAttribute(lambda kind: kind.factory_parent.day.schedule) ) start = factory.LazyAttribute(lambda n: datetime.time()) end = factory.LazyAttribute(lambda n: datetime.time()) class PresentationFactory(factory.DjangoModelFactory): class Meta: model = Presentation title = 'Presentation' description = 'Description' abstract = 'Abstract' speaker = factory.SubFactory(SpeakerFactory) proposal_base = factory.SubFactory(PyConTutorialProposalFactory) section = Section.objects.get(slug='tutorials') slot = factory.SubFactory(SlotFactory)
bsd-3-clause
cwgreene/Nanostructure-Simulator
utils/plot_trajectories.py
1
1140
import os import sys import re import pylab def parse_trajectory_line(line): trajectory = [] for x,y in re.findall("\(([0-9.]+), ([0-9.]+)\)",line): trajectory.append((float(x),float(y))) return trajectory def generate_trajectories(file): #get rid fo two first lines file.readline() file.readline() #parse each line for line in file: yield parse_trajectory_line(line) def open_trajectory_file(n): for filename in os.listdir("results"): if re.match(str(n)+"traj",filename): return open("results/"+filename) raise "File not found" def display_trajectories(n): input ="" file = open_trajectory_file(n) trajectory_gen = generate_trajectories(file) trajectory = trajectory_gen.next() interactive = True i = 0 while input != 'q': first = map(lambda x: x[0],trajectory) second = map(lambda x: x[1],trajectory) pylab.plot(first,second) if interactive: input = raw_input() if input == "go": i += 1 interactive=False if i %100 == 0: print i raw_input() try: trajectory=trajectory_gen.next() except: print "Done" break if __name__=="__main__": display_trajectories(sys.argv[1])
mit
guymakam/Kodi-Israel
plugin.video.israelive/resources/lib/livestreamer/requests/packages/chardet/big5prober.py
2931
1684
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Communicator client code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from .mbcharsetprober import MultiByteCharSetProber from .codingstatemachine import CodingStateMachine from .chardistribution import Big5DistributionAnalysis from .mbcssm import Big5SMModel class Big5Prober(MultiByteCharSetProber): def __init__(self): MultiByteCharSetProber.__init__(self) self._mCodingSM = CodingStateMachine(Big5SMModel) self._mDistributionAnalyzer = Big5DistributionAnalysis() self.reset() def get_charset_name(self): return "Big5"
gpl-2.0
danieljaouen/ansible
lib/ansible/plugins/inventory/auto.py
25
2196
# Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' name: auto plugin_type: inventory author: - Matt Davis <@nitzmahone> short_description: Loads and executes an inventory plugin specified in a YAML config description: - By whitelisting C(auto) as the final inventory plugin, any YAML inventory config file with a C(plugin) key at its root will automatically cause the named plugin to be loaded and executed with that config. This effectively provides automatic whitelisting of all installed/accessible inventory plugins. - To disable this behavior, remove C(auto) from the C(INVENTORY_ENABLED) config element. ''' EXAMPLES = ''' # This plugin is not intended for direct use; it is a fallback mechanism for automatic whitelisting of # all installed inventory plugins. ''' from ansible.errors import AnsibleParserError from ansible.plugins.inventory import BaseInventoryPlugin from ansible.plugins.loader import inventory_loader class InventoryModule(BaseInventoryPlugin): NAME = 'auto' def verify_file(self, path): if not path.endswith('.yml') and not path.endswith('.yaml'): return False return super(InventoryModule, self).verify_file(path) def parse(self, inventory, loader, path, cache=True): config_data = loader.load_from_file(path, cache=False) plugin_name = config_data.get('plugin') if not plugin_name: raise AnsibleParserError("no root 'plugin' key found, '{0}' is not a valid YAML inventory plugin config file".format(path)) plugin = inventory_loader.get(plugin_name) if not plugin: raise AnsibleParserError("inventory config '{0}' specifies unknown plugin '{1}'".format(path, plugin_name)) if not plugin.verify_file(path): raise AnsibleParserError("inventory config '{0}' could not be verified by plugin '{1}'".format(path, plugin_name)) plugin.parse(inventory, loader, path, cache=cache)
gpl-3.0
jonathansick/androcmd
scripts/phat_baseline_test.py
1
3612
#!/usr/bin/env python # encoding: utf-8 """ Grid computation of dust attenuation for old vs. young stellar populations. 2015-05-12 - Created by Jonathan Sick """ import argparse from androcmd.phatpipeline import PhatCatalog from androcmd.baselineexp import SolarZPipeline, ThreeZPipeline def main(): args = parse_args() if args.pipeline == 'solarz': # Use the single-Z solar pipeline Pipeline = SolarZPipeline elif args.pipeline == 'threez': # Use the three-metallicity track pipeline Pipeline = ThreeZPipeline isoc = dict(isoc_kind='parsec_CAF09_v1.2S', photsys_version='yang') pipeline = Pipeline(brick=23, root_dir=args.model_name, isoc_args=isoc) if args.fit is not None: dataset = PhatCatalog(args.brick) pipeline.fit(args.fit, [args.fit], dataset) if args.plot_hess is not None: from androcmd.baselineexp import plot_fit_hess_grid dataset = PhatCatalog(args.brick) plot_fit_hess_grid(args.plot_hess, pipeline, dataset) if args.plot_diff is not None: from androcmd.baselineexp import plot_diff_hess_grid dataset = PhatCatalog(args.brick) plot_diff_hess_grid(args.plot_diff, pipeline, dataset) if args.plot_sfh is not None: from androcmd.baselineexp import sfh_comparison_plot dataset = PhatCatalog(args.brick) sfh_comparison_plot(args.plot_sfh, pipeline, dataset) if args.plot_zsfh is not None: from androcmd.baselineexp import plot_sfh_metallicity_trends dataset = PhatCatalog(args.brick) for fit_key in args.plot_zsfh: plot_path = "{model}_b{brick:d}_zsfh_{key}".format( model=args.model_name, brick=args.brick, key=fit_key) plot_sfh_metallicity_trends(plot_path, pipeline, dataset, fit_key) if args.chi_table is not None: from androcmd.baselineexp import tabulate_fit_chi dataset = PhatCatalog(args.brick) tabulate_fit_chi(args.chi_table, pipeline, dataset) if args.plot_isoc is not None: from androcmd.baselineexp import plot_isocs, plot_isocs_lewis dataset = PhatCatalog(args.brick) plot_isocs(args.plot_isoc, pipeline, dataset) plot_isocs_lewis(args.plot_isoc + '_lewis', pipeline, dataset) if args.plot_lock is not None: from androcmd.baselineexp import plot_lockfile plot_lockfile(args.plot_lock, pipeline) def parse_args(): parser = argparse.ArgumentParser( description="Model a brick with differential old/young dust.") parser.add_argument('model_name') parser.add_argument('brick', type=int) parser.add_argument('--fit', choices=['lewis', 'acs_rgb', 'acs_all', 'oir_all', 'ir_rgb'], default=None) parser.add_argument('--pipeline', choices=['solarz', 'threez'], default='solarz') parser.add_argument('--plot-hess', default=None) parser.add_argument('--plot-diff', default=None) parser.add_argument('--plot-sfh', default=None) parser.add_argument('--chi-table', default=None) parser.add_argument('--plot-zsfh', nargs='*', default=None, choices=['lewis', 'acs_rgb', 'acs_all', 'oir_all', 'ir_rgb']) parser.add_argument('--plot-isoc', default=None) parser.add_argument('--plot-lock', default=None) return parser.parse_args() if __name__ == '__main__': main()
mit
vlinhd11/vlinhd11-android-scripting
python/gdata/tests/gdata_tests/codesearch_test.py
133
1930
#!/usr/bin/python # # Copyright (C) 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = 'api.jscudder (Jeffrey Scudder)' import unittest import gdata.codesearch import gdata.test_data class CodeSearchDataTest(unittest.TestCase): def setUp(self): self.feed = gdata.codesearch.CodesearchFeedFromString( gdata.test_data.CODE_SEARCH_FEED) def testCorrectXmlConversion(self): self.assert_(self.feed.id.text == 'http://www.google.com/codesearch/feeds/search?q=malloc') self.assert_(len(self.feed.entry) == 10) for entry in self.feed.entry: if entry.id.text == ('http://www.google.com/codesearch?hl=en&q=+ma' 'lloc+show:LDjwp-Iqc7U:84hEYaYsZk8:xDGReDhvNi0&sa=N&ct=rx&cd=1' '&cs_p=http://www.gnu.org&cs_f=software/autoconf/manual/autoco' 'nf-2.60/autoconf.html-002&cs_p=http://www.gnu.org&cs_f=softwa' 're/autoconf/manual/autoconf-2.60/autoconf.html-002#first'): self.assert_(len(entry.match) == 4) for match in entry.match: if match.line_number == '4': self.assert_(match.type == 'text/html') self.assert_(entry.file.name == 'software/autoconf/manual/autoconf-2.60/autoconf.html-002') self.assert_(entry.package.name == 'http://www.gnu.org') self.assert_(entry.package.uri == 'http://www.gnu.org') if __name__ == '__main__': unittest.main()
apache-2.0
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/scipy/stats/_stats_mstats_common.py
12
8157
from collections import namedtuple import numpy as np from . import distributions __all__ = ['_find_repeats', 'linregress', 'theilslopes'] def linregress(x, y=None): """ Calculate a linear least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimated gradient. See also -------- optimize.curve_fit : Use non-linear least squares to fit a function to data. optimize.leastsq : Minimize the sum of squares of a set of equations. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) # To get coefficient of determination (r_squared) >>> print("r-squared:", r_value**2) ('r-squared:', 0.080402268539028335) """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = np.asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = np.asarray(x) y = np.asarray(y) if x.size == 0 or y.size == 0: raise ValueError("Inputs must not be empty.") n = len(x) xmean = np.mean(x, None) ymean = np.mean(y, None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm * ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if r > 1.0: r = 1.0 elif r < -1.0: r = -1.0 df = n - 2 t = r * np.sqrt(df / ((1.0 - r + TINY)*(1.0 + r + TINY))) prob = 2 * distributions.t.sf(np.abs(t), df) slope = r_num / ssxm intercept = ymean - slope*xmean sterrest = np.sqrt((1 - r**2) * ssym / ssxm / df) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) return LinregressResult(slope, intercept, r, prob, sterrest) def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ # We copy both x and y so we can use _find_repeats. y = np.array(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.array(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = _find_repeats(x) _, nyreps = _find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) - np.sum(k * (k-1) * (2*k + 5) for k in nxreps) - np.sum(k * (k-1) * (2*k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1) Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] def _find_repeats(arr): # This function assumes it may clobber its input. if len(arr) == 0: return np.array(0, np.float64), np.array(0, np.intp) # XXX This cast was previously needed for the Fortran implementation, # should we ditch it? arr = np.asarray(arr, np.float64).ravel() arr.sort() # Taken from NumPy 1.9's np.unique. change = np.concatenate(([True], arr[1:] != arr[:-1])) unique = arr[change] change_idx = np.concatenate(np.nonzero(change) + ([arr.size],)) freq = np.diff(change_idx) atleast2 = freq > 1 return unique[atleast2], freq[atleast2]
mit
lhellebr/spacewalk
backend/server/rhnLib.py
1
8211
# # Copyright (c) 2008--2015 Red Hat, Inc. # # This software is licensed to you under the GNU General Public License, # version 2 (GPLv2). There is NO WARRANTY for this software, express or # implied, including the implied warranties of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. You should have received a copy of GPLv2 # along with this software; if not, see # http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt. # # Red Hat trademarks are not licensed under GPLv2. No permission is # granted to use or replicate Red Hat trademarks that are incorporated # in this software or its documentation. # import os import hashlib import string import base64 import posixpath from spacewalk.common.rhnLib import parseRPMName from spacewalk.common.rhnLog import log_debug from spacewalk.common.rhnException import rhnFault # architecture work from rhnMapping import check_package_arch def computeSignature(*fields): # Init the hash m = hashlib.new('sha256') for i in fields: # use str(i) since some of the fields may be non-string m.update(str(i)) return base64.encodestring(m.digest()).rstrip() # 'n_n-n-v.v.v-r_r.r:e.ARCH.rpm' ---> [n,v,r,e,a] def parseRPMFilename(pkgFilename): """ IN: Package Name: xxx-yyy-ver.ver.ver-rel.rel_rel:e.ARCH.rpm (string) Understood rules: o Name can have nearly any char, but end in a - (well seperated by). Any character; may include - as well. o Version cannot have a -, but ends in one. o Release should be an actual number, and can't have any -'s. o Release can include the Epoch, e.g.: 2:4 (4 is the epoch) o Epoch: Can include anything except a - and the : seperator??? XXX: Is epoch info above correct? OUT: [n,e,v,r, arch]. """ if type(pkgFilename) != type(''): raise rhnFault(21, str(pkgFilename)) # Invalid arg. pkgFilename = os.path.basename(pkgFilename) # Check that this is a package NAME (with arch.rpm) and strip # that crap off. pkg = string.split(pkgFilename, '.') # 'rpm' at end? if string.lower(pkg[-1]) not in ['rpm', 'deb']: raise rhnFault(21, 'neither an rpm nor a deb package name: %s' % pkgFilename) # Valid architecture next? if check_package_arch(pkg[-2]) is None: raise rhnFault(21, 'Incompatible architecture found: %s' % pkg[-2]) _arch = pkg[-2] # Nuke that arch.rpm. pkg = string.join(pkg[:-2], '.') ret = list(parseRPMName(pkg)) if ret: ret.append(_arch) return ret # XXX TBD where to place this function - it has to be accessible from several # places def normalize_server_arch(arch): log_debug(4, 'server arch', arch) if arch is None: return '' arch = str(arch) if '-' in arch: # Already normalized return arch # Fix the arch if need be suffix = '-redhat-linux' arch = arch + suffix return arch class InvalidAction(Exception): """ An error class to signal when we can not handle an action """ pass class EmptyAction(Exception): """ An error class that signals that we encountered an internal error trying to handle an action through no fault of the client """ pass class ShadowAction(Exception): """ An error class for actions that should not get to the client """ pass def transpose_to_hash(arr, column_names): """ Handy function to transpose an array from row-based to column-based, with named columns. """ result = [] for c in column_names: result.append([]) colnum = len(column_names) for r in arr: if len(r) != colnum: raise Exception( "Mismatching number of columns: expected %s, got %s; %s" % ( colnum, len(r), r)) for i in range(len(r)): result[i].append(r[i]) # Now build the hash labeled with the column names rh = {} for i in range(len(column_names)): rh[column_names[i]] = result[i] return rh def get_package_path(nevra, org_id, source=0, prepend="", omit_epoch=None, package_type='rpm', checksum_type=None, checksum=None): """ Computes a package path, optionally prepending a prefix The path will look like <prefix>/<org_id>/checksum[:3]/n/e:v-r/a/checksum/n-v-r.a.rpm if not omit_epoch <prefix>/<org_id>/checksum[:3]/n/v-r/a/checksum/n-v-r.a.rpm if omit_epoch """ name, epoch, version, release, pkgarch = nevra # dirarch and pkgarch are special-cased for source rpms if source: dirarch = 'SRPMS' else: dirarch = pkgarch if org_id in ['', None]: org = "NULL" else: org = org_id if not omit_epoch and epoch not in [None, '']: version = str(epoch) + ':' + version # normpath sanitizes the path (removing duplicated / and such) template = os.path.normpath(prepend + "/%s/%s/%s/%s-%s/%s/%s/%s-%s-%s.%s.%s") return template % (org, checksum[:3], name, version, release, dirarch, checksum, name, nevra[2], release, pkgarch, package_type) # bug #161989 # It seems that our software was written specifically for rpms in far too many # ways. Here's a little bit of a hack function that will return the package path # (as in from get_package_path) but without the filename appended. # This enables us to append an arbitrary file name that is not restricted to the # form: name-version-release.arch.type def get_package_path_without_package_name(nevra, org_id, prepend="", checksum_type=None, checksum=None): """return a package path without the package name appended""" return os.path.dirname(get_package_path(nevra, org_id, prepend=prepend, checksum_type=checksum_type, checksum=checksum)) class CallableObj: """ Generic callable object """ def __init__(self, name, func): self.func = func self.name = name def __call__(self, *args, **kwargs): return self.func(self.name, *args, **kwargs) def make_evr(nvre, source=False): """ IN: 'e:name-version-release' or 'name-version-release:e' OUT: {'name':name, 'version':version, 'release':release, 'epoch':epoch } """ if ":" in nvre: nvr, epoch = nvre.rsplit(":", 1) if "-" in epoch: nvr, epoch = epoch, nvr else: nvr, epoch = nvre, "" nvr_parts = nvr.rsplit("-", 2) if len(nvr_parts) != 3: raise rhnFault(err_code=21, err_text="NVRE is missing name, version, or release.") result = dict(zip(["name", "version", "release"], nvr_parts)) result["epoch"] = epoch if source and result["release"].endswith(".src"): result["release"] = result["release"][:-4] return result def _is_secure_path(path): path = posixpath.normpath(path) return not (path.startswith('/') or path.startswith('../')) def get_crash_path(org_id, system_id, crash): """For a given org_id, system_id and crash, return relative path to a crash directory.""" path = os.path.join('systems', org_id, system_id, 'crashes', crash) if _is_secure_path(path): return path else: return None def get_crashfile_path(org_id, system_id, crash, filename): """For a given org_id, system_id, crash and filename, return relative path to a crash file.""" path = os.path.join(get_crash_path(org_id, system_id, crash), filename) if _is_secure_path(path): return path else: return None def get_action_path(org_id, system_id, action_id): """For a given org_id, system_id, and action_id, return relative path to a store directory.""" path = os.path.join('systems', str(org_id), str(system_id), 'actions', str(action_id)) if _is_secure_path(path): return path def get_actionfile_path(org_id, system_id, action_id, filename): """For a given org_id, system_id, action_id, and file, return relative path to a file.""" path = os.path.join(get_action_path(org_id, system_id, action_id), str(filename)) if _is_secure_path(path): return path
gpl-2.0
