import os import datasets from huggingface_hub import HfFileSystem from typing import List, Tuple logger = datasets.logging.get_logger(__name__) fs = HfFileSystem() _CITATION = """ """ _DESCRIPTION = """ This dataset contains transcripts from audio of Vietnamese speakers. """ _HOMEPAGE = "https://github.com/tanthinhdt/vietnamese-av-asr" _MAIN_REPO_PATH = "datasets/phdkhanh2507/transcribed-vietnamese-audio" _REPO_URL = "https://huggingface.co/{}/resolve/main" _URLS = { "meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{id}.parquet", } _CONFIGS = ["all"] if fs.exists(_MAIN_REPO_PATH + "/metadata"): _CONFIGS.extend([ os.path.basename(file_name)[:-8] for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False) if file_name.endswith(".parquet") ]) class TranscribedVietnameseAudioConfig(datasets.BuilderConfig): """Transcribed Vietnamese Audio configuration.""" def __init__(self, name, **kwargs): """ :param name: Name of subset. :param kwargs: Arguments. """ super().__init__( name=name, version=datasets.Version("1.0.0"), description=_DESCRIPTION, **kwargs, ) class TranscribedVietnameseAudio(datasets.GeneratorBasedBuilder): """Transcribed Vietnamese Audio dataset.""" BUILDER_CONFIGS = [TranscribedVietnameseAudioConfig(name) for name in _CONFIGS] DEFAULT_CONFIG_NAME = "all" def _info(self) -> datasets.DatasetInfo: features = datasets.Features({ "id": datasets.Value("string"), "chunk_id": datasets.Value("string"), "video_fps": datasets.Value("int8"), "audio_fps": datasets.Value("int64"), "transcript": datasets.Value("string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: """ Get splits. :param dl_manager: Download manager. :return: Splits. """ config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name] metadata_paths = dl_manager.download( [_URLS["meta"].format(id=id) for id in config_names] ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "metadata_paths": metadata_paths, }, ), ] def _generate_examples( self, metadata_paths: List[str], ) -> Tuple[int, dict]: """ Generate examples from metadata. :param metadata_paths: Paths to metadata. :yield: Example. """ dataset = datasets.load_dataset( "parquet", data_files=metadata_paths, split="train", ) for i, sample in enumerate(dataset): yield i, { "id": sample["id"], "chunk_id": sample["chunk_id"], "video_fps": sample["video_fps"], "audio_fps": sample["audio_fps"], "transcript": sample["transcript"], } def __get_binary_data(self, path: str) -> bytes: """ Get binary data from path. :param path: Path to file. :return: Binary data. """ with open(path, "rb") as f: return f.read() def __get_text_data(self, path: str) -> str: """ Get transcript from path. :param path: Path to transcript. :return: Transcript. """ with open(path, "r", encoding="utf-8") as f: return f.read().strip()