import os import datasets from huggingface_hub import HfFileSystem from typing import List, Tuple logger = datasets.logging.get_logger(__name__) fs = HfFileSystem() _CITATION = """ """ _DESCRIPTION = """ This dataset extracts the mouth region from short clips of Vietnamese speakers. """ _HOMEPAGE = "https://github.com/tanthinhdt/vietnamese-av-asr" _MAIN_REPO_PATH = "datasets/phdkhanh2507/vietnamese-speaker-lip-clip-v1" _REPO_URL = "https://huggingface.co/{}/resolve/main" _URLS = { "meta": f"{_REPO_URL}/metadata/".format(_MAIN_REPO_PATH) + "{channel}.parquet", "visual": f"{_REPO_URL}/visual/".format(_MAIN_REPO_PATH) + "{channel}.zip", } _CONFIGS = ["all"] if fs.exists(_MAIN_REPO_PATH + "/metadata"): _CONFIGS.extend([ os.path.basename(file_name)[:-8] for file_name in fs.listdir(_MAIN_REPO_PATH + "/metadata", detail=False) if file_name.endswith(".parquet") ]) class VietnameseSpeakerLipClipConfig(datasets.BuilderConfig): """Vietnamese Speaker Clip configuration.""" def __init__(self, name, **kwargs): """ :param name: Name of subset. :param kwargs: Arguments. """ super(VietnameseSpeakerLipClipConfig, self).__init__( name=name, version=datasets.Version("1.0.0"), description=_DESCRIPTION, **kwargs, ) class VietnameseSpeakerLipClip(datasets.GeneratorBasedBuilder): """Vietnamese Speaker Clip dataset.""" BUILDER_CONFIGS = [VietnameseSpeakerLipClipConfig(name) for name in _CONFIGS] DEFAULT_CONFIG_NAME = "all" def _info(self) -> datasets.DatasetInfo: features = datasets.Features({ "id": datasets.Value("string"), "channel": datasets.Value("string"), "visual": datasets.Value("string"), "duration": datasets.Value("float64"), "fps": datasets.Value("int8"), "audio": datasets.Value("string"), "sampling_rate": datasets.Value("int64"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: """ Get splits. :param dl_manager: Download manager. :return: Splits. """ config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name] metadata_paths = dl_manager.download( [_URLS["meta"].format(channel=channel) for channel in config_names] ) visual_dirs = dl_manager.download_and_extract( [_URLS["visual"].format(channel=channel) for channel in config_names] ) visual_dict = { channel: visual_dir for channel, visual_dir in zip(config_names, visual_dirs) } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "metadata_paths": metadata_paths, "visual_dict": visual_dict, }, ), ] def _generate_examples( self, metadata_paths: List[str], visual_dict: dict, audio_dict: dict, ) -> Tuple[int, dict]: """ Generate examples from metadata. :param metadata_paths: Paths to metadata. :param visual_dict: Paths to directory containing videos. :param audio_dict: Paths to directory containing audios. :yield: Example. """ dataset = datasets.load_dataset( "parquet", data_files=metadata_paths, split="train", ) for i, sample in enumerate(dataset): channel = sample["channel"] visual_path = os.path.join( visual_dict[channel], channel, sample["id"] + ".mp4" ) yield i, { "id": sample["id"], "channel": channel, "visual": visual_path, "duration": sample["duration"], "fps": sample["fps"], "sampling_rate": sample["sampling_rate"], }