h4ck3rm1k3/MapNickAutotools
scons/scons-local-1.2.0/SCons/Tool/suncc.py
12
1857
"""SCons.Tool.suncc Tool-specific initialization for Sun Solaris (Forte) CC and cc. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/suncc.py 3842 2008/12/20 22:59:52 scons" import SCons.Util import cc def generate(env): """ Add Builders and construction variables for Forte C and C++ compilers to an Environment. """ cc.generate(env) env['CXX'] = 'CC' env['SHCCFLAGS'] = SCons.Util.CLVar('$CCFLAGS -KPIC') env['SHOBJPREFIX'] = 'so_' env['SHOBJSUFFIX'] = '.o' def exists(env): return env.Detect('CC')
lgpl-2.1
SabunMacTavish/CTF-Platform
api/autogenerators/rtfm.py
2
1943
__author__ = "Collin Petty" __copyright__ = "Carnegie Mellon University" __license__ = "MIT" __maintainer__ = ["Collin Petty", "Peter Chapman"] __credits__ = ["David Brumely", "Collin Petty", "Peter Chapman"] __email__ = ["[email protected]", "[email protected]"] __status__ = "Production" import tempfile import os import random import string template_file = "rtfm.txt" templates = "autogenerators/templates/" def validate_dependencies(): print "DEPENDENCY CHECK - rtfm.py (autogen)" if not os.path.exists(_template_path()): print "ERROR - Read the Manual - Could not find the template file (%s)" % template_file return False return True def generate(): template = open(_template_path(), 'r').read() key = ''.join(random.choice(string.ascii_lowercase) for _ in range(12)) template = template.replace('###KEY###', key) shift = random.randint(1, 26) out_text = _caesar(template, shift) output = tempfile.NamedTemporaryFile(delete=False, suffix=".txt") output.write(out_text) output.close() return [os.path.abspath(output.name)], key, """<p>On the back of the broken panel you see a recovery\ <a href='###file_1_url###' target='_blank'>manual</a>. You need to find the emergency repair key in\ order to put the robot into <code>autoboot</code> mode, but it appears to be ciphered using a Caesar cipher.</p>""" def _template_path(): return templates + template_file def _caesar(text, shift): ret = list() for t in text: t = ord(t) if t in range(ord('a'), ord('z')+1): ret.append(((t - ord('a') + shift) % 26) + ord('a')) elif t in range(ord('A'), ord('Z')+1): ret.append(((t - ord('A') + shift) % 26) + ord('A')) elif t in range(ord('0'), ord('9')+1): ret.append(((t - ord('0') + shift) % 10) + ord('0')) else: ret.append(t) return string.joinfields(map(chr, ret), "")
mit
esthermm/odoomrp-wip
stock_quant_valuation/models/stock_quant.py
8
1040
# -*- coding: utf-8 -*- # (c) 2016 Ainara Galdona - AvanzOSC # License AGPL-3 - See http://www.gnu.org/licenses/agpl-3.0.html from openerp import fields, api, models from openerp.addons import decimal_precision as dp class StockQuant(models.Model): _inherit = 'stock.quant' @api.multi @api.depends("product_id", "product_id.manual_standard_cost", "qty") def _compute_manual_value(self): for record in self: record.manual_value = (record.product_id.manual_standard_cost * record.qty) @api.multi @api.depends('cost', 'qty') def _compute_real_value(self): for record in self: record.real_value = record.cost * record.qty manual_value = fields.Float( string="Manual Value", store=True, compute="_compute_manual_value", digits=dp.get_precision('Product Price')) real_value = fields.Float( string="Real Value", store=True, compute="_compute_real_value", digits=dp.get_precision('Product Price'))
agpl-3.0
jy723/ardupilot
mk/PX4/Tools/genmsg/src/genmsg/names.py
215
5223
# Software License Agreement (BSD License) # # Copyright (c) 2008, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. PRN_SEPARATOR = '/' import re def normalize_package_context(package_context): package_context = package_context.strip() while package_context.endswith(PRN_SEPARATOR): package_context = package_context[:-1] return package_context ####################################################################### # RESOURCE NAMES # resource names refer to entities in a file system def resource_name(res_pkg_name, name, my_pkg=None): """ Convert package name + resource into a fully qualified resource name @param res_pkg_name: name of package resource is located in @type res_pkg_name: str @param name: resource base name @type name: str @param my_pkg: name of package resource is being referred to in. If specified, name will be returned in local form if res_pkg_name is my_pkg @type my_pkg: str @return: name for resource @rtype: str """ if res_pkg_name != my_pkg: return res_pkg_name+PRN_SEPARATOR+name return name def resource_name_base(name): """ pkg/typeName -> typeName, typeName -> typeName Convert fully qualified resource name into the package-less resource name @param name: package resource name, e.g. 'std_msgs/String' @type name: str @return: resource name sans package-name scope @rtype: str """ return name[name.rfind(PRN_SEPARATOR)+1:] def resource_name_package(name): """ pkg/typeName -> pkg, typeName -> None @param name: package resource name, e.g. 'std_msgs/String' @type name: str @return: package name of resource @rtype: str """ if not PRN_SEPARATOR in name: return None return name[:name.find(PRN_SEPARATOR)] def package_resource_name(name): """ Split a name into its package and resource name parts, e.g. 'std_msgs/String -> std_msgs, String' @param name: package resource name, e.g. 'std_msgs/String' @type name: str @return: package name, resource name @rtype: str @raise ValueError: if name is invalid """ if PRN_SEPARATOR in name: val = tuple(name.split(PRN_SEPARATOR)) if len(val) != 2: raise ValueError("invalid name [%s]"%name) else: return val else: return '', name ################################################################################ # NAME VALIDATORS #ascii char followed by (alphanumeric, _, /) RESOURCE_NAME_LEGAL_CHARS_P = re.compile('^[A-Za-z][\w_\/]*$') def is_legal_resource_name(name): """ Check if name is a legal ROS name for filesystem resources (alphabetical character followed by alphanumeric, underscore, or forward slashes). This constraint is currently not being enforced, but may start getting enforced in later versions of ROS. @param name: Name @type name: str """ # resource names can be unicode due to filesystem if name is None: return False m = RESOURCE_NAME_LEGAL_CHARS_P.match(name) # '//' check makes sure there isn't double-slashes return m is not None and m.group(0) == name and not '//' in name BASE_RESOURCE_NAME_LEGAL_CHARS_P = re.compile('^[A-Za-z][\w_]*$') #ascii char followed by (alphanumeric, _) def is_legal_resource_base_name(name): """ Validates that name is a legal resource base name. A base name has no package context, e.g. "String". """ # resource names can be unicode due to filesystem if name is None: return False m = BASE_RESOURCE_NAME_LEGAL_CHARS_P.match(name) return m is not None and m.group(0) == name
gpl-3.0
INM-6/nest-git-migration
topology/examples/conncomp.py
13
4213
# -*- coding: utf-8 -*- # # conncomp.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' NEST Topology Module Example Create two 30x30 layers with nodes composed of one pyramidal cell and one interneuron. Connect with two projections, one pyr->pyr, one pyr->in, and visualize. BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB ''' import pylab pylab.ion() import nest import nest.topology as topo nest.ResetKernel() nest.set_verbosity('M_WARNING') # create two test layers nest.CopyModel('iaf_neuron', 'pyr') nest.CopyModel('iaf_neuron', 'in') a = topo.CreateLayer({'columns': 30, 'rows': 30, 'extent': [3.0, 3.0], 'elements': ['pyr', 'in']}) b = topo.CreateLayer({'columns': 30, 'rows': 30, 'extent': [3.0, 3.0], 'elements': ['pyr', 'in']}) topo.ConnectLayers(a, b, {'connection_type': 'divergent', 'sources': {'model': 'pyr'}, 'targets': {'model': 'pyr'}, 'mask': {'circular': {'radius': 0.5}}, 'kernel': 0.5, 'weights': 1.0, 'delays': 1.0}) topo.ConnectLayers(a, b, {'connection_type': 'divergent', 'sources': {'model': 'pyr'}, 'targets': {'model': 'in'}, 'mask': {'circular': {'radius': 1.0}}, 'kernel': 0.2, 'weights': 1.0, 'delays': 1.0}) pylab.clf() # plot targets of neurons in different grid locations for ctr in [[15,15]]: # obtain node id for center: pick first node of composite ctr_id = topo.GetElement(a, ctr) # get all projection targets of center neuron tgts = [ci[1] for ci in nest.GetConnections(ctr_id)] # get positions of targets tpyr = pylab.array(tuple(zip(*[topo.GetPosition([n])[0] for n in tgts if nest.GetStatus([n],'model')[0]=='pyr']))) tin = pylab.array(tuple(zip(*[topo.GetPosition([n])[0] for n in tgts if nest.GetStatus([n],'model')[0]=='in']))) # scatter-plot pylab.scatter(tpyr[0]-0.02, tpyr[1]-0.02, 20, 'b', zorder = 10) pylab.scatter(tin[0] +0.02, tin[1] +0.02, 20, 'r', zorder = 10) # mark locations with background grey circle pylab.plot(tpyr[0],tpyr[1],'o',markerfacecolor=(0.7,0.7,0.7), markersize=10,markeredgewidth=0,zorder=1,label='_nolegend_') pylab.plot(tin[0], tin[1] ,'o',markerfacecolor=(0.7,0.7,0.7), markersize=10,markeredgewidth=0,zorder=1,label='_nolegend_') # mark sender position with transparent red circle ctrpos = topo.GetPosition(ctr_id)[0] pylab.gca().add_patch(pylab.Circle(ctrpos, radius=0.15, zorder = 99, fc = 'r', alpha = 0.4, ec = 'none')) # mark mask positions with open red/blue circles pylab.gca().add_patch(pylab.Circle(ctrpos, radius=0.5, zorder = 2, fc = 'none', ec = 'b', lw=3)) pylab.gca().add_patch(pylab.Circle(ctrpos, radius=1.0, zorder = 2, fc = 'none', ec = 'r', lw=3)) # mark layer edge pylab.gca().add_patch(pylab.Rectangle((-1.5,-1.5), 3.0, 3.0, zorder = 1, fc = 'none', ec = 'k', lw=3)) # beautify pylab.axes().set_xticks(pylab.arange(-1.5, 1.55, 0.5)) pylab.axes().set_yticks(pylab.arange(-1.5, 1.55, 0.5)) pylab.grid(True) pylab.axis([-1.6, 1.6, -1.6, 1.6]) pylab.axes().set_aspect('equal', 'box')
gpl-2.0
geomagpy/magpy
magpy/lib/format_dtu.py
3
5567
""" MagPy Auxiliary input filter - WIC/WIK Written by Roman Leonhardt June 2012 - contains test and read function, toDo: write function """ from __future__ import print_function from magpy.stream import * def isDTU1(filename): """ Checks whether a file is ASCII DTU (type1) format used within the DTU's FGE network Characteristic features are: """ try: temp = open(filename, 'rt').readline() except: return False try: if not temp.startswith('FILENAME: '): elem = temp.split() if len(elem) == 6: try: testtime = datetime.strptime(elem[0],"%H:%M:%S") except: return False else: return False except: return False return True def readDTU1(filename, headonly=False, **kwargs): """ Reading DTU1 format data. Looks like: FILENAME: GDH4_20091215.sec INST. TYPE: Primary magnetometer INSTRUMENT: FGE S0120 E0192 FILTER: Electronic lowpass ADC: ICP 7017 vers. B2.3 SOFTWARE: FG_ComData vers. 3.04 CHANNELS: 6 Time,x,y,z,T1,T2 TIME 1 hh:mm:ss PC clock, UT, timeserver x 400 nT/V variation horizontal magnetic north in nT y 400 nT/V variation horizontal magnetic east in nT z 400 nT/V variation vertical in nT T1 0 Kelvin/v no temp sensor on pendulum T2 320 Kelvin/V electronic temp in Kelvin, sensor: AD592 DATA: 00:00:01 124.04 134.08 -17.68 0.00 291.90 00:00:02 124.00 134.00 -17.68 0.00 291.90 00:00:03 124.08 134.00 -17.64 0.00 291.90 """ fh = open(filename, 'rt') # read file and split text into channels data = [] getfile = True key = None stream = DataStream() # Check whether header infromation is already present headers = {} # get day from filename (platform independent) starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') splitpath = os.path.split(filename) daystring = splitpath[1].split('.') daystring = daystring[0].split('_') print(daystring[1]) try: day = datetime.strftime(datetime.strptime(daystring[1] , "%Y%m%d"),"%Y-%m-%d") except: logging.warning("Wrong dateformat in Filename %s" % daystring[0]) return [] # Select only files within eventually defined time range if starttime: if not datetime.strptime(day,'%Y-%m-%d') >= datetime.strptime(datetime.strftime(stream._testtime(starttime),'%Y-%m-%d'),'%Y-%m-%d'): getfile = False if endtime: if not datetime.strptime(day,'%Y-%m-%d') <= datetime.strptime(datetime.strftime(stream._testtime(endtime),'%Y-%m-%d'),'%Y-%m-%d'): getfile = False if getfile: for line in fh: elem = line.split() if line.isspace(): # blank line pass elif line.startswith('FILENAME:'): pass elif line.startswith('INST. TYPE:'): tmp = line.split(':')[1] headers['InstrumentType'] = tmp.lstrip() elif line.startswith('INSTRUMENT:'): tmp = line.split(':')[1] headers['Instrument'] = tmp.lstrip() elif line.startswith('FILTER:'): tmp = line.split(':')[1] headers['Filter'] = tmp.lstrip() elif line.startswith('ADC:'): tmp = line.split(':')[1] headers['ADC'] = tmp.lstrip() elif line.startswith('SOFTWARE:'): tmp = line.split(':')[1] headers['Software'] = tmp.lstrip() elif line.startswith('CHANNELS:'): tmp = line.split(':')[1] headers['Channels'] = tmp.lstrip() elif line.startswith('TIME'): pass elif line.startswith('x'): pass elif line.startswith('y'): pass elif line.startswith('z'): pass elif line.startswith('T1'): pass elif line.startswith('T2'): pass elif line.startswith('DATA:'): pass elif headonly: # skip data for option headonly continue else: row = LineStruct() try: row.time=date2num(datetime.strptime(day+'T'+elem[0],"%Y-%m-%dT%H:%M:%S")) try: row.x = float(elem[1]) except: row.x = float('nan') try: row.y = float(elem[2]) except: row.y = float('nan') try: row.z = float(elem[3]) except: row.z = float('nan') try: row.t1 = float(elem[4]) except: row.t1 = float('nan') try: row.t2 = float(elem[5]) except: row.t2 = float('nan') except: #raise ValueError, "Wrong date format in %s" % filename pass stream.add(row) fh.close() else: headers = stream.header stream =[] return DataStream(stream, headers)
bsd-3-clause
m-r-hunt/invaders
enemies.py
1
6646
