File size: 4,146 Bytes
6109566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2023 Thinh T. Duong
import os
import datasets
from huggingface_hub import HfFileSystem
from typing import List, Tuple


logger = datasets.logging.get_logger(__name__)
fs = HfFileSystem()


_CITATION = """



"""
_DESCRIPTION = """

    This dataset contain videos of Vietnamese speakers.

"""
_HOMEPAGE = "https://github.com/tanthinhdt/vietnamese-av-asr"
_REPO_PATH = "datasets/phdkhanh2507/vietnamese-speaker-video"
_REPO_URL = f"https://huggingface.co/{_REPO_PATH}/resolve/main"
_URLS = {
    "meta": f"{_REPO_URL}/metadata/" + "{channel}.parquet",
    "video": f"{_REPO_URL}/video/" + "{channel}.zip",
}
_CONFIGS = ["all"]
if fs.exists(_REPO_PATH + "/metadata"):
    _CONFIGS.extend([
        os.path.basename(file_name)[:-8]
        for file_name in fs.listdir(_REPO_PATH + "/metadata", detail=False)
        if file_name.endswith(".parquet")
    ])


class VietnameseSpeakerVideoConfig(datasets.BuilderConfig):
    """Vietnamese Speaker Video configuration."""

    def __init__(self, name, **kwargs) -> None:
        """

        :param name:    Name of subset.

        :param kwargs:  Arguments.

        """
        super().__init__(
            name=name,
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
            **kwargs,
        )


class VietnameseSpeakerVideo(datasets.GeneratorBasedBuilder):
    """Vietnamese Speaker Video dataset."""

    BUILDER_CONFIGS = [VietnameseSpeakerVideoConfig(name) for name in _CONFIGS]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self) -> datasets.DatasetInfo:
        features = datasets.Features({
            "id": datasets.Value("string"),
            "channel": datasets.Value("string"),
            "video": datasets.Value("string"),
            "fps": datasets.Value("int8"),
            "sampling_rate": datasets.Value("int64"),
        })

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(

        self, dl_manager: datasets.DownloadManager

    ) -> List[datasets.SplitGenerator]:
        """

        Get splits.

        :param dl_manager:  Download manager.

        :return:            Splits.

        """
        config_names = _CONFIGS[1:] if self.config.name == "all" else [self.config.name]

        metadata_paths = dl_manager.download(
            [_URLS["meta"].format(channel=channel) for channel in config_names]
        )
        video_dirs = dl_manager.download_and_extract(
            [_URLS["video"].format(channel=channel) for channel in config_names]
        )

        video_dict = {
            channel: video_dir for channel, video_dir in zip(config_names, video_dirs)
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_paths": metadata_paths,
                    "video_dict": video_dict,
                },
            ),
        ]

    def _generate_examples(

        self, metadata_paths: List[str],

        video_dict: dict,

    ) -> Tuple[int, dict]:
        """

        Generate examples from metadata.

        :param metadata_paths:      Paths to metadata.

        :param video_dict:          Paths to directory containing videos.

        :yield:                     Example.

        """
        dataset = datasets.load_dataset(
            "parquet",
            data_files=metadata_paths,
            split="train",
            use_auth_token=True,
        )
        for i, sample in enumerate(dataset):
            channel = sample["channel"]
            video_path = os.path.join(
                video_dict[channel], channel, sample["id"] + ".avi"
            )

            yield i, {
                "id": sample["id"],
                "channel": channel,
                "video": video_path,
                "fps": sample["fps"],
                "sampling_rate": sample["sampling_rate"],
            }