File size: 5,550 Bytes
13d5fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2023 Thinh T. Duong
import os
import datasets
from huggingface_hub import HfFileSystem
from typing import List, Tuple


logger = datasets.logging.get_logger(__name__)
fs = HfFileSystem()


_CITATION = """



"""
_DESCRIPTION = """

    This dataset contain denoised audio of Vietnamese speakers.

"""
_HOMEPAGE = "https://github.com/duytran1332002/vlr"
_MAIN_REPO_PATH = "datasets/phdkhanh2507/purified-vietnamese-audio"
_AUDIO_REPO_PATH = "datasets/phdkhanh2507/denoised-vietnamese-audio"
_REPO_URL = "https://huggingface.co/{}/resolve/main"
_URLS = {
    "meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{channel}.parquet",
    "audio": f"{_REPO_URL}/audio/".format(_AUDIO_REPO_PATH) + "{channel}.zip",
    "transcript": f"{_REPO_URL}/transcript/".format(_MAIN_REPO_PATH) + "{channel}.zip",
}
_CONFIGS = ["all"]
if fs.exists(_MAIN_REPO_PATH + "/metadata"):
    _CONFIGS.extend([
        os.path.basename(file_name)[:-8]
        for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False)
        if file_name.endswith(".parquet")
    ])


class PurifiedVietnameseAudioConfig(datasets.BuilderConfig):
    """Purified Vietnamese Audio configuration."""

    def __init__(self, name, **kwargs):
        """

        :param name:    Name of subset.

        :param kwargs:  Arguments.

        """
        super().__init__(
            name=name,
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
            **kwargs,
        )


class PurifiedVietnameseAudio(datasets.GeneratorBasedBuilder):
    """Purified Vietnamese Audio dataset."""

    BUILDER_CONFIGS = [PurifiedVietnameseAudioConfig(name) for name in _CONFIGS]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self) -> datasets.DatasetInfo:
        features = datasets.Features({
            "id": datasets.Value("string"),
            "channel": datasets.Value("string"),
            "audio": datasets.Value("binary"),
            "sampling_rate": datasets.Value("int64"),
            "transcript": datasets.Value("string"),
        })

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(

        self, dl_manager: datasets.DownloadManager

    ) -> List[datasets.SplitGenerator]:
        """

        Get splits.

        :param dl_manager:  Download manager.

        :return:            Splits.

        """
        config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]

        metadata_paths = dl_manager.download(
            [_URLS["meta"].format(channel=channel) for channel in config_names]
        )
        audio_dirs = dl_manager.download_and_extract(
            [_URLS["audio"].format(channel=channel) for channel in config_names]
        )
        transcript_dirs = dl_manager.download_and_extract(
            [_URLS["transcript"].format(channel=channel) for channel in config_names]
        )

        audio_dict = {
            channel: audio_dir for channel, audio_dir in zip(config_names, audio_dirs)
        }
        transcript_dict = {
            channel: transcript_dir
            for channel, transcript_dir in zip(config_names, transcript_dirs)
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_paths": metadata_paths,
                    "audio_dict": audio_dict,
                    "transcript_dict": transcript_dict,
                },
            ),
        ]

    def _generate_examples(

        self, metadata_paths: List[str],

        audio_dict: dict,

        transcript_dict: dict,

    ) -> Tuple[int, dict]:
        """

        Generate examples from metadata.

        :param metadata_paths:      Paths to metadata.

        :param audio_dict:          Paths to directory containing audios.

        :param transcript_dict:     Paths to directory containing transcripts.

        :yield:                     Example.

        """
        dataset = datasets.load_dataset(
            "parquet",
            data_files=metadata_paths,
            split="train",
        )
        for i, sample in enumerate(dataset):
            channel = sample["channel"]
            audio_path = os.path.join(
                audio_dict[channel], channel, sample["id"] + ".wav"
            )
            transcript_path = os.path.join(
                transcript_dict[channel], channel, sample["id"] + ".txt"
            )

            yield i, {
                "id": sample["id"],
                "channel": channel,
                "audio": self.__get_binary_data(audio_path),
                "sampling_rate": sample["sampling_rate"],
                "transcript": self.__get_text_data(transcript_path),
            }

    def __get_binary_data(self, path: str) -> bytes:
        """

        Get binary data from path.

        :param path:    Path to file.

        :return:        Binary data.

        """
        with open(path, "rb") as f:
            return f.read()

    def __get_text_data(self, path: str) -> str:
        """

        Get transcript from path.

        :param path:     Path to transcript.

        :return:         Transcript.

        """
        with open(path, "r", encoding="utf-8") as f:
            return f.read().strip()