# Invaders # Copyright (C) 2013 Maximilian Hunt # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import os, random, pygame, projectiles, score_counter class EnemySprite(pygame.sprite.Sprite): # Class for one enemy invader. def __init__(self, image, position, bullet_group): # image: relative path to an image pygame can load # position: (x, y) coordinates on screen # bullet_group: pygame.sprite.Group to put fired bullets in pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load(image) self.position = position self.rect = self.image.get_rect() self.rect.center = position self.bullet_group = bullet_group def update(self, dv, score, collisions): # Update this enemy. Should be called once per frame. # dv: (x, y) vector for movement this frame # score: a Score to increment on death # collisions: a dictionary of collisions, possibly containing this object # Handle any collisions given if self in collisions: death = False for bullet in collisions[self]: if (bullet.origin != self): bullet.kill() death = True if (death == True): score.increment() self.kill() # Update position self.position = (self.position[0] + dv[0], self.position[1] + dv[1]) self.rect.center = self.position def y(self): # Return height (y coordinate). return self.position[1] def fire(self): # (Possibly) fire a bullet down. if (random.randrange(100) < 2): bounds = (0-100, 800+100, 0-100, 600+100) bullet = projectiles.Bullet(os.path.join("Resources", "Enemy Bullet.png"), self.position, (0, 5), bounds, self) self.bullet_group.add(bullet) class EnemyColumn(pygame.sprite.Group): # Class for one column in a formation of enemies. # Exists so we can easily fire only the lowest enemy in each column # Remembers its own x coordinate, everything else happens inside the actual enemies def __init__(self, x_position): # x_position: integer x coordinate pygame.sprite.Group.__init__(self) self.x_position = x_position def update(self, dv, score, collisions): # Update this column. Should be called once per frame. # dv: (x, y) vector for movement this frame # score: a Score to pass to contained EnemySprites # collisions: a dictionary of collisions to pass to contained EnemySprites # Return (x, y), x of this column and y of lowest contained Sprite. self.x_position += dv[0] # Update contained sprites for i in self.sprites(): i.update(dv, score, collisions) # Compute biggest y, ask that EnemySprite to fire. max_y = 0 if (len(self) != 0): for i in self.sprites(): if (i.y() > max_y): max_y = i.y() bottom_enemy = i bottom_enemy.fire() return self.x_position, max_y class EnemyFormation(pygame.sprite.Group): # Class for a whole formation of enemies. # Contains both EnemyColumns and EnemySprites # Magic numbers: Base speed stepped horizontally or vertically each frame. H_STEP = 2 V_STEP = 10 def __init__(self, topleft, layout, bounds, bullet_group): pygame.sprite.Group.__init__(self) self.columns = [] columns, rows = layout # Generate all the enemies and columns. for i in range(0, columns): column_x = topleft[0] + i*64 enemy_column = EnemyColumn(topleft[0] + i*64) for j in range(0, rows): new_enemy = EnemySprite(os.path.join("resources", "Enemy.png"), (column_x, topleft[1] + j*64), bullet_group) enemy_column.add(new_enemy) self.add(new_enemy) self.columns.append(enemy_column) # Direction: +1 for right, -1 for left (i.e. +-ve x direction) self.current_direction = +1 self.left_bound, self.right_bound, self.bottom_bound = bounds self.total = columns * rows def update(self, score, collisions): # Update this formation. Should be called once per frame. # score: a Score to pass to contained EnemyColumns # collisions: a dictionary of collisions to pass to contained EnemyColumns # Returns (bool, bool). First is True if this formation is still in a good state, False if it needs resetting. # Second is True if this is because it's now empty, False if it has reached the bottom of the screen. direction_change = too_low = False # Compute factor to move faster when we have fewer remaining members. scale = int(float(self.total)/float(len(self))) # Update columns for i in self.columns: x, y = i.update((scale*self.current_direction*self.H_STEP, 0), score, collisions) # Remove empty columns if (len(i.sprites()) == 0): self.columns.remove(i) # Notice if we've gone too low elif (y > self.bottom_bound): too_low = True # Remember to change direction when we reach screen edges elif (x < self.left_bound or x > self.right_bound): direction_change = True # Indicate we're empty if (len(self.columns) == 0): return False, True # Indicate we reached the bottom of the screen. elif too_low: return False, False # Drop down and change direction elif direction_change: self.current_direction *= -1 for i in self.columns: i.update((scale*self.current_direction*self.H_STEP, self.V_STEP), score, []) # If we made it here, everything's fine. return True, True
gpl-2.0
MERegistro/meregistro
django/contrib/admin/templatetags/admin_list.py
43
12835
import datetime from django.conf import settings from django.contrib.admin.util import lookup_field, display_for_field, label_for_field from django.contrib.admin.views.main import ALL_VAR, EMPTY_CHANGELIST_VALUE from django.contrib.admin.views.main import ORDER_VAR, ORDER_TYPE_VAR, PAGE_VAR, SEARCH_VAR from django.core.exceptions import ObjectDoesNotExist from django.db import models from django.forms.forms import pretty_name from django.utils import formats from django.utils.html import escape, conditional_escape from django.utils.safestring import mark_safe from django.utils.text import capfirst from django.utils.translation import ugettext as _ from django.utils.encoding import smart_unicode, force_unicode from django.template import Library register = Library() DOT = '.' def paginator_number(cl,i): """ Generates an individual page index link in a paginated list. """ if i == DOT: return u'... ' elif i == cl.page_num: return mark_safe(u'<span class="this-page">%d</span> ' % (i+1)) else: return mark_safe(u'<a href="%s"%s>%d</a> ' % (escape(cl.get_query_string({PAGE_VAR: i})), (i == cl.paginator.num_pages-1 and ' class="end"' or ''), i+1)) paginator_number = register.simple_tag(paginator_number) def pagination(cl): """ Generates the series of links to the pages in a paginated list. """ paginator, page_num = cl.paginator, cl.page_num pagination_required = (not cl.show_all or not cl.can_show_all) and cl.multi_page if not pagination_required: page_range = [] else: ON_EACH_SIDE = 3 ON_ENDS = 2 # If there are 10 or fewer pages, display links to every page. # Otherwise, do some fancy if paginator.num_pages <= 10: page_range = range(paginator.num_pages) else: # Insert "smart" pagination links, so that there are always ON_ENDS # links at either end of the list of pages, and there are always # ON_EACH_SIDE links at either end of the "current page" link. page_range = [] if page_num > (ON_EACH_SIDE + ON_ENDS): page_range.extend(range(0, ON_EACH_SIDE - 1)) page_range.append(DOT) page_range.extend(range(page_num - ON_EACH_SIDE, page_num + 1)) else: page_range.extend(range(0, page_num + 1)) if page_num < (paginator.num_pages - ON_EACH_SIDE - ON_ENDS - 1): page_range.extend(range(page_num + 1, page_num + ON_EACH_SIDE + 1)) page_range.append(DOT) page_range.extend(range(paginator.num_pages - ON_ENDS, paginator.num_pages)) else: page_range.extend(range(page_num + 1, paginator.num_pages)) need_show_all_link = cl.can_show_all and not cl.show_all and cl.multi_page return { 'cl': cl, 'pagination_required': pagination_required, 'show_all_url': need_show_all_link and cl.get_query_string({ALL_VAR: ''}), 'page_range': page_range, 'ALL_VAR': ALL_VAR, '1': 1, } pagination = register.inclusion_tag('admin/pagination.html')(pagination) def result_headers(cl): """ Generates the list column headers. """ lookup_opts = cl.lookup_opts for i, field_name in enumerate(cl.list_display): header, attr = label_for_field(field_name, cl.model, model_admin = cl.model_admin, return_attr = True ) if attr: # if the field is the action checkbox: no sorting and special class if field_name == 'action_checkbox': yield { "text": header, "class_attrib": mark_safe(' class="action-checkbox-column"') } continue # It is a non-field, but perhaps one that is sortable admin_order_field = getattr(attr, "admin_order_field", None) if not admin_order_field: yield {"text": header} continue # So this _is_ a sortable non-field. Go to the yield # after the else clause. else: admin_order_field = None th_classes = [] new_order_type = 'asc' if field_name == cl.order_field or admin_order_field == cl.order_field: th_classes.append('sorted %sending' % cl.order_type.lower()) new_order_type = {'asc': 'desc', 'desc': 'asc'}[cl.order_type.lower()] yield { "text": header, "sortable": True, "url": cl.get_query_string({ORDER_VAR: i, ORDER_TYPE_VAR: new_order_type}), "class_attrib": mark_safe(th_classes and ' class="%s"' % ' '.join(th_classes) or '') } def _boolean_icon(field_val): BOOLEAN_MAPPING = {True: 'yes', False: 'no', None: 'unknown'} return mark_safe(u'<img src="%simg/admin/icon-%s.gif" alt="%s" />' % (settings.ADMIN_MEDIA_PREFIX, BOOLEAN_MAPPING[field_val], field_val)) def items_for_result(cl, result, form): """ Generates the actual list of data. """ first = True pk = cl.lookup_opts.pk.attname for field_name in cl.list_display: row_class = '' try: f, attr, value = lookup_field(field_name, result, cl.model_admin) except (AttributeError, ObjectDoesNotExist): result_repr = EMPTY_CHANGELIST_VALUE else: if f is None: allow_tags = getattr(attr, 'allow_tags', False) boolean = getattr(attr, 'boolean', False) if boolean: allow_tags = True result_repr = _boolean_icon(value) else: result_repr = smart_unicode(value) # Strip HTML tags in the resulting text, except if the # function has an "allow_tags" attribute set to True. if not allow_tags: result_repr = escape(result_repr) else: result_repr = mark_safe(result_repr) else: if value is None: result_repr = EMPTY_CHANGELIST_VALUE if isinstance(f.rel, models.ManyToOneRel): field_val = getattr(result, f.name) if field_val is None: result_repr = EMPTY_CHANGELIST_VALUE else: result_repr = escape(field_val) else: result_repr = display_for_field(value, f) if isinstance(f, models.DateField) or isinstance(f, models.TimeField): row_class = ' class="nowrap"' if force_unicode(result_repr) == '': result_repr = mark_safe('&nbsp;') # If list_display_links not defined, add the link tag to the first field if (first and not cl.list_display_links) or field_name in cl.list_display_links: table_tag = {True:'th', False:'td'}[first] first = False url = cl.url_for_result(result) # Convert the pk to something that can be used in Javascript. # Problem cases are long ints (23L) and non-ASCII strings. if cl.to_field: attr = str(cl.to_field) else: attr = pk value = result.serializable_value(attr) result_id = repr(force_unicode(value))[1:] yield mark_safe(u'<%s%s><a href="%s"%s>%s</a></%s>' % \ (table_tag, row_class, url, (cl.is_popup and ' onclick="opener.dismissRelatedLookupPopup(window, %s); return false;"' % result_id or ''), conditional_escape(result_repr), table_tag)) else: # By default the fields come from ModelAdmin.list_editable, but if we pull # the fields out of the form instead of list_editable custom admins # can provide fields on a per request basis if form and field_name in form.fields: bf = form[field_name] result_repr = mark_safe(force_unicode(bf.errors) + force_unicode(bf)) else: result_repr = conditional_escape(result_repr) yield mark_safe(u'<td%s>%s</td>' % (row_class, result_repr)) if form and not form[cl.model._meta.pk.name].is_hidden: yield mark_safe(u'<td>%s</td>' % force_unicode(form[cl.model._meta.pk.name])) def results(cl): if cl.formset: for res, form in zip(cl.result_list, cl.formset.forms): yield list(items_for_result(cl, res, form)) else: for res in cl.result_list: yield list(items_for_result(cl, res, None)) def result_hidden_fields(cl): if cl.formset: for res, form in zip(cl.result_list, cl.formset.forms): if form[cl.model._meta.pk.name].is_hidden: yield mark_safe(force_unicode(form[cl.model._meta.pk.name])) def result_list(cl): """ Displays the headers and data list together """ return {'cl': cl, 'result_hidden_fields': list(result_hidden_fields(cl)), 'result_headers': list(result_headers(cl)), 'results': list(results(cl))} result_list = register.inclusion_tag("admin/change_list_results.html")(result_list) def date_hierarchy(cl): """ Displays the date hierarchy for date drill-down functionality. """ if cl.date_hierarchy: field_name = cl.date_hierarchy year_field = '%s__year' % field_name month_field = '%s__month' % field_name day_field = '%s__day' % field_name field_generic = '%s__' % field_name year_lookup = cl.params.get(year_field) month_lookup = cl.params.get(month_field) day_lookup = cl.params.get(day_field) link = lambda d: cl.get_query_string(d, [field_generic]) if year_lookup and month_lookup and day_lookup: day = datetime.date(int(year_lookup), int(month_lookup), int(day_lookup)) return { 'show': True, 'back': { 'link': link({year_field: year_lookup, month_field: month_lookup}), 'title': capfirst(formats.date_format(day, 'YEAR_MONTH_FORMAT')) }, 'choices': [{'title': capfirst(formats.date_format(day, 'MONTH_DAY_FORMAT'))}] } elif year_lookup and month_lookup: days = cl.query_set.filter(**{year_field: year_lookup, month_field: month_lookup}).dates(field_name, 'day') return { 'show': True, 'back': { 'link': link({year_field: year_lookup}), 'title': str(year_lookup) }, 'choices': [{ 'link': link({year_field: year_lookup, month_field: month_lookup, day_field: day.day}), 'title': capfirst(formats.date_format(day, 'MONTH_DAY_FORMAT')) } for day in days] } elif year_lookup: months = cl.query_set.filter(**{year_field: year_lookup}).dates(field_name, 'month') return { 'show' : True, 'back': { 'link' : link({}), 'title': _('All dates') }, 'choices': [{ 'link': link({year_field: year_lookup, month_field: month.month}), 'title': capfirst(formats.date_format(month, 'YEAR_MONTH_FORMAT')) } for month in months] } else: years = cl.query_set.dates(field_name, 'year') return { 'show': True, 'choices': [{ 'link': link({year_field: str(year.year)}), 'title': str(year.year), } for year in years] } date_hierarchy = register.inclusion_tag('admin/date_hierarchy.html')(date_hierarchy) def search_form(cl): """ Displays a search form for searching the list. """ return { 'cl': cl, 'show_result_count': cl.result_count != cl.full_result_count, 'search_var': SEARCH_VAR } search_form = register.inclusion_tag('admin/search_form.html')(search_form) def admin_list_filter(cl, spec): return {'title': spec.title(), 'choices' : list(spec.choices(cl))} admin_list_filter = register.inclusion_tag('admin/filter.html')(admin_list_filter) def admin_actions(context): """ Track the number of times the action field has been rendered on the page, so we know which value to use. """ context['action_index'] = context.get('action_index', -1) + 1 return context admin_actions = register.inclusion_tag("admin/actions.html", takes_context=True)(admin_actions)
bsd-3-clause
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/sklearn/datasets/tests/test_samples_generator.py
3
7262
import numpy as np from numpy.testing import assert_equal, assert_approx_equal, \ assert_array_almost_equal from nose.tools import assert_true from sklearn.utils.testing import assert_less from .. import make_classification from .. import make_multilabel_classification from .. import make_hastie_10_2 from .. import make_regression from .. import make_blobs from .. import make_friedman1 from .. import make_friedman2 from .. import make_friedman3 from .. import make_low_rank_matrix from .. import make_sparse_coded_signal from .. import make_sparse_uncorrelated from .. import make_spd_matrix from .. import make_swiss_roll from .. import make_s_curve def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_multilabel_classification(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_approx_equal(np.std(y - np.dot(X, c)), 1.0, significant=2) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_approx_equal(np.std(y - np.dot(X, c)), 1.0, significant=2) def test_make_blobs(): X, y = make_blobs(n_samples=50, n_features=2, centers=[[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]], random_state=0) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_equal(X[:, 0], t * np.cos(t)) assert_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_equal(X[:, 0], np.sin(t)) assert_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1))
agpl-3.0
CalvinHsu1223/LinuxCNC-EtherCAT-HAL-Driver
configs/sim/gscreen_custom/gscreen_handler.py
25
4194
