File size: 3,937 Bytes
71a501c c952c89 71a501c 317abbb 71a501c f106c81 71a501c f106c81 317abbb f106c81 71a501c 317abbb 71a501c 51d7022 71a501c 51d7022 71a501c e0817f6 71a501c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
import datasets
from huggingface_hub import HfFileSystem
from typing import List, Tuple
logger = datasets.logging.get_logger(__name__)
fs = HfFileSystem()
_CITATION = """
"""
_DESCRIPTION = """
This dataset contains transcripts from audio of Vietnamese speakers.
"""
_HOMEPAGE = "https://github.com/tanthinhdt/vietnamese-av-asr"
_MAIN_REPO_PATH = "datasets/phdkhanh2507/transcribed-vietnamese-audio"
_REPO_URL = "https://huggingface.co/{}/resolve/main"
_URLS = {
"meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{id}.parquet",
}
_CONFIGS = ["all"]
if fs.exists(_MAIN_REPO_PATH + "/metadata"):
_CONFIGS.extend([
os.path.basename(file_name)[:-8]
for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False)
if file_name.endswith(".parquet")
])
class TranscribedVietnameseAudioConfig(datasets.BuilderConfig):
"""Transcribed Vietnamese Audio configuration."""
def __init__(self, name, **kwargs):
"""
:param name: Name of subset.
:param kwargs: Arguments.
"""
super().__init__(
name=name,
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
**kwargs,
)
class TranscribedVietnameseAudio(datasets.GeneratorBasedBuilder):
"""Transcribed Vietnamese Audio dataset."""
BUILDER_CONFIGS = [TranscribedVietnameseAudioConfig(name) for name in _CONFIGS]
DEFAULT_CONFIG_NAME = "all"
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features({
"id": datasets.Value("string"),
"chunk_id": datasets.Value("string"),
"video_fps": datasets.Value("int8"),
"audio_fps": datasets.Value("int64"),
"transcript": datasets.Value("string"),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Get splits.
:param dl_manager: Download manager.
:return: Splits.
"""
config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]
metadata_paths = dl_manager.download(
[_URLS["meta"].format(id=id) for id in config_names]
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_paths": metadata_paths,
},
),
]
def _generate_examples(
self, metadata_paths: List[str],
) -> Tuple[int, dict]:
"""
Generate examples from metadata.
:param metadata_paths: Paths to metadata.
:yield: Example.
"""
dataset = datasets.load_dataset(
"parquet",
data_files=metadata_paths,
split="train",
)
for i, sample in enumerate(dataset):
yield i, {
"id": sample["id"],
"chunk_id": sample["chunk_id"],
"video_fps": sample["video_fps"],
"audio_fps": sample["audio_fps"],
"transcript": sample["transcript"],
}
def __get_binary_data(self, path: str) -> bytes:
"""
Get binary data from path.
:param path: Path to file.
:return: Binary data.
"""
with open(path, "rb") as f:
return f.read()
def __get_text_data(self, path: str) -> str:
"""
Get transcript from path.
:param path: Path to transcript.
:return: Transcript.
"""
with open(path, "r", encoding="utf-8") as f:
return f.read().strip()
|