File size: 5,550 Bytes
13d5fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Copyright 2023 Thinh T. Duong
import os
import datasets
from huggingface_hub import HfFileSystem
from typing import List, Tuple
logger = datasets.logging.get_logger(__name__)
fs = HfFileSystem()
_CITATION = """
"""
_DESCRIPTION = """
This dataset contain denoised audio of Vietnamese speakers.
"""
_HOMEPAGE = "https://github.com/duytran1332002/vlr"
_MAIN_REPO_PATH = "datasets/phdkhanh2507/purified-vietnamese-audio"
_AUDIO_REPO_PATH = "datasets/phdkhanh2507/denoised-vietnamese-audio"
_REPO_URL = "https://huggingface.co/{}/resolve/main"
_URLS = {
"meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{channel}.parquet",
"audio": f"{_REPO_URL}/audio/".format(_AUDIO_REPO_PATH) + "{channel}.zip",
"transcript": f"{_REPO_URL}/transcript/".format(_MAIN_REPO_PATH) + "{channel}.zip",
}
_CONFIGS = ["all"]
if fs.exists(_MAIN_REPO_PATH + "/metadata"):
_CONFIGS.extend([
os.path.basename(file_name)[:-8]
for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False)
if file_name.endswith(".parquet")
])
class PurifiedVietnameseAudioConfig(datasets.BuilderConfig):
"""Purified Vietnamese Audio configuration."""
def __init__(self, name, **kwargs):
"""
:param name: Name of subset.
:param kwargs: Arguments.
"""
super().__init__(
name=name,
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
**kwargs,
)
class PurifiedVietnameseAudio(datasets.GeneratorBasedBuilder):
"""Purified Vietnamese Audio dataset."""
BUILDER_CONFIGS = [PurifiedVietnameseAudioConfig(name) for name in _CONFIGS]
DEFAULT_CONFIG_NAME = "all"
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features({
"id": datasets.Value("string"),
"channel": datasets.Value("string"),
"audio": datasets.Value("binary"),
"sampling_rate": datasets.Value("int64"),
"transcript": datasets.Value("string"),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Get splits.
:param dl_manager: Download manager.
:return: Splits.
"""
config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]
metadata_paths = dl_manager.download(
[_URLS["meta"].format(channel=channel) for channel in config_names]
)
audio_dirs = dl_manager.download_and_extract(
[_URLS["audio"].format(channel=channel) for channel in config_names]
)
transcript_dirs = dl_manager.download_and_extract(
[_URLS["transcript"].format(channel=channel) for channel in config_names]
)
audio_dict = {
channel: audio_dir for channel, audio_dir in zip(config_names, audio_dirs)
}
transcript_dict = {
channel: transcript_dir
for channel, transcript_dir in zip(config_names, transcript_dirs)
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_paths": metadata_paths,
"audio_dict": audio_dict,
"transcript_dict": transcript_dict,
},
),
]
def _generate_examples(
self, metadata_paths: List[str],
audio_dict: dict,
transcript_dict: dict,
) -> Tuple[int, dict]:
"""
Generate examples from metadata.
:param metadata_paths: Paths to metadata.
:param audio_dict: Paths to directory containing audios.
:param transcript_dict: Paths to directory containing transcripts.
:yield: Example.
"""
dataset = datasets.load_dataset(
"parquet",
data_files=metadata_paths,
split="train",
)
for i, sample in enumerate(dataset):
channel = sample["channel"]
audio_path = os.path.join(
audio_dict[channel], channel, sample["id"] + ".wav"
)
transcript_path = os.path.join(
transcript_dict[channel], channel, sample["id"] + ".txt"
)
yield i, {
"id": sample["id"],
"channel": channel,
"audio": self.__get_binary_data(audio_path),
"sampling_rate": sample["sampling_rate"],
"transcript": self.__get_text_data(transcript_path),
}
def __get_binary_data(self, path: str) -> bytes:
"""
Get binary data from path.
:param path: Path to file.
:return: Binary data.
"""
with open(path, "rb") as f:
return f.read()
def __get_text_data(self, path: str) -> str:
"""
Get transcript from path.
:param path: Path to transcript.
:return: Transcript.
"""
with open(path, "r", encoding="utf-8") as f:
return f.read().strip()
|