# This is a handler file for using Gscreen's infrastructure # to load a completely custom glade screen # The only things that really matters is that it's saved as a GTK builder project, # the toplevel window is caller window1 (The default name) and you connect a destroy # window signal else you can't close down linuxcnc class HandlerClass: # this will be pretty standard to gain access to everything # emc is for control and status of linuxcnc # data is important data from gscreen and linuxcnc # widgets is all the widgets from the glade files # gscreen is for access to gscreens methods # # we added setting the gremlin DRO on from the startup, # a global variable for the number of key presses, # and make only the active axis buttons visible def __init__(self, halcomp,builder,useropts,gscreen): self.emc = gscreen.emc self.data = gscreen.data self.widgets = gscreen.widgets self.gscreen = gscreen self.nhits = 0 self.widgets.gremlin.set_property('enable_dro',True) for i in ("x","y","z","a","b","c","u","v","w","s"): if i in self.data.axis_list: self.widgets["axis_%s"%i].set_visible(True) self.widgets.offsetpage1.set_row_visible("1",False) # This is a new method for a couple of widgets we added callbacks to. # The argument 'widget' is a reference to the actual widget that called. # In this way we can use this method on a bunch of widgets without knowing # their name ahead of time. def on_button_press(self,widget,data=None): global nhits self.nhits += 1 widget.set_label("hits: %d" % self.nhits) # This method is overriden from gscreen # We selected this method name in the glade file as a callback. # Since this method name is the same as one in gscreen, # gscreen won't connect a callback to it's method. # Meaning this is the only one called. def on_estop_clicked(self,*args): print "estop" if self.data.estopped: self.emc.estop_reset(1) else: self.emc.machine_off(1) self.emc.estop(1) self.widgets.on_label.set_text("Machine Off") return True # This is a new method for our new button # we selected this method name in the glade file as a callback def on_machine_state_clicked(self,*args): if self.data.estopped: return elif not self.data.machine_on: self.emc.machine_on(1) self.widgets.on_label.set_text("Machine On") else: self.emc.machine_off(1) self.widgets.on_label.set_text("Machine Off") # here we override gscreen's method of hiding the cursor # by writing a method with the same name that gscreen connects a signal to. # and our new method in fact calls a sound method and then the hide cursor method # that are both in gscreen # So now we get a sound when we hide and show the pointer def on_hide_cursor(self,widget): self.gscreen.audio.set_sound(self.data.alert_sound) self.gscreen.audio.run() self.gscreen.on_hide_cursor(None) # every 100 milli seconds this gets called # we add calls to the regular functions for the widgets we are using. # and add any extra calls/code def periodic(self): self.gscreen.update_mdi_spindle_button() self.gscreen.update_spindle_bar() self.gscreen.update_active_gcodes() self.gscreen.update_active_mcodes() self.gscreen.update_aux_coolant_pins() self.gscreen.update_feed_speed_label() self.gscreen.update_tool_label() self.gscreen.update_coolant_leds() self.gscreen.update_estop_led() self.gscreen.update_machine_on_led() self.gscreen.update_limit_override() self.gscreen.update_override_label() self.gscreen.update_jog_rate_label() self.gscreen.update_mode_label() self.gscreen.update_units_button_label() def get_handlers(halcomp,builder,useropts,gscreen): return [HandlerClass(halcomp,builder,useropts,gscreen)]
gpl-2.0
bowang/tensorflow
tensorflow/compiler/tests/ternary_ops_test.py
101
4286
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test cases for ternary operators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.compiler.tests.xla_test import XLATestCase from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import googletest class TernaryOpsTest(XLATestCase): def _testTernary(self, op, a, b, c, expected): with self.test_session() as session: with self.test_scope(): pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a") pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b") pc = array_ops.placeholder(dtypes.as_dtype(c.dtype), c.shape, name="c") output = op(pa, pb, pc) result = session.run(output, {pa: a, pb: b, pc: c}) self.assertAllClose(result, expected, rtol=1e-3) def testLinspace(self): self._testTernary( math_ops.linspace, np.float32(1), np.float32(2), np.int32(1), expected=np.array([1], dtype=np.float32)) self._testTernary( math_ops.linspace, np.float32(1), np.float32(4), np.int32(3), expected=np.array([1, 2.5, 4], dtype=np.float32)) def testRange(self): self._testTernary( math_ops.range, np.int32(1), np.int32(2), np.int32(1), expected=np.array([1], dtype=np.int32)) self._testTernary( math_ops.range, np.int32(1), np.int32(7), np.int32(2), expected=np.array([1, 3, 5], dtype=np.int32)) def testSelect(self): self._testTernary( array_ops.where, np.array(0, dtype=np.bool), np.array(2, dtype=np.float32), np.array(7, dtype=np.float32), expected=np.array(7, dtype=np.float32)) self._testTernary( array_ops.where, np.array(1, dtype=np.bool), np.array([1, 2, 3, 4], dtype=np.float32), np.array([5, 6, 7, 8], dtype=np.float32), expected=np.array([1, 2, 3, 4], dtype=np.float32)) self._testTernary( array_ops.where, np.array(0, dtype=np.bool), np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32), np.array([[7, 8], [9, 10], [11, 12]], dtype=np.float32), expected=np.array([[7, 8], [9, 10], [11, 12]], dtype=np.float32)) self._testTernary( array_ops.where, np.array([0, 1, 1, 0], dtype=np.bool), np.array([1, 2, 3, 4], dtype=np.float32), np.array([5, 6, 7, 8], dtype=np.float32), expected=np.array([5, 2, 3, 8], dtype=np.float32)) self._testTernary( array_ops.where, np.array([0, 1, 0], dtype=np.bool), np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32), np.array([[7, 8], [9, 10], [11, 12]], dtype=np.float32), expected=np.array([[7, 8], [3, 4], [11, 12]], dtype=np.float32)) def testSlice(self): for dtype in self.numeric_types: self._testTernary( array_ops.slice, np.array([[], [], []], dtype=dtype), np.array([1, 0], dtype=np.int32), np.array([2, 0], dtype=np.int32), expected=np.array([[], []], dtype=dtype)) self._testTernary( array_ops.slice, np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype), np.array([0, 1], dtype=np.int32), np.array([2, 1], dtype=np.int32), expected=np.array([[2], [5]], dtype=dtype)) if __name__ == "__main__": googletest.main()
apache-2.0
thaihungle/deepexp
rare-mann/mimic_gen.py
1
5981
import numpy as np import os import random import pickle class MimicDataLoader(object): def __init__(self, data_folder, batch_size=1, max_sequence=10, max_iter=None, split = 0.75, train_keep=1): super(MimicDataLoader, self).__init__() self.data_folder = data_folder self.batch_size = batch_size self.num_step = max_sequence self.max_iter = max_iter self.num_iter = 0 self.input_map=pickle.load(open(data_folder+'/dig_map.pkl','rb')) self.ouput_map = pickle.load(open(data_folder + '/proc_map.pkl', 'rb')) self.all_input = pickle.load(open(data_folder+'/dig_input.pkl','rb')) self.all_output = pickle.load(open(data_folder + '/proc_output.pkl', 'rb')) self.output_size = self.all_output.shape[1] if len(np.shape(self.all_output))>1: self.all_output = np.argmax(self.all_output, axis=1) print(self.all_output[:10]) print(self.all_output.shape) self.num_samples=self.all_input.shape[0] print('num samples {}'.format(self.num_samples)) lindex=list(range(self.num_samples)) # random.shuffle(lindex) self.train_data_indexes = lindex[:int(self.num_samples*split*train_keep)] self.test_data_indexes = lindex[int(self.num_samples*split):] self.is_training=True self.data_offset=0 self.input_size=self.all_input.shape[1] print('num train samples: {}'.format(len(self.train_data_indexes))) print('train index: {} ...'.format(self.train_data_indexes[:10])) print('num test samples: {}'.format(len(self.test_data_indexes))) print('test index: {} ...'.format(self.test_data_indexes[:10])) print('num classes: {}'.format(self.output_size)) print('num steps per episode: {}'.format(self.num_step)) print('batch size: {}'.format(self.batch_size)) def fetch_all(self): train_x=[] train_y=[] test_x=[] test_y=[] for ind in self.train_data_indexes: train_x.append(self.all_input[ind]) train_y.append(self.all_output[ind]) for ind in self.test_data_indexes: test_x.append(self.all_input[ind]) test_y.append(self.all_output[ind]) return np.asarray(train_x), np.asarray(train_y), np.asarray(test_x), np.asarray(test_y) def fetch_batch(self, is_training=True): if is_training: list_index=self.train_data_indexes else: list_index=self.test_data_indexes indexes = np.zeros((self.batch_size, self.num_step), dtype=np.int32) for i in range(self.batch_size): indexes[i, :] = np.random.choice(len(list_index), self.num_step, replace=False) # print('-------------') # print(indexes[:10]) all_inputs=[] all_outputs=[] for s in range(self.num_step): example_inputs = np.zeros((self.batch_size, self.input_size)) example_outputs = np.zeros(self.batch_size) for b in range(self.batch_size): example_inputs[b,:]=self.all_input[list_index[indexes[b,s]]] all_inputs.append(example_inputs.astype('float32')) example_outputs[b] = self.all_output[list_index[indexes[b, s]]] all_outputs.append(example_outputs.astype('int32')) return all_inputs, all_outputs def fetch_batch_full(self, is_training, is_rand=True): if is_training: list_index=self.train_data_indexes else: list_index=self.test_data_indexes num_t = len(list_index) indexes = np.zeros((self.batch_size, num_t),dtype=np.int32) for i in range(self.batch_size): if is_rand: indexes[i, :] = np.random.choice(len(list_index), num_t, replace=False) else: indexes[i, :] = np.asarray(list(range(len(list_index)))) # indexes = np.zeros((self.batch_size, num_t), dtype=np.int32) # for i in range(self.batch_size): # indexes[i,:]=np.arange(num_t) all_inputs=[] all_outputs=[] for s in range(num_t): example_inputs = np.zeros((self.batch_size, self.input_size)) example_outputs = np.zeros(self.batch_size) for b in range(self.batch_size): example_inputs[b,:]=self.all_input[list_index[indexes[b,s]]] all_inputs.append(example_inputs.astype('float32')) example_outputs[b] = self.all_output[list_index[indexes[b, s]]] all_outputs.append(example_outputs.astype('int32')) return all_inputs, all_outputs # indexes just have shape (batch,) def predict_index2data(self, list_index, indexes): all_inputs = [] all_outputs = [] for s in range(self.num_step): example_inputs = np.zeros((self.batch_size, self.input_size)) example_outputs = np.zeros(self.batch_size) for b in range(self.batch_size): example_inputs[b, :] = self.all_input[list_index[indexes[b]]] all_inputs.append(example_inputs) example_outputs[b] = self.all_output[list_index[indexes[b]]] all_outputs.append(example_outputs) return all_inputs, all_outputs def predict_online_index2data(self, list_index, indexes): all_inputs = [] all_outputs = [] for s in range(self.num_step): example_inputs = np.zeros((self.batch_size, self.input_size)) example_outputs = np.zeros(self.batch_size) for b in range(self.batch_size): example_inputs[b, :] = self.all_input[list_index[indexes[b]]] all_inputs.append(example_inputs) example_outputs[b] = self.all_output[list_index[indexes[b]]] all_outputs.append(example_outputs) return all_inputs, all_outputs
mit
persandstrom/home-assistant
homeassistant/components/device_tracker/luci.py
4
5240
""" Support for OpenWRT (luci) routers. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/device_tracker.luci/ """ import json import logging import re import requests import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.exceptions import HomeAssistantError from homeassistant.components.device_tracker import ( DOMAIN, PLATFORM_SCHEMA, DeviceScanner) from homeassistant.const import ( CONF_HOST, CONF_USERNAME, CONF_PASSWORD, CONF_SSL) _LOGGER = logging.getLogger(__name__) DEFAULT_SSL = False PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_SSL, default=DEFAULT_SSL): cv.boolean }) class InvalidLuciTokenError(HomeAssistantError): """When an invalid token is detected.""" pass def get_scanner(hass, config): """Validate the configuration and return a Luci scanner.""" scanner = LuciDeviceScanner(config[DOMAIN]) return scanner if scanner.success_init else None class LuciDeviceScanner(DeviceScanner): """This class queries a wireless router running OpenWrt firmware.""" def __init__(self, config): """Initialize the scanner.""" host = config[CONF_HOST] protocol = 'http' if not config[CONF_SSL] else 'https' self.origin = '{}://{}'.format(protocol, host) self.username = config[CONF_USERNAME] self.password = config[CONF_PASSWORD] self.parse_api_pattern = re.compile(r"(?P<param>\w*) = (?P<value>.*);") self.last_results = {} self.refresh_token() self.mac2name = None self.success_init = self.token is not None def refresh_token(self): """Get a new token.""" self.token = _get_token(self.origin, self.username, self.password) def scan_devices(self): """Scan for new devices and return a list with found device IDs.""" self._update_info() return self.last_results def get_device_name(self, device): """Return the name of the given device or None if we don't know.""" if self.mac2name is None: url = '{}/cgi-bin/luci/rpc/uci'.format(self.origin) result = _req_json_rpc( url, 'get_all', 'dhcp', params={'auth': self.token}) if result: hosts = [x for x in result.values() if x['.type'] == 'host' and 'mac' in x and 'name' in x] mac2name_list = [ (x['mac'].upper(), x['name']) for x in hosts] self.mac2name = dict(mac2name_list) else: # Error, handled in the _req_json_rpc return return self.mac2name.get(device.upper(), None) def _update_info(self): """Ensure the information from the Luci router is up to date. Returns boolean if scanning successful. """ if not self.success_init: return False _LOGGER.info("Checking ARP") url = '{}/cgi-bin/luci/rpc/sys'.format(self.origin) try: result = _req_json_rpc( url, 'net.arptable', params={'auth': self.token}) except InvalidLuciTokenError: _LOGGER.info("Refreshing token") self.refresh_token() return False if result: self.last_results = [] for device_entry in result: # Check if the Flags for each device contain # NUD_REACHABLE and if so, add it to last_results if int(device_entry['Flags'], 16) & 0x2: self.last_results.append(device_entry['HW address']) return True return False def _req_json_rpc(url, method, *args, **kwargs): """Perform one JSON RPC operation.""" data = json.dumps({'method': method, 'params': args}) try: res = requests.post(url, data=data, timeout=5, **kwargs) except requests.exceptions.Timeout: _LOGGER.exception("Connection to the router timed out") return if res.status_code == 200: try: result = res.json() except ValueError: # If json decoder could not parse the response _LOGGER.exception("Failed to parse response from luci") return try: return result['result'] except KeyError: _LOGGER.exception("No result in response from luci") return elif res.status_code == 401: # Authentication error _LOGGER.exception( "Failed to authenticate, check your username and password") return elif res.status_code == 403: _LOGGER.error("Luci responded with a 403 Invalid token") raise InvalidLuciTokenError else: _LOGGER.error("Invalid response from luci: %s", res) def _get_token(origin, username, password): """Get authentication token for the given configuration.""" url = '{}/cgi-bin/luci/rpc/auth'.format(origin) return _req_json_rpc(url, 'login', username, password)
apache-2.0
abadger/ansible-modules-core
network/nxos/nxos_vxlan_vtep_vni.py
19
19617
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # DOCUMENTATION = ''' --- module: nxos_vxlan_vtep_vni version_added: "2.2" short_description: Creates a Virtual Network Identifier member (VNI) description: - Creates a Virtual Network Identifier member (VNI) for an NVE overlay interface. author: Gabriele Gerbino (@GGabriele) extends_documentation_fragment: nxos notes: - default, where supported, restores params default value. options: interface: description: - Interface name for the VXLAN Network Virtualization Endpoint. required: true vni: description: - ID of the Virtual Network Identifier. required: true assoc_vrf: description: - This attribute is used to identify and separate processing VNIs that are associated with a VRF and used for routing. The VRF and VNI specified with this command must match the configuration of the VNI under the VRF. required: false choices: ['true','false'] default: null ingress_replication: description: - Specifies mechanism for host reachability advertisement. required: false choices: ['bgp','static'] default: null multicast_group: description: - The multicast group (range) of the VNI. Valid values are string and keyword 'default'. required: false default: null peer_list: description: - Set the ingress-replication static peer list. Valid values are an array, a space-separated string of ip addresses, or the keyword 'default'. required: false default: null suppress_arp: description: - Suppress arp under layer 2 VNI. required: false choices: ['true','false'] default: null state: description: - Determines whether the config should be present or not on the device. required: false default: present choices: ['present','absent'] include_defaults: description: - Specify to use or not the complete running configuration for module operations. required: false default: true choices: ['true','true'] config: description: - Configuration string to be used for module operations. If not specified, the module will use the current running configuration. required: false default: null save: description: - Specify to save the running configuration after module operations. required: false default: false choices: ['true','false'] ''' EXAMPLES = ''' - nxos_vxlan_vtep_vni: interface: nve1 vni: 6000 ingress_replication: default username: "{{ un }}" password: "{{ pwd }}" host: "{{ inventory_hostname }}" ''' RETURN = ''' proposed: description: k/v pairs of parameters passed into module returned: verbose mode type: dict sample: {"ingress_replication": "default", "interface": "nve1", "vni": "6000"} existing: description: k/v pairs of existing configuration returned: verbose mode type: dict sample: {} end_state: description: k/v pairs of