File size: 4,464 Bytes
474c7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import datasets
from huggingface_hub import HfFileSystem
from typing import List, Tuple


logger = datasets.logging.get_logger(__name__)
fs = HfFileSystem()


_CITATION = """



"""
_DESCRIPTION = """

    This dataset extracts the mouth region from short clips of Vietnamese speakers.

"""
_HOMEPAGE = "https://github.com/tanthinhdt/vietnamese-av-asr"
_MAIN_REPO_PATH = "datasets/phdkhanh2507/vietnamese-speaker-lip-clip-v1"
_REPO_URL = "https://huggingface.co/{}/resolve/main"
_URLS = {
    "meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{channel}.parquet",
    "visual": f"{_REPO_URL}/visual/".format(_MAIN_REPO_PATH) + "{channel}.zip",
}
_CONFIGS = ["all"]
if fs.exists(_MAIN_REPO_PATH + "/metadata"):
    _CONFIGS.extend([
        os.path.basename(file_name)[:-8]
        for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False)
        if file_name.endswith(".parquet")
    ])


class VietnameseSpeakerLipClipConfig(datasets.BuilderConfig):
    """Vietnamese Speaker Clip configuration."""

    def __init__(self, name, **kwargs):
        """

        :param name:    Name of subset.

        :param kwargs:  Arguments.

        """
        super(VietnameseSpeakerLipClipConfig, self).__init__(
            name=name,
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
            **kwargs,
        )


class VietnameseSpeakerLipClip(datasets.GeneratorBasedBuilder):
    """Vietnamese Speaker Clip dataset."""

    BUILDER_CONFIGS = [VietnameseSpeakerLipClipConfig(name) for name in _CONFIGS]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self) -> datasets.DatasetInfo:
        features = datasets.Features({
            "id": datasets.Value("string"),
            "channel": datasets.Value("string"),
            "visual": datasets.Value("string"),
            "duration": datasets.Value("float64"),
            "fps": datasets.Value("int8"),
            "audio": datasets.Value("string"),
            "sampling_rate": datasets.Value("int64"),
        })

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(

        self, dl_manager: datasets.DownloadManager

    ) -> List[datasets.SplitGenerator]:
        """

        Get splits.

        :param dl_manager:  Download manager.

        :return:            Splits.

        """
        config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]

        metadata_paths = dl_manager.download(
            [_URLS["meta"].format(channel=channel) for channel in config_names]
        )
        visual_dirs = dl_manager.download_and_extract(
            [_URLS["visual"].format(channel=channel) for channel in config_names]
        )

        visual_dict = {
            channel: visual_dir for channel, visual_dir in zip(config_names, visual_dirs)
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_paths": metadata_paths,
                    "visual_dict": visual_dict,
                },
            ),
        ]

    def _generate_examples(

        self, metadata_paths: List[str],

        visual_dict: dict,

        audio_dict: dict,

    ) -> Tuple[int, dict]:
        """

        Generate examples from metadata.

        :param metadata_paths:      Paths to metadata.

        :param visual_dict:         Paths to directory containing videos.

        :param audio_dict:          Paths to directory containing audios.

        :yield:                     Example.

        """
        dataset = datasets.load_dataset(
            "parquet",
            data_files=metadata_paths,
            split="train",
        )
        for i, sample in enumerate(dataset):
            channel = sample["channel"]
            visual_path = os.path.join(
                visual_dict[channel], channel, sample["id"] + ".mp4"
            )

            yield i, {
                "id": sample["id"],
                "channel": channel,
                "visual": visual_path,
                "duration": sample["duration"],
                "fps": sample["fps"],
                "sampling_rate": sample["sampling_rate"],
            }