configuration after module execution returned: verbose mode type: dict sample: {"assoc_vrf": false, "ingress_replication": "", "interface": "nve1", "multicast_group": "", "peer_list": [], "suppress_arp": false, "vni": "6000"} updates: description: commands sent to the device returned: always type: list sample: ["interface nve1", "member vni 6000"] changed: description: check to see if a change was made on the device returned: always type: boolean sample: true ''' # COMMON CODE FOR MIGRATION import re from ansible.module_utils.basic import get_exception from ansible.module_utils.netcfg import NetworkConfig, ConfigLine from ansible.module_utils.shell import ShellError try: from ansible.module_utils.nxos import get_module except ImportError: from ansible.module_utils.nxos import NetworkModule def to_list(val): if isinstance(val, (list, tuple)): return list(val) elif val is not None: return [val] else: return list() class CustomNetworkConfig(NetworkConfig): def expand_section(self, configobj, S=None): if S is None: S = list() S.append(configobj) for child in configobj.children: if child in S: continue self.expand_section(child, S) return S def get_object(self, path): for item in self.items: if item.text == path[-1]: parents = [p.text for p in item.parents] if parents == path[:-1]: return item def to_block(self, section): return '\n'.join([item.raw for item in section]) def get_section(self, path): try: section = self.get_section_objects(path) return self.to_block(section) except ValueError: return list() def get_section_objects(self, path): if not isinstance(path, list): path = [path] obj = self.get_object(path) if not obj: raise ValueError('path does not exist in config') return self.expand_section(obj) def add(self, lines, parents=None): """Adds one or lines of configuration """ ancestors = list() offset = 0 obj = None ## global config command if not parents: for line in to_list(lines): item = ConfigLine(line) item.raw = line if item not in self.items: self.items.append(item) else: for index, p in enumerate(parents): try: i = index + 1 obj = self.get_section_objects(parents[:i])[0] ancestors.append(obj) except ValueError: # add parent to config offset = index * self.indent obj = ConfigLine(p) obj.raw = p.rjust(len(p) + offset) if ancestors: obj.parents = list(ancestors) ancestors[-1].children.append(obj) self.items.append(obj) ancestors.append(obj) # add child objects for line in to_list(lines): # check if child already exists for child in ancestors[-1].children: if child.text == line: break else: offset = len(parents) * self.indent item = ConfigLine(line) item.raw = line.rjust(len(line) + offset) item.parents = ancestors ancestors[-1].children.append(item) self.items.append(item) def get_network_module(**kwargs): try: return get_module(**kwargs) except NameError: return NetworkModule(**kwargs) def get_config(module, include_defaults=False): config = module.params['config'] if not config: try: config = module.get_config() except AttributeError: defaults = module.params['include_defaults'] config = module.config.get_config(include_defaults=defaults) return CustomNetworkConfig(indent=2, contents=config) def load_config(module, candidate): config = get_config(module) commands = candidate.difference(config) commands = [str(c).strip() for c in commands] save_config = module.params['save'] result = dict(changed=False) if commands: if not module.check_mode: try: module.configure(commands) except AttributeError: module.config(commands) if save_config: try: module.config.save_config() except AttributeError: module.execute(['copy running-config startup-config']) result['changed'] = True result['updates'] = commands return result # END OF COMMON CODE BOOL_PARAMS = ['suppress_arp'] PARAM_TO_COMMAND_KEYMAP = { 'assoc_vrf': 'associate-vrf', 'interface': 'interface', 'vni': 'member vni', 'ingress_replication': 'ingress-replication protocol', 'multicast_group': 'mcast-group', 'peer_list': 'peer-ip', 'suppress_arp': 'suppress-arp' } PARAM_TO_DEFAULT_KEYMAP = {} WARNINGS = [] def invoke(name, *args, **kwargs): func = globals().get(name) if func: return func(*args, **kwargs) def get_value(arg, config, module): if arg in BOOL_PARAMS: REGEX = re.compile(r'\s+{0}\s*$'.format(PARAM_TO_COMMAND_KEYMAP[arg]), re.M) value = False try: if REGEX.search(config): value = True except TypeError: value = False else: REGEX = re.compile(r'(?:{0}\s)(?P<value>.*)$'.format(PARAM_TO_COMMAND_KEYMAP[arg]), re.M) value = '' if PARAM_TO_COMMAND_KEYMAP[arg] in config: value = REGEX.search(config).group('value') return value def check_interface(module, netcfg): config = str(netcfg) REGEX = re.compile(r'(?:interface nve)(?P<value>.*)$', re.M) value = '' if 'interface nve' in config: value = 'nve{0}'.format(REGEX.search(config).group('value')) return value def get_custom_value(arg, config, module): splitted_config = config.splitlines() if arg == 'assoc_vrf': value = False if 'associate-vrf' in config: value = True elif arg == 'peer_list': value = [] REGEX = re.compile(r'(?:peer-ip\s)(?P<peer_value>.*)$', re.M) for line in splitted_config: peer_value = '' if PARAM_TO_COMMAND_KEYMAP[arg] in line: peer_value = REGEX.search(line).group('peer_value') if peer_value: value.append(peer_value) return value def get_existing(module, args): existing = {} netcfg = get_config(module) custom = [ 'assoc_vrf', 'peer_list' ] interface_exist = check_interface(module, netcfg) if interface_exist: parents = ['interface {0}'.format(interface_exist)] temp_config = netcfg.get_section(parents) if 'associate-vrf' in temp_config: parents.append('member vni {0} associate-vrf'.format( module.params['vni'])) config = netcfg.get_section(parents) elif 'member vni' in temp_config: parents.append('member vni {0}'.format(module.params['vni'])) config = netcfg.get_section(parents) else: config = {} if config: for arg in args: if arg not in ['interface', 'vni']: if arg in custom: existing[arg] = get_custom_value(arg, config, module) else: existing[arg] = get_value(arg, config, module) existing['interface'] = interface_exist existing['vni'] = module.params['vni'] return existing, interface_exist def apply_key_map(key_map, table): new_dict = {} for key, value in table.items(): new_key = key_map.get(key) if new_key: value = table.get(key) if value: new_dict[new_key] = value else: new_dict[new_key] = value return new_dict def state_present(module, existing, proposed, candidate): commands = list() proposed_commands = apply_key_map(PARAM_TO_COMMAND_KEYMAP, proposed) existing_commands = apply_key_map(PARAM_TO_COMMAND_KEYMAP, existing) for key, value in proposed_commands.iteritems(): if key == 'associate-vrf': command = 'member vni {0} {1}'.format(module.params['vni'], key) if value: commands.append(command) else: commands.append('no {0}'.format(command)) elif key == 'peer-ip' and value != 'default': for peer in value: commands.append('{0} {1}'.format(key, peer)) elif value is True: commands.append(key) elif value is False: commands.append('no {0}'.format(key)) elif value == 'default': if existing_commands.get(key): existing_value = existing_commands.get(key) if key == 'peer-ip': for peer in existing_value: commands.append('no {0} {1}'.format(key, peer)) else: commands.append('no {0} {1}'.format(key, existing_value)) else: if key.replace(' ', '_').replace('-', '_') in BOOL_PARAMS: commands.append('no {0}'.format(key.lower())) else: command = '{0} {1}'.format(key, value.lower()) commands.append(command) if commands: vni_command = 'member vni {0}'.format(module.params['vni']) ingress_replication_command = 'ingress-replication protocol static' interface_command = 'interface {0}'.format(module.params['interface']) if ingress_replication_command in commands: static_level_cmds = [cmd for cmd in commands if 'peer' in cmd] parents = [interface_command, vni_command, ingress_replication_command] candidate.add(static_level_cmds, parents=parents) commands = [cmd for cmd in commands if 'peer' not in cmd] if vni_command in commands: parents = [interface_command] commands.remove(vni_command) if module.params['assoc_vrf'] is None: parents.append(vni_command) candidate.add(commands, parents=parents) def state_absent(module, existing, proposed, candidate): if existing['assoc_vrf']: commands = ['no member vni {0} associate-vrf'.format( module.params['vni'])] else: commands = ['no member vni {0}'.format(module.params['vni'])] parents = ['interface {0}'.format(module.params['interface'])] candidate.add(commands, parents=parents) def main(): argument_spec = dict( interface=dict(required=True, type='str'), vni=dict(required=True, type='str'), assoc_vrf=dict(required=False, type='bool'), multicast_group=dict(required=False, type='str'), peer_list=dict(required=False, type='list'), suppress_arp=dict(required=False, type='bool'), ingress_replication=dict(required=False, type='str', choices=['bgp', 'static', 'default']), state=dict(choices=['present', 'absent'], default='present', required=False), include_defaults=dict(default=True), config=dict(), save=dict(type='bool', default=False) ) module = get_network_module(argument_spec=argument_spec, supports_check_mode=True) if module.params['assoc_vrf']: mutually_exclusive_params = ['multicast_group', 'suppress_arp', 'ingress_replication'] for param in mutually_exclusive_params: if module.params[param]: module.fail_json(msg='assoc_vrf cannot be used with ' '{0} param'.format(param)) if module.params['peer_list']: if module.params['ingress_replication'] != 'static': module.fail_json(msg='ingress_replication=static is required ' 'when using peer_list param') else: peer_list = module.params['peer_list'] if peer_list[0] == 'default': module.params['peer_list'] = 'default' else: stripped_peer_list = map(str.strip, peer_list) module.params['peer_list'] = stripped_peer_list state = module.params['state'] args = [ 'assoc_vrf', 'interface', 'vni', 'ingress_replication', 'multicast_group', 'peer_list', 'suppress_arp' ] existing, interface_exist = invoke('get_existing', module, args) end_state = existing proposed_args = dict((k, v) for k, v in module.params.iteritems() if v is not None and k in args) proposed = {} for key, value in proposed_args.iteritems(): if key != 'interface': if str(value).lower() == 'default': value = PARAM_TO_DEFAULT_KEYMAP.get(key) if value is None: value = 'default' if existing.get(key) or (not existing.get(key) and value): proposed[key] = value result = {} if state == 'present' or (state == 'absent' and existing): if not interface_exist: WARNINGS.append("The proposed NVE interface does not exist. " "Use nxos_interface to create it first.") elif interface_exist != module.params['interface']: module.fail_json(msg='Only 1 NVE interface is allowed on ' 'the switch.') elif (existing and state == 'absent' and existing['vni'] != module.params['vni']): module.fail_json(msg="ERROR: VNI delete failed: Could not find" " vni node for {0}".format( module.params['vni']), existing_vni=existing['vni']) else: candidate = CustomNetworkConfig(indent=3) invoke('state_%s' % state, module, existing, proposed, candidate) try: response = load_config(module, candidate) result.update(response) except ShellError: exc = get_exception() module.fail_json(msg=str(exc)) else: result['updates'] = [] result['connected'] = module.connected if module._verbosity > 0: end_state, interface_exist = invoke('get_existing', module, args) result['end_state'] = end_state result['existing'] = existing result['proposed'] = proposed_args if WARNINGS: result['warnings'] = WARNINGS module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
ukanga/SickRage
lib/html5lib/sanitizer.py
805
16428
from __future__ import absolute_import, division, unicode_literals import re from xml.sax.saxutils import escape, unescape from .tokenizer import HTMLTokenizer from .constants import tokenTypes class HTMLSanitizerMixin(object): """ sanitization of XHTML+MathML+SVG and of inline style attributes.""" acceptable_elements = ['a', 'abbr', 'acronym', 'address', 'area', 'article', 'aside', 'audio', 'b', 'big', 'blockquote', 'br', 'button', 'canvas', 'caption', 'center', 'cite', 'code', 'col', 'colgroup', 'command', 'datagrid', 'datalist', 'dd', 'del', 'details', 'dfn', 'dialog', 'dir', 'div', 'dl', 'dt', 'em', 'event-source', 'fieldset', 'figcaption', 'figure', 'footer', 'font', 'form', 'header', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'hr', 'i', 'img', 'input', 'ins', 'keygen', 'kbd', 'label', 'legend', 'li', 'm', 'map', 'menu', 'meter', 'multicol', 'nav', 'nextid', 'ol', 'output', 'optgroup', 'option', 'p', 'pre', 'progress', 'q', 's', 'samp', 'section', 'select', 'small', 'sound', 'source', 'spacer', 'span', 'strike', 'strong', 'sub', 'sup', 'table', 'tbody', 'td', 'textarea', 'time', 'tfoot', 'th', 'thead', 'tr', 'tt', 'u', 'ul', 'var', 'video'] mathml_elements = ['maction', 'math', 'merror', 'mfrac', 'mi', 'mmultiscripts', 'mn', 'mo', 'mover', 'mpadded', 'mphantom', 'mprescripts', 'mroot', 'mrow', 'mspace', 'msqrt', 'mstyle', 'msub', 'msubsup', 'msup', 'mtable', 'mtd', 'mtext', 'mtr', 'munder', 'munderover', 'none'] svg_elements = ['a', 'animate', 'animateColor', 'animateMotion', 'animateTransform', 'clipPath', 'circle', 'defs', 'desc', 'ellipse', 'font-face', 'font-face-name', 'font-face-src', 'g', 'glyph', 'hkern', 'linearGradient', 'line', 'marker', 'metadata', 'missing-glyph', 'mpath', 'path', 'polygon', 'polyline', 'radialGradient', 'rect', 'set', 'stop', 'svg', 'switch', 'text', 'title', 'tspan', 'use'] acceptable_attributes = ['abbr', 'accept', 'accept-charset', 'accesskey', 'action', 'align', 'alt', 'autocomplete', 'autofocus', 'axis', 'background', 'balance', 'bgcolor', 'bgproperties', 'border', 'bordercolor', 'bordercolordark', 'bordercolorlight', 'bottompadding', 'cellpadding', 'cellspacing', 'ch', 'challenge', 'char', 'charoff', 'choff', 'charset', 'checked', 'cite', 'class', 'clear', 'color', 'cols', 'colspan', 'compact', 'contenteditable', 'controls', 'coords', 'data', 'datafld', 'datapagesize', 'datasrc', 'datetime', 'default', 'delay', 'dir', 'disabled', 'draggable', 'dynsrc', 'enctype', 'end', 'face', 'for', 'form', 'frame', 'galleryimg', 'gutter', 'headers', 'height', 'hidefocus', 'hidden', 'high', 'href', 'hreflang', 'hspace', 'icon', 'id', 'inputmode', 'ismap', 'keytype', 'label', 'leftspacing', 'lang', 'list', 'longdesc', 'loop', 'loopcount', 'loopend', 'loopstart', 'low', 'lowsrc', 'max', 'maxlength', 'media', 'method', 'min', 'multiple', 'name', 'nohref', 'noshade', 'nowrap', 'open', 'optimum', 'pattern', 'ping', 'point-size', 'poster', 'pqg', 'preload', 'prompt', 'radiogroup', 'readonly', 'rel', 'repeat-max', 'repeat-min', 'replace', 'required', 'rev', 'rightspacing', 'rows', 'rowspan', 'rules', 'scope', 'selected', 'shape', 'size', 'span', 'src', 'start', 'step', 'style', 'summary', 'suppress', 'tabindex', 'target', 'template', 'title', 'toppadding', 'type', 'unselectable', 'usemap', 'urn', 'valign', 'value', 'variable', 'volume', 'vspace', 'vrml', 'width', 'wrap', 'xml:lang'] mathml_attributes = ['actiontype', 'align', 'columnalign', 'columnalign', 'columnalign', 'columnlines', 'columnspacing', 'columnspan', 'depth', 'display', 'displaystyle', 'equalcolumns', 'equalrows', 'fence', 'fontstyle', 'fontweight', 'frame', 'height', 'linethickness', 'lspace', 'mathbackground', 'mathcolor', 'mathvariant', 'mathvariant', 'maxsize', 'minsize', 'other', 'rowalign', 'rowalign', 'rowalign', 'rowlines', 'rowspacing', 'rowspan', 'rspace', 'scriptlevel', 'selection', 'separator', 'stretchy', 'width', 'width', 'xlink:href', 'xlink:show', 'xlink:type', 'xmlns', 'xmlns:xlink'] svg_attributes = ['accent-height', 'accumulate', 'additive', 'alphabetic', 'arabic-form', 'ascent', 'attributeName', 'attributeType', 'baseProfile', 'bbox', 'begin', 'by', 'calcMode', 'cap-height', 'class', 'clip-path', 'color', 'color-rendering', 'content', 'cx', 'cy', 'd', 'dx', 'dy', 'descent', 'display', 'dur', 'end', 'fill', 'fill-opacity', 'fill-rule', 'font-family', 'font-size', 'font-stretch', 'font-style', 'font-variant', 'font-weight', 'from', 'fx', 'fy', 'g1', 'g2', 'glyph-name', 'gradientUnits', 'hanging', 'height', 'horiz-adv-x', 'horiz-origin-x', 'id', 'ideographic', 'k', 'keyPoints', 'keySplines', 'keyTimes', 'lang', 'marker-end', 'marker-mid', 'marker-start', 'markerHeight', 'markerUnits', 'markerWidth', 'mathematical', 'max', 'min', 'name', 'offset', 'opacity', 'orient', 'origin', 'overline-position', 'overline-thickness', 'panose-1', 'path', 'pathLength', 'points', 'preserveAspectRatio', 'r', 'refX', 'refY', 'repeatCount', 'repeatDur', 'requiredExtensions', 'requiredFeatures', 'restart', 'rotate', 'rx', 'ry', 'slope', 'stemh', 'stemv', 'stop-color', 'stop-opacity', 'strikethrough-position', 'strikethrough-thickness', 'stroke', 'stroke-dasharray', 'stroke-dashoffset', 'stroke-linecap', 'stroke-linejoin', 'stroke-miterlimit', 'stroke-opacity', 'stroke-width', 'systemLanguage', 'target', 'text-anchor', 'to', 'transform', 'type', 'u1', 'u2', 'underline-position', 'underline-thickness', 'unicode', 'unicode-range', 'units-per-em', 'values', 'version', 'viewBox', 'visibility', 'width', 'widths', 'x', 'x-height', 'x1', 'x2', 'xlink:actuate', 'xlink:arcrole', 'xlink:href', 'xlink:role', 'xlink:show', 'xlink:title', 'xlink:type', 'xml:base', 'xml:lang', 'xml:space', 'xmlns', 'xmlns:xlink', 'y', 'y1', 'y2', 'zoomAndPan'] attr_val_is_uri = ['href', 'src', 'cite', 'action', 'longdesc', 'poster', 'xlink:href', 'xml:base'] svg_attr_val_allows_ref = ['clip-path', 'color-profile', 'cursor', 'fill', 'filter', 'marker', 'marker-start', 'marker-mid', 'marker-end', 'mask', 'stroke'] svg_allow_local_href = ['altGlyph', 'animate', 'animateColor', 'animateMotion', 'animateTransform', 'cursor', 'feImage', 'filter', 'linearGradient', 'pattern', 'radialGradient', 'textpath', 'tref', 'set', 'use'] acceptable_css_properties = ['azimuth', 'background-color', 'border-bottom-color', 'border-collapse', 'border-color', 'border-left-color', 'border-right-color', 'border-top-color', 'clear', 'color', 'cursor', 'direction', 'display', 'elevation', 'float', 'font', 'font-family', 'font-size', 'font-style', 'font-variant', 'font-weight', 'height', 'letter-spacing', 'line-height', 'overflow', 'pause', 'pause-after', 'pause-before', 'pitch', 'pitch-range', 'richness', 'speak', 'speak-header', 'speak-numeral', 'speak-punctuation', 'speech-rate', 'stress', 'text-align', 'text-decoration', 'text-indent', 'unicode-bidi', 'vertical-align', 'voice-family', 'volume', 'white-space', 'width'] acceptable_css_keywords = ['auto', 'aqua', 'black', 'block', 'blue', 'bold', 'both', 'bottom', 'brown', 'center', 'collapse', 'dashed', 'dotted', 'fuchsia', 'gray', 'green', '!important', 'italic', 'left', 'lime', 'maroon', 'medium', 'none', 'navy', 'normal', 'nowrap', 'olive', 'pointer', 'purple', 'red', 'right', 'solid', 'silver', 'teal', 'top', 'transparent', 'underline', 'white', 'yellow'] acceptable_svg_properties = ['fill', 'fill-opacity', 'fill-rule', 'stroke', 'stroke-width', 'stroke-linecap', 'stroke-linejoin', 'stroke-opacity'] acceptable_protocols = ['ed2k', 'ftp', 'http', 'https', 'irc', 'mailto', 'news', 'gopher', 'nntp', 'telnet', 'webcal', 'xmpp', 'callto', 'feed', 'urn', 'aim', 'rsync', 'tag', 'ssh', 'sftp', 'rtsp', 'afs'] # subclasses may define their own versions of these constants allowed_elements = acceptable_elements + mathml_elements + svg_elements allowed_attributes = acceptable_attributes + mathml_attributes + svg_attributes allowed_css_properties = acceptable_css_properties allowed_css_keywords = acceptable_css_keywords allowed_svg_properties = acceptable_svg_properties allowed_protocols = acceptable_protocols # Sanitize the +html+, escaping all elements not in ALLOWED_ELEMENTS, and # stripping out all # attributes not in ALLOWED_ATTRIBUTES. Style # attributes are parsed, and a restricted set, # specified by # ALLOWED_CSS_PROPERTIES and ALLOWED_CSS_KEYWORDS, are allowed through. # attributes in ATTR_VAL_IS_URI are scanned, and only URI schemes specified # in ALLOWED_PROTOCOLS are allowed. # # sanitize_html('<script> do_nasty_stuff() </script>') # => &lt;script> do_nasty_stuff() &lt;/script> # sanitize_html('<a href="javascript: sucker();">Click here for $100</a>') # => <a>Click here for $100</a> def sanitize_token(self, token): # accommodate filters which use token_type differently token_type = token["type"] if token_type in list(tokenTypes.keys()): token_type = tokenTypes[token_type] if token_type in (tokenTypes["StartTag"], tokenTypes["EndTag"], tokenTypes["EmptyTag"]): if token["name"] in self.allowed_elements: return self.allowed_token(token, token_type) else: return self.disallowed_token(token, token_type) elif token_type == tokenTypes["Comment"]: pass else: return token def allowed_token(self, token, token_type): if "data" in token: attrs = dict([(name, val) for name, val in token["data"][::-1] if name in self.allowed_attributes]) for attr in self.attr_val_is_uri: if attr not in attrs: continue val_unescaped = re.sub("[`\000-\040\177-\240\s]+", '', unescape(attrs[attr])).lower() # remove replacement characters from unescaped characters val_unescaped = val_unescaped.replace("\ufffd", "") if (re.match("^[a-z0-9][-+.a-z0-9]*:", val_unescaped) and (val_unescaped.split(':')[0] not in self.allowed_protocols)): del attrs[attr] for attr in self.svg_attr_val_allows_ref: if attr in attrs: attrs[attr] = re.sub(r'url\s*\(\s*[^#\s][^)]+?\)', ' ', unescape(attrs[attr])) if (token["name"] in self.svg_allow_local_href and 'xlink:href' in attrs and re.search('^\s*[^#\s].*', attrs['xlink:href'])): del attrs['xlink:href'] if 'style' in attrs: attrs['style'] = self.sanitize_css(attrs['style']) token["data"] = [[name, val] for name, val in list(attrs.items())] return token def disallowed_token(self, token, token_type): if token_type == tokenTypes["EndTag"]: token["data"] = "</%s>" % token["name"] elif token["data"]: attrs = ''.join([' %s="%s"' % (k, escape(v)) for k, v in token["data"]]) token["data"] = "<%s%s>" % (token["name"], attrs) else: token["data"] = "<%s>" % token["name"] if token.get("selfClosing"): token["data"] = token["data"][:-1] + "/>" if token["type"] in list(tokenTypes.keys()): token["type"] = "Characters" else: token["type"] = tokenTypes["Characters"] del token["name"] return token def sanitize_css(self, style): # disallow urls style = re.compile('url\s*\(\s*[^\s)]+?\s*\)\s*').sub(' ', style) # gauntlet if not re.match("""^([:,;#%.\sa-zA-Z0-9!]|\w-\w|'[\s\w]+'|"[\s\w]+"|\([\d,\s]+\))*$""", style): return '' if not re.match("^\s*([-\w]+\s*:[^:;]*(;\s*|$))*$", style): return '' clean = [] for prop, value in re.findall("([-\w]+)\s*:\s*([^:;]*)", style): if not value: continue if prop.lower() in self.allowed_css_properties: clean.append(prop + ': ' + value + ';') elif prop.split('-')[0].lower() in ['background', 'border', 'margin', 'padding']: for keyword in value.split(): if not keyword in self.acceptable_css_keywords and \ not re.match("^(#[0-9a-f]+|rgb\(\d+%?,\d*%?,?\d*%?\)?|\d{0,2}\.?\d{0,2}(cm|em|ex|in|mm|pc|pt|px|%|,|\))?)$", keyword): break else: clean.append(prop + ': ' + value + ';') elif prop.lower() in self.allowed_svg_properties: clean.append(prop + ': ' + value + ';') return ' '.join(clean) class HTMLSanitizer(HTMLTokenizer, HTMLSanitizerMixin): def __init__(self, stream, encoding=None, parseMeta=True, useChardet=True, lowercaseElementName=False, lowercaseAttrName=False, parser=None): # Change case matching defaults as we only output lowercase html anyway # This solution doesn't seem ideal... HTMLTokenizer.__init__(self, stream, encoding, parseMeta, useChardet, lowercaseElementName, lowercaseAttrName, parser=parser) def __iter__(self): for token in HTMLTokenizer.__iter__(self): token = self.sanitize_token(token) if token: yield token
gpl-3.0
openprocurement/restkit
restkit/filters.py
2
3801
# -*- coding: utf-8 - # # This file is part of restkit released under the MIT license. # See the NOTICE for more information. import base64 import re try: from urlparse import parse_qsl except ImportError: from cgi import parse_qsl from urlparse import urlunparse from restkit.oauth2 import Request, SignatureMethod_HMAC_SHA1 class BasicAuth(object): """ Simple filter to manage basic authentification""" def __init__(self, username, password): self.credentials = (username, password) def on_request(self, request): encode = base64.b64encode("%s:%s" % self.credentials) request.headers['Authorization'] = 'Basic %s' % encode def validate_consumer(consumer): """ validate a consumer agains oauth2.Consumer object """ if not hasattr(consumer, "key"): raise ValueError("Invalid consumer.") return consumer def validate_token(token): """ validate a token agains oauth2.Token object """ if token is not None and not hasattr(token, "key"): raise ValueError("Invalid token.") return token class OAuthFilter(object): """ oauth filter """ def __init__(self, path, consumer, token=None, method=None, realm=""): """ Init OAuthFilter :param path: path or regexp. * mean all path on wicth oauth can be applied. :param consumer: oauth consumer, instance of oauth2.Consumer :param token: oauth token, instance of oauth2.Token :param method: oauth signature method token and method signature are optionnals. Consumer should be an instance of `oauth2.Consumer`, token an instance of `oauth2.Toke` signature method an instance of `oauth2.SignatureMethod`. """ if path.endswith('*'): self.match = re.compile("%s.*" % path.rsplit('*', 1)[0]) else: self.match = re.compile("%s$" % path) self.consumer = validate_consumer(consumer) self.token = validate_token(token) self.method = method or SignatureMethod_HMAC_SHA1() self.realm = realm def on_path(self, request): path = request.parsed_url.path or "/" return (self.match.match(path) is not None) def on_request(self, request): if not self.on_path(request): return params = {} form = False parsed_url = request.parsed_url if request.body and request.body is not None: ctype = request.headers.iget('content-type') if ctype is not None and \ ctype.startswith('application/x-www-form-urlencoded'): # we are in a form try to get oauth params from here form = True params = dict(parse_qsl(request.body)) # update params from quey parameters params.update(parse_qsl(parsed_url.query)) raw_url = urlunparse((parsed_url.scheme, parsed_url.netloc, parsed_url.path, '', '', '')) oauth_req = Request.from_consumer_and_token(self.consumer, token=self.token, http_method=request.method, http_url=raw_url, parameters=params, is_form_encoded=form) oauth_req.sign_request(self.method, self.consumer, self.token) if form: request.body = oauth_req.to_postdata() request.headers['Content-Length'] = len(request.body) elif request.method in ('GET', 'HEAD'): request.original_url = request.url request.url = oauth_req.to_url() else: oauth_headers = oauth_req.to_header(realm=self.realm) request.headers.update(oauth_headers)
apache-2.0
DxCx/nzbToMedia
libs/beets/ui/commands.py
4
50834
# This file is part of beets. # Copyright 2014, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """This module provides the default commands for beets' command-line interface. """ from __future__ import print_function import logging import os import time import itertools import codecs import platform import beets from beets import ui from beets.ui import print_, input_, decargs from beets import autotag from beets.autotag import recommendation from beets.autotag import hooks from beets import plugins from beets import importer from beets import util from beets.util import syspath, normpath, ancestry, displayable_path from beets.util.functemplate import Template from beets import library from beets import config from beets.util.confit import _package_path # Global logger. log = logging.getLogger('beets') # The list of default subcommands. This is populated with Subcommand # objects that can be fed to a SubcommandsOptionParser. default_commands = [] # Utilities. def _do_query(lib, query, album, also_items=True): """For commands that operate on matched items, performs a query and returns a list of matching items and a list of matching albums. (The latter is only nonempty when album is True.) Raises a UserError if no items match. also_items controls whether, when fetching albums, the associated items should be fetched also. """ if album: albums = list(lib.albums(query)) items = [] if also_items: for al in albums: items += al.items() else: albums = [] items = list(lib.items(query)) if album and not albums: raise ui.UserError('No matching albums found.') elif not album and not items: raise ui.UserError('No matching items found.') return items, albums # fields: Shows a list of available fields for queries and format strings. fields_cmd = ui.Subcommand('fields', help='show fields available for queries and format strings') def fields_func(lib, opts, args): def _print_rows(names): print(" " + "\n ".join(names)) def _show_plugin_fields(album): plugin_fields = [] for plugin in plugins.find_plugins(): if album: fdict = plugin.album_template_fields else: fdict = plugin.template_fields plugin_fields += fdict.keys() if plugin_fields: print("Template fields from plugins:") _print_rows(plugin_fields) print("Item fields:") _print_rows(library.ITEM_KEYS) _show_plugin_fields(False) print("\nAlbum fields:") _print_rows(library.ALBUM_KEYS) _show_plugin_fields(True) fields_cmd.func = fields_func default_commands.append(fields_cmd) # import: Autotagger and importer. VARIOUS_ARTISTS = u'Various Artists' # Importer utilities and support. def disambig_string(info): """Generate a string for an AlbumInfo or TrackInfo object that provides context that helps disambiguate similar-looking albums and tracks. """ disambig = [] if info.data_source and info.data_source != 'MusicBrainz': disambig.append(info.data_source) if isinstance(info, hooks.AlbumInfo): if info.media: if info.mediums > 1: disambig.append(u'{0}x{1}'.format( info.mediums, info.media )) else: disambig.append(info.media) if info.year: disambig.append(unicode(info.year)) if info.country: disambig.append(info.country) if info.label: disambig.append(info.label) if info.albumdisambig: disambig.append(info.albumdisambig) if disambig: return u', '.join(disambig) def dist_string(dist): """Formats a distance (a float) as a colorized similarity percentage string. """ out = '%.1f%%' % ((1 - dist) * 100) if dist <= config['match']['strong_rec_thresh'].as_number(): out = ui.colorize('green', out) elif dist <= config['match']['medium_rec_thresh'].as_number(): out = ui.colorize('yellow', out) else: out = ui.colorize('red', out) return out def penalty_string(distance, limit=None): """Returns a colorized string that indicates all the penalties applied to a distance object. """ penalties = [] for key in distance.keys(): key = key.replace('album_', '') key = key.replace('track_', '') key = key.replace('_', ' ') penalties.append(key) if penalties: if limit and len(penalties) > limit: penalties = penalties[:limit] + ['...'] return ui.colorize('yellow', '(%s)' % ', '.join(penalties)) def show_change(cur_artist, cur_album, match): """Print out a representation of the changes that will be made if an album's tags are changed according to `match`, which must be an AlbumMatch object. """ def show_album(artist, album): if artist: album_description = u' %s - %s' % (artist, album) elif album: album_description = u' %s' % album else: album_description = u' (unknown album)' print_(album_description) def format_index(track_info): """Return a string representing the track index of the given TrackInfo or Item object. """ if isinstance(track_info, hooks.TrackInfo): index = track_info.index medium_index = track_info.medium_index medium = track_info.medium mediums = match.info.mediums else: index = medium_index = track_info.track medium = track_info.disc mediums = track_info.disctotal if config['per_disc_numbering']: if mediums > 1: return u'{0}-{1}'.format(medium, medium_index) else: return unicode(medium_index) else: return unicode(index) # Identify the album in question. if cur_artist != match.info.artist or \ (cur_album != match.info.album and match.info.album != VARIOUS_ARTISTS): artist_l, artist_r = cur_artist or '', match.info.artist album_l, album_r = cur_album or '', match.info.album if artist_r == VARIOUS_ARTISTS: # Hide artists for VA releases. artist_l, artist_r = u'', u'' artist_l, artist_r = ui.colordiff(artist_l, artist_r) album_l, album_r = ui.colordiff(album_l, album_r) print_("Correcting tags from:") show_album(artist_l, album_l) print_("To:") show_album(artist_r, album_r) else: print_(u"Tagging:\n {0.artist} - {0.album}".format(match.info)) # Data URL. if match.info.data_url: print_('URL:\n %s' % match.info.data_url) # Info line. info = [] # Similarity. info.append('(Similarity: %s)' % dist_string(match.distance)) # Penalties. penalties = penalty_string(match.distance) if penalties: info.append(penalties) # Disambiguation. disambig = disambig_string(match.info) if disambig: info.append(ui.colorize('lightgray', '(%s)' % disambig)) print_(' '.join(info)) # Tracks. pairs = match.mapping.items() pairs.sort(key=lambda (_, track_info): track_info.index) # Build up LHS and RHS for track difference display. The `lines` list # contains ``(lhs, rhs, width)`` tuples where `width` is the length (in # characters) of the uncolorized LHS. lines = [] medium = disctitle = None for item, track_info in pairs: # Medium number and title. if medium != track_info.medium or disctitle != track_info.disctitle: media = match.info.media or 'Media' if match.info.mediums > 1 and track_info.disctitle: lhs = '%s %s: %s' % (media, track_info.medium, track_info.disctitle) elif match.info.mediums > 1: lhs = '%s %s' % (media, track_info.medium) elif track_info.disctitle: lhs = '%s: %s' % (media, track_info.disctitle) else: lhs = None if lhs: lines.append((lhs, '', 0)) medium, disctitle = track_info.medium, track_info.disctitle # Titles. new_title = track_info.title if not item.title.strip(): # If there's no title, we use the filename. cur_title = displayable_path(os.path.basename(item.path)) lhs, rhs = cur_title, new_title else: cur_title = item.title.strip() lhs, rhs = ui.colordiff(cur_title, new_title) lhs_width = len(cur_title) # Track number change. cur_track, new_track = format_index(item), format_index(track_info) if cur_track != new_track: if item.track in (track_info.index, track_info.medium_index): color = 'lightgray' else: color = 'red' if (cur_track + new_track).count('-') == 1: lhs_track, rhs_track = ui.colorize(color, cur_track), \ ui.colorize(color, new_track) else: color = 'red' lhs_track, rhs_track = ui.color_diff_suffix(cur_track, new_track) templ = ui.colorize(color, u' (#') + u'{0}' + \ ui.colorize(color, u')') lhs += templ.format(lhs_track) rhs += templ.format(rhs_track) lhs_width += len(cur_track) + 4 # Length change. if item.length and track_info.length and \ abs(item.length - track_info.length) > \ config['ui']['length_diff_thresh'].as_number(): cur_length = ui.human_seconds_short(item.length) new_length = ui.human_seconds_short(track_info.length) lhs_length, rhs_length = ui.color_diff_suffix(cur_length, new_length) templ = ui.colorize('red', u' (') + u'{0}' + \ ui.colorize('red', u')') lhs += templ.format(lhs_length) rhs += templ.format(rhs_length) lhs_width += len(cur_length) + 3 # Penalties. penalties = penalty_string(match.distance.tracks[track_info]) if penalties: rhs += ' %s' % penalties if lhs != rhs: lines.append((' * %s' % lhs, rhs, lhs_width)) elif config['import']['detail']: lines.append((' * %s' % lhs, '', lhs_width)) # Print each track in two columns, or across two lines. col_width = (ui.term_width() - len(''.join([' * ', ' -> ']))) // 2 if lines: max_width = max(w for _, _, w in lines) for lhs, rhs, lhs_width in lines: if not rhs: print_(lhs) elif max_width > col_width: print_(u'%s ->\n %s' % (lhs, rhs)) else: pad = max_width - lhs_width print_(u'%s%s -> %s' % (lhs, ' ' * pad, rhs)) # Missing and unmatched tracks. if match.extra_tracks: print_('Missing tracks:') for track_info in match.extra_tracks: line = ' ! %s (#%s)' % (track_info.title, format_index(track_info)) if track_info.length: line += ' (%s)' % ui.human_seconds_short(track_info.length) print_(ui.colorize('yellow', line)) if match.extra_items: print_('Unmatched tracks:') for item in match.extra_items: line = ' ! %s (#%s)' % (item.title, format_index(item)) if item.length: line += ' (%s)' % ui.human_seconds_short(item.length) print_(ui.colorize('yellow', line)) def show_item_change(item, match): """Print out the change that would occur by tagging `item` with the metadata from `match`, a TrackMatch object. """ cur_artist, new_artist = item.artist, match.info.artist cur_title, new_title = item.title, match.info.title if cur_artist != new_artist or cur_title != new_title: cur_artist, new_artist = ui.colordiff(cur_artist, new_artist) cur_title, new_title = ui.colordiff(cur_title, new_title) print_("Correcting track tags from:") print_(" %s - %s" % (cur_artist, cur_title)) print_("To:") print_(" %s - %s" % (new_artist, new_title)) else: print_("Tagging track: %s - %s" % (cur_artist, cur_title)) # Data URL. if match.info.data_url: print_('URL:\n %s' % match.info.data_url) # Info line. info = [] # Similarity. info.append('(Similarity: %s)' % dist_string(match.distance)) # Penalties. penalties = penalty_string(match.distance) if penalties: info.append(penalties) # Disambiguation. disambig = disambig_string(match.info) if disambig: info.append(ui.colorize('lightgray', '(%s)' % disambig)) print_(' '.join(info)) def _summary_judment(rec): """Determines whether a decision should be made without even asking the user. This occurs in quiet mode and when an action is chosen for NONE recommendations. Return an action or None if the user should be queried. May also print to the console if a summary judgment is made. """ if config['import']['quiet']: if rec == recommendation.strong: return importer.action.APPLY else: action = config['import']['quiet_fallback'].as_choice({ 'skip': importer.action.SKIP, 'asis': importer.action.ASIS, }) elif rec == recommendation.none: action = config['import']['none_rec_action'].as_choice({ 'skip': importer.action.SKIP, 'asis': importer.action.ASIS, 'ask': None, }) else: return None if action == importer.action.SKIP: print_('Skipping.') elif action == importer.action.ASIS: print_('Importing as-is.') return action def choose_candidate(candidates, singleton, rec, cur_artist=None, cur_album=None, item=None, itemcount=None): """Given a sorted list of candidates, ask the user for a selection of which candidate to use. Applies to both full albums and singletons (tracks). Candidates are either AlbumMatch or TrackMatch objects depending on `singleton`. for albums, `cur_artist`, `cur_album`, and `itemcount` must be provided. For singletons, `item` must be provided. Returns the result of the choice, which may SKIP, ASIS, TRACKS, or MANUAL or a candidate (an AlbumMatch/TrackMatch object). """ # Sanity check. if singleton: assert item is not None else: assert cur_artist is not None assert cur_album is not None # Zero candidates. if not candidates: if singleton: print_("No matching recordings found.") opts = ('Use as-is', 'Skip', 'Enter search', 'enter Id', 'aBort') else: print_("No matching release found for {0} tracks." .format(itemcount)) print_('For help, see: ' 'http://beets.readthedocs.org/en/latest/faq.html#nomatch') opts = ('Use as-is', 'as Tracks', 'Group albums', 'Skip', 'Enter search', 'enter Id', 'aBort') sel = ui.input_options(opts) if sel == 'u': return importer.action.ASIS elif sel == 't': assert not singleton return importer.action.TRACKS elif sel == 'e': return importer.action.MANUAL elif sel == 's': return importer.action.SKIP elif sel == 'b': raise importer.ImportAbort() elif sel == 'i': return importer.action.MANUAL_ID elif sel == 'g': return importer.action.ALBUMS else: assert False # Is the change good enough? bypass_candidates = False if rec != recommendation.none: match = candidates[0] bypass_candidates = True while True: # Display and choose from candidates. require = rec <= recommendation.low if not bypass_candidates: # Display list of candidates. print_(u'Finding tags for {0} "{1} - {2}".'.format( u'track' if singleton else u'album', item.artist if singleton else cur_artist, item.title if singleton else cur_album, )) print_(u'Candidates:') for i, match in enumerate(candidates): # Index, metadata, and distance. line = [ u'{0}.'.format(i + 1), u'{0} - {1}'.format( match.info.artist, match.info.title if singleton else match.info.album, ), u'({0})'.format(dist_string(match.distance)), ] # Penalties. penalties = penalty_string(match.distance, 3) if penalties: line.append(penalties) # Disambiguation disambig = disambig_string(match.info) if disambig: line.append(ui.colorize('lightgray', '(%s)' % disambig)) print_(' '.join(line)) # Ask the user for a choice. if singleton: opts = ('Skip', 'Use as-is', 'Enter search', 'enter Id', 'aBort') else: opts = ('Skip', 'Use as-is', 'as Tracks', 'Group albums', 'Enter search', 'enter Id', 'aBort') sel = ui.input_options(opts, numrange=(1, len(candidates))) if sel == 's': return importer.action.SKIP elif sel == 'u': return importer.action.ASIS elif sel == 'm': pass elif sel == 'e': return importer.action.MANUAL elif sel == 't': assert not singleton return importer.action.TRACKS elif sel == 'b': raise importer.ImportAbort() elif sel == 'i': return importer.action.MANUAL_ID elif sel == 'g': return importer.action.ALBUMS else: # Numerical selection. match = candidates[sel - 1] if sel != 1: # When choosing anything but the first match, # disable the default action. require = True bypass_candidates = False # Show what we're about to do. if singleton: show_item_change(item, match) else: show_change(cur_artist, cur_album, match) # Exact match => tag automatically if we're not in timid mode. if rec == recommendation.strong and not config['import']['timid']: return match # Ask for confirmation. if singleton: opts = ('Apply', 'More candidates', 'Skip', 'Use as-is', 'Enter search', 'enter Id', 'aBort') else: opts = ('Apply', 'More candidates', 'Skip', 'Use as-is', 'as Tracks', 'Group albums', 'Enter search', 'enter Id', 'aBort') default = config['import']['default_action'].as_choice({ 'apply': 'a', 'skip': 's', 'asis': 'u', 'none': None, }) if default is None: require = True sel = ui.input_options(opts, require=require, default=default) if sel == 'a': return match elif sel == 'g': return importer.action.ALBUMS elif sel == 's': return importer.action.SKIP elif sel == 'u': return importer.action.ASIS elif sel == 't': assert not singleton return importer.action.TRACKS elif sel == 'e': return importer.action.MANUAL elif sel == 'b': raise importer.ImportAbort() elif sel == 'i': return importer.action.MANUAL_ID def manual_search(singleton): """Input either an artist and album (for full albums) or artist and track name (for singletons) for manual search. """ artist = input_('Artist:') name = input_('Track:' if singleton else 'Album:') return artist.strip(), name.strip() def manual_id(singleton): """Input an ID, either for an album ("release") or a track ("recording"). """ prompt = u'Enter {0} ID:'.format('recording' if singleton else 'release') return input_(prompt).strip() class TerminalImportSession(importer.ImportSession): """An import session that runs in a terminal. """ def choose_match(self, task): """Given an initial autotagging of items, go through an interactive dance with the user to ask for a choice of metadata. Returns an AlbumMatch object, ASIS, or SKIP. """ # Show what we're tagging. print_() print_(displayable_path(task.paths, u'\n') + u' ({0} items)'.format(len(task.items))) # Take immediate action if appropriate. action = _summary_judment(task.rec) if action == importer.action.APPLY: match = task.candidates[0] show_change(task.cur_artist, task.cur_album, match) return match elif action is not None: return action # Loop until we have a choice. candidates, rec = task.candidates, task.rec while True: # Ask for a choice from the user. choice = choose_candidate(candidates, False, rec, task.cur_artist, task.cur_album, itemcount=len(task.items)) # Choose which tags to use. if choice in (importer.action.SKIP, importer.action.ASIS, importer.action.TRACKS, importer.action.ALBUMS): # Pass selection to main control flow. return choice elif choice is importer.action.MANUAL: # Try again with manual search terms. search_artist, search_album = manual_search(False) _, _, candidates, rec = autotag.tag_album( task.items, search_artist, search_album ) elif choice is importer.action.MANUAL_ID: # Try a manually-entered ID. search_id = manual_id(False) if search_id: _, _, candidates, rec = autotag.tag_album( task.items, search_id=search_id ) else: # We have a candidate! Finish tagging. Here, choice is an # AlbumMatch object. assert isinstance(choice, autotag.AlbumMatch) return choice def choose_item(self, task): """Ask the user for a choice about tagging a single item. Returns either an action constant or a TrackMatch object. """ print_() print_(task.item.path) candidates, rec = task.candidates, task.rec # Take immediate action if appropriate. action = _summary_judment(task.rec) if action == importer.action.APPLY: match = candidates[0] show_item_change(task.item, match) return match elif action is not None: return action while True: # Ask for a choice. choice = choose_candidate(candidates, True, rec, item=task.item) if choice in (importer.action.SKIP, importer.action.ASIS): return choice elif choice == importer.action.TRACKS: assert False # TRACKS is only legal for albums. elif choice == importer.action.MANUAL: # Continue in the loop with a new set of candidates. search_artist, search_title = manual_search(True) candidates, rec = autotag.tag_item(task.item, search_artist, search_title) elif choice == importer.action.MANUAL_ID: # Ask for a track ID. search_id = manual_id(True) if search_id: candidates, rec = autotag.tag_item(task.item, search_id=search_id) else: # Chose a candidate. assert isinstance(choice, autotag.TrackMatch) return choice def resolve_duplicate(self, task): """Decide what to do when a new album or item seems similar to one that's already in the library. """ log.warn("This %s is already in the library!" % ("album" if task.is_album else "item")) if config['import']['quiet']: # In quiet mode, don't prompt -- just skip. log.info('Skipping.') sel = 's' else: sel = ui.input_options( ('Skip new', 'Keep both', 'Remove old') ) if sel == 's': # Skip new. task.set_choice(importer.action.SKIP) elif sel == 'k': # Keep both. Do nothing; leave the choice intact. pass elif sel == 'r': # Remove old. task.remove_duplicates = True else: assert False def should_resume(self, path): return ui.input_yn(u"Import of the directory:\n{0}\n" "was interrupted. Resume (Y/n)?" .format(displayable_path(path))) # The import command. def import_files(lib, paths, query): """Import the files in the given list of paths or matching the query. """ # Check the user-specified directories. for path in paths: fullpath = syspath(normpath(path)) if not config['import']['singletons'] and not os.path.isdir(fullpath): raise ui.UserError(u'not a directory: {0}'.format( displayable_path(path))) elif config['import']['singletons'] and not os.path.exists(fullpath): raise ui.UserError(u'no such file: {0}'.format( displayable_path(path))) # Check parameter consistency. if config['import']['quiet'] and config['import']['timid']: raise ui.UserError("can't be both quiet and timid") # Open the log. if config['import']['log'].get() is not None: logpath = config['import']['log'].as_filename() try: logfile = codecs.open(syspath(logpath), 'a', 'utf8') except IOError: raise ui.UserError(u"could not open log file for writing: %s" % displayable_path(logpath)) print(u'import started', time.asctime(), file=logfile) else: logfile = None # Never ask for input in quiet mode. if config['import']['resume'].get() == 'ask' and \ config['import']['quiet']: config['import']['resume'] = False session = TerminalImportSession(lib, logfile, paths, query) try: session.run() finally: # If we were logging, close the file. if logfile: print(u'', file=logfile) logfile.close() # Emit event. plugins.send('import', lib=lib, paths=paths) import_cmd = ui.Subcommand('import', help='import new music', aliases=('imp', 'im')) import_cmd.parser.add_option('-c', '--copy', action='store_true', default=None, help="copy tracks into library directory (default)") import_cmd.parser.add_option('-C', '--nocopy', action='store_false', dest='copy', help="don't copy tracks (opposite of -c)") import_cmd.parser.add_option('-w', '--write', action='store_true', default=None, help="write new metadata to files' tags (default)") import_cmd.parser.add_option('-W', '--nowrite', action='store_false', dest='write', help="don't write metadata (opposite of -w)") import_cmd.parser.add_option('-a', '--autotag', action='store_true', dest='autotag', help="infer tags for imported files (default)") import_cmd.parser.add_option('-A', '--noautotag', action='store_false', dest='autotag', help="don't infer tags for imported files (opposite of -a)") import_cmd.parser.add_option('-p', '--resume', action='store_true', default=None, help="resume importing if interrupted") import_cmd.parser.add_option('-P', '--noresume', action='store_false', dest='resume', help="do not try to resume importing") import_cmd.parser.add_option('-q', '--quiet', action='store_true', dest='quiet', help="never prompt for input: skip albums instead") import_cmd.parser.add_option('-l', '--log', dest='log', help='file to log untaggable albums for later review') import_cmd.parser.add_option('-s', '--singletons', action='store_true', help='import individual tracks instead of full albums') import_cmd.parser.add_option('-t', '--timid', dest='timid', action='store_true', help='always confirm all actions') import_cmd.parser.add_option('-L', '--library', dest='library', action='store_true', help='retag items matching a query') import_cmd.parser.add_option('-i', '--incremental', dest='incremental', action='store_true', help='skip already-imported directories') import_cmd.parser.add_option('-I', '--noincremental', dest='incremental', action='store_false', help='do not skip already-imported directories') import_cmd.parser.add_option('--flat', dest='flat', action='store_true', help='import an entire tree as a single album') import_cmd.parser.add_option('-g', '--group-albums', dest='group_albums', action='store_true', help='group tracks in a folder into seperate albums') def import_func(lib, opts, args): config['import'].set_args(opts) # Special case: --copy flag suppresses import_move (which would # otherwise take precedence). if opts.copy: config['import']['move'] = False if opts.library: query = decargs(args) paths = [] else: query = None paths = args if not paths: raise ui.UserError('no path specified') import_files(lib, paths, query) import_cmd.func = import_func default_commands.append(import_cmd) # list: Query and show library contents. def list_items(lib, query, album, fmt): """Print out items in lib matching query. If album, then search for albums instead of single items. """ tmpl = Template(ui._pick_format(album, fmt)) if album: for album in lib.albums(query): ui.print_obj(album, lib, tmpl) else: for item in lib.items(query): ui.print_obj(item, lib, tmpl) list_cmd = ui.Subcommand('list', help='query the library', aliases=('ls',)) list_cmd.parser.add_option('-a', '--album', action='store_true', help='show matching albums instead of tracks') list_cmd.parser.add_option('-p', '--path', action='store_true', help='print paths for matched items or albums') list_cmd.parser.add_option('-f', '--format', action='store', help='print with custom format', default=None) def list_func(lib, opts, args): if opts.path: fmt = '$path' else: fmt = opts.format list_items(lib, decargs(args), opts.album, fmt) list_cmd.func = list_func default_commands.append(list_cmd) # update: Update library contents according to on-disk tags. def update_items(lib, query, album, move, pretend): """For all the items matched by the query, update the library to reflect the item's embedded tags. """ with lib.transaction(): items, _ = _do_query(lib, query, album) # Walk through the items and pick up their changes. affected_albums = set() for item in items: # Item deleted? if not os.path.exists(syspath(item.path)): ui.print_obj(item, lib) ui.print_(ui.colorize('red', u' deleted')) if not pretend: item.remove(True) affected_albums.add(item.album_id) continue # Did the item change since last checked? if item.current_mtime() <= item.mtime: log.debug(u'skipping %s because mtime is up to date (%i)' % (displayable_path(item.path), item.mtime)) continue # Read new data. try: item.read() except Exception as exc: log.error(u'error reading {0}: {1}'.format( displayable_path(item.path), exc)) continue # Special-case album artist when it matches track artist. (Hacky # but necessary for preserving album-level metadata for non- # autotagged imports.) if not item.albumartist: old_item = lib.get_item(item.id) if old_item.albumartist == old_item.artist == item.artist: item.albumartist = old_item.albumartist item._dirty.discard('albumartist') # Check for and display changes. changed = ui.show_model_changes(item, fields=library.ITEM_KEYS_META) # Save changes. if not pretend: if changed: # Move the item if it's in the library. if move and lib.directory in ancestry(item.path): item.move() item.store() affected_albums.add(item.album_id) else: # The file's mtime was different, but there were no # changes to the metadata. Store the new mtime, # which is set in the call to read(), so we don't # check this again in the future. item.store() # Skip album changes while pretending. if pretend: return # Modify affected albums to reflect changes in their items. for album_id in affected_albums: if album_id is None: # Singletons. continue album = lib.get_album(album_id) if not album: # Empty albums have already been removed. log.debug('emptied album %i' % album_id) continue first_item = album.items().get() # Update album structure to reflect an item in it. for key in library.ALBUM_KEYS_ITEM: album[key] = first_item[key] album.store() # Move album art (and any inconsistent items). if move and lib.directory in ancestry(first_item.path): log.debug('moving album %i' % album_id) album.move() update_cmd = ui.Subcommand('update', help='update the library', aliases=('upd','up',)) update_cmd.parser.add_option('-a', '--album', action='store_true', help='match albums instead of tracks') update_cmd.parser.add_option('-M', '--nomove', action='store_false', default=True, dest='move', help="don't move files in library") update_cmd.parser.add_option('-p', '--pretend', action='store_true', help="show all changes but do nothing") update_cmd.parser.add_option('-f', '--format', action='store', help='print with custom format', default=None) def update_func(lib, opts, args): update_items(lib, decargs(args), opts.album, opts.move, opts.pretend) update_cmd.func = update_func default_commands.append(update_cmd) # remove: Remove items from library, delete files. def remove_items(lib, query, album, delete): """Remove items matching query from lib. If album, then match and remove whole albums. If delete, also remove files from disk. """ # Get the matching items. items, albums = _do_query(lib, query, album) # Show all the items. for item in items: ui.print_obj(item, lib) # Confirm with user. print_() if delete: prompt = 'Really DELETE %i files (y/n)?' % len(items) else: prompt = 'Really remove %i items from the library (y/n)?' % \ len(items) if not ui.input_yn(prompt, True): return # Remove (and possibly delete) items. with lib.transaction(): for obj in (albums if album else items): obj.remove(delete) remove_cmd = ui.Subcommand('remove', help='remove matching items from the library', aliases=('rm',)) remove_cmd.parser.add_option("-d", "--delete", action="store_true", help="also remove files from disk") remove_cmd.parser.add_option('-a', '--album', action='store_true', help='match albums instead of tracks') def remove_func(lib, opts, args): remove_items(lib, decargs(args), opts.album, opts.delete) remove_cmd.func = remove_func default_commands.append(remove_cmd) # stats: Show library/query statistics. def show_stats(lib, query, exact): """Shows some statistics about the matched items.""" items = lib.items(query) total_size = 0 total_time = 0.0 total_items = 0 artists = set() albums = set() for item in items: if exact: total_size += os.path.getsize(item.path) else: total_size += int(item.length * item.bitrate / 8) total_time += item.length total_items += 1 artists.add(item.artist) albums.add(item.album) size_str = '' + ui.human_bytes(total_size) if exact: size_str += ' ({0} bytes)'.format(total_size) print_("""Tracks: {0} Total time: {1} ({2:.2f} seconds) Total size: {3} Artists: {4} Albums: {5}""".format(total_items, ui.human_seconds(total_time), total_time, size_str, len(artists), len(albums))) stats_cmd = ui.Subcommand('stats', help='show statistics about the library or a query') stats_cmd.parser.add_option('-e', '--exact', action='store_true', help='get exact file sizes') def stats_func(lib, opts, args): show_stats(lib, decargs(args), opts.exact) stats_cmd.func = stats_func default_commands.append(stats_cmd) # version: Show current beets version. def show_version(lib, opts, args): print_('beets version %s' % beets.__version__) # Show plugins. names = [p.name for p in plugins.find_plugins()] if names: print_('plugins:', ', '.join(names)) else: print_('no plugins loaded') version_cmd = ui.Subcommand('version', help='output version information') version_cmd.func = show_version default_commands.append(version_cmd) # modify: Declaratively change metadata. def modify_items(lib, mods, dels, query, write, move, album, confirm): """Modifies matching items according to key=value assignments.""" # Parse key=value specifications into a dictionary. model_cls = library.Album if album else library.Item fsets = {} for mod in mods: key, value = mod.split('=', 1) fsets[key] = model_cls._parse(key, value) # Get the items to modify. items, albums = _do_query(lib, query, album, False) objs = albums if album else items # Apply changes *temporarily*, preview them, and collect modified # objects. print_('Modifying %i %ss.' % (len(objs), 'album' if album else 'item')) changed = set() for obj in objs: for field, value in fsets.iteritems(): obj[field] = value for field in dels: del obj[field] if ui.show_model_changes(obj): changed.add(obj) # Still something to do? if not changed: print_('No changes to make.') return # Confirm action. if confirm: extra = ' and write tags' if write else '' if not ui.input_yn('Really modify%s (Y/n)?' % extra): return # Apply changes to database. with lib.transaction(): for obj in changed: if move: cur_path = obj.path if lib.directory in ancestry(cur_path): # In library? log.debug('moving object %s' % cur_path) obj.move() obj.store() # Apply tags if requested. if write: if album: changed_items = itertools.chain(*(a.items() for a in changed)) else: changed_items = changed for item in changed_items: try: item.write() except library.FileOperationError as exc: log.error(exc) modify_cmd = ui.Subcommand('modify', help='change metadata fields', aliases=('mod',)) modify_cmd.parser.add_option('-M', '--nomove', action='store_false', default=True, dest='move', help="don't move files in library") modify_cmd.parser.add_option('-w', '--write', action='store_true', default=None, help="write new metadata to files' tags (default)") modify_cmd.parser.add_option('-W', '--nowrite', action='store_false', dest='write', help="don't write metadata (opposite of -w)") modify_cmd.parser.add_option('-a', '--album', action='store_true', help='modify whole albums instead of tracks') modify_cmd.parser.add_option('-y', '--yes', action='store_true', help='skip confirmation') modify_cmd.parser.add_option('-f', '--format', action='store', help='print with custom format', default=None) def modify_func(lib, opts, args): args = decargs(args) mods = [] dels = [] query = [] for arg in args: if arg.endswith('!') and '=' not in arg and ':' not in arg: dels.append(arg[:-1]) elif '=' in arg: mods.append(arg) else: query.append(arg) if not mods and not dels: raise ui.UserError('no modifications specified') write = opts.write if opts.write is not None else \ config['import']['write'].get(bool) modify_items(lib, mods, dels, query, write, opts.move, opts.album, not opts.yes) modify_cmd.func = modify_func default_commands.append(modify_cmd) # move: Move/copy files to the library or a new base directory. def move_items(lib, dest, query, copy, album): """Moves or copies items to a new base directory, given by dest. If dest is None, then the library's base directory is used, making the command "consolidate" files. """ items, albums = _do_query(lib, query, album, False) objs = albums if album else items action = 'Copying' if copy else 'Moving' entity = 'album' if album else 'item' log.info('%s %i %ss.' % (action, len(objs), entity)) for obj in objs: log.debug('moving: %s' % obj.path) obj.move(copy, basedir=dest) obj.store() move_cmd = ui.Subcommand('move', help='move or copy items', aliases=('mv',)) move_cmd.parser.add_option('-d', '--dest', metavar='DIR', dest='dest', help='destination directory') move_cmd.parser.add_option('-c', '--copy', default=False, action='store_true', help='copy instead of moving') move_cmd.parser.add_option('-a', '--album', default=False, action='store_true', help='match whole albums instead of tracks') def move_func(lib, opts, args): dest = opts.dest if dest is not None: dest = normpath(dest) if not os.path.isdir(dest): raise ui.UserError('no such directory: %s' % dest) move_items(lib, dest, decargs(args), opts.copy, opts.album) move_cmd.func = move_func default_commands.append(move_cmd) # write: Write tags into files. def write_items(lib, query, pretend): """Write tag information from the database to the respective files in the filesystem. """ items, albums = _do_query(lib, query, False, False) for item in items: # Item deleted? if not os.path.exists(syspath(item.path)): log.info(u'missing file: {0}'.format( util.displayable_path(item.path) )) continue # Get an Item object reflecting the "clean" (on-disk) state. try: clean_item = library.Item.from_path(item.path) except Exception as exc: log.error(u'error reading {0}: {1}'.format( displayable_path(item.path), exc )) continue # Check for and display changes. changed = ui.show_model_changes(item, clean_item, library.ITEM_KEYS_WRITABLE, always=True) if changed and not pretend: try: item.write() except library.FileOperationError as exc: log.error(exc) write_cmd = ui.Subcommand('write', help='write tag information to files') write_cmd.parser.add_option('-p', '--pretend', action='store_true', help="show all changes but do nothing") def write_func(lib, opts, args): write_items(lib, decargs(args), opts.pretend) write_cmd.func = write_func default_commands.append(write_cmd) # config: Show and edit user configuration. config_cmd = ui.Subcommand('config', help='show or edit the user configuration') config_cmd.parser.add_option('-p', '--paths', action='store_true', help='show files that configuration was loaded from') config_cmd.parser.add_option('-e', '--edit', action='store_true', help='edit user configuration with $EDITOR') config_cmd.parser.add_option('-d', '--defaults', action='store_true', help='include the default configuration') def config_func(lib, opts, args): # Make sure lazy configuration is loaded config.resolve() # Print paths. if opts.paths: filenames = [] for source in config.sources: if not opts.defaults and source.default: continue if source.filename: filenames.append(source.filename) # In case the user config file does not exist, prepend it to the # list. user_path = config.user_config_path() if user_path not in filenames: filenames.insert(0, user_path) for filename in filenames: print(filename) # Open in editor. elif opts.edit: path = config.user_config_path() if 'EDITOR' in os.environ: editor = os.environ['EDITOR'] args = [editor, editor, path] elif platform.system() == 'Darwin': args = ['open', 'open', '-n', path] elif platform.system() == 'Windows': # On windows we can execute arbitrary files. The os will # take care of starting an appropriate application args = [path, path] else: # Assume Unix args = ['xdg-open', 'xdg-open', path] try: os.execlp(*args) except OSError: raise ui.UserError("Could not edit configuration. Please" "set the EDITOR environment variable.") # Dump configuration. else: print(config.dump(full=opts.defaults)) config_cmd.func = config_func default_commands.append(config_cmd) # completion: print completion script completion_cmd = ui.Subcommand('completion', help='print shell script that provides command line completion') def print_completion(*args): for line in completion_script(default_commands + plugins.commands()): print(line, end='') if not (os.path.isfile(u'/etc/bash_completion') or os.path.isfile(u'/usr/share/bash-completion/bash_completion') or os.path.isfile(u'/usr/share/local/bash-completion/bash_completion')): log.warn(u'Warning: Unable to find the bash-completion package. ' u'Command line completion might not work.') def completion_script(commands): """Yield the full completion shell script as strings. ``commands`` is alist of ``ui.Subcommand`` instances to generate completion data for. """ base_script = os.path.join(_package_path('beets.ui'), 'completion_base.sh') with open(base_script, 'r') as base_script: yield base_script.read() options = {} aliases = {} command_names = [] # Collect subcommands for cmd in commands: name = cmd.name command_names.append(name) for alias in cmd.aliases: aliases[alias] = name options[name] = {'flags': [], 'opts': []} for opts in cmd.parser._get_all_options()[1:]: if opts.action in ('store_true', 'store_false'): option_type = 'flags' else: option_type = 'opts' options[name][option_type].extend( opts._short_opts + opts._long_opts ) # Add global options options['_global'] = { 'flags': ['-v', '--verbose'], 'opts': '-l --library -c --config -d --directory -h --help'.split(' ') } # Help subcommand command_names.append('help') # Add flags common to all commands options['_common'] = { 'flags': ['-h', '--help'] } # Start generating the script yield "_beet() {\n" # Command names yield " local commands='%s'\n" % ' '.join(command_names) yield "\n" # Command aliases yield " local aliases='%s'\n" % ' '.join(aliases.keys()) for alias, cmd in aliases.items(): yield " local alias__%s=%s\n" % (alias, cmd) yield '\n' # Fields yield " fields='%s'\n" % ' '.join( set(library.ITEM_KEYS + library.ALBUM_KEYS)) # Command options for cmd, opts in options.items(): for option_type, option_list in opts.items(): if option_list: option_list = ' '.join(option_list) yield " local %s__%s='%s'\n" % (option_type, cmd, option_list) yield ' _beet_dispatch\n' yield '}\n' completion_cmd.func = print_completion completion_cmd.hide = True default_commands.append(completion_cmd)
gpl-3.0