comagc / comagc.py
ArneBinder's picture
from https://github.com/ArneBinder/pie-datasets/pull/141
6641849 verified
import logging
from dataclasses import dataclass
from typing import Any, Dict, Optional
import datasets
from pytorch_ie import AnnotationLayer, Document, annotation_field
from pytorch_ie.annotations import BinaryRelation, LabeledSpan, Span
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations
from pie_datasets import ArrowBasedBuilder
logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class NamedSpan(Span):
name: str
def resolve(self) -> Any:
return self.name, super().resolve()
@dataclass(frozen=True)
class SpanWithNameAndType(Span):
name: str
type: str
def resolve(self) -> Any:
return self.name, self.type, super().resolve()
@dataclass
class ComagcDocument(Document):
pmid: str
sentence: str
cge: str
ccs: str
cancer_type: str
gene: AnnotationLayer[NamedSpan] = annotation_field(target="sentence")
cancer: AnnotationLayer[NamedSpan] = annotation_field(target="sentence")
pt: Optional[str] = None
ige: Optional[str] = None
expression_change_keyword1: AnnotationLayer[SpanWithNameAndType] = annotation_field(
target="sentence"
)
expression_change_keyword2: AnnotationLayer[SpanWithNameAndType] = annotation_field(
target="sentence"
)
def example_to_document(example) -> ComagcDocument:
doc = ComagcDocument(
pmid=example["pmid"],
sentence=example["sentence"],
cancer_type=example["cancer_type"],
cge=example["CGE"],
ccs=example["CCS"],
pt=example["PT"],
ige=example["IGE"],
)
# Gene and cancer entities
# name is (almost) always the text of the gene/cancer (between the start and end position)
gene = NamedSpan(
start=example["gene"]["pos"][0],
end=example["gene"]["pos"][1] + 1,
name=example["gene"]["name"],
)
doc.gene.extend([gene])
cancer = NamedSpan(
start=example["cancer"]["pos"][0],
end=example["cancer"]["pos"][1] + 1,
name=example["cancer"]["name"],
)
doc.cancer.extend([cancer])
# Expression change keywords
# expression_change_keyword_1 might have no values
if example["expression_change_keyword_1"]["pos"] is not None:
expression_change_keyword1 = SpanWithNameAndType(
start=example["expression_change_keyword_1"]["pos"][0],
end=example["expression_change_keyword_1"]["pos"][1] + 1,
name=example["expression_change_keyword_1"]["name"],
type=example["expression_change_keyword_1"]["type"],
)
doc.expression_change_keyword1.extend([expression_change_keyword1])
expression_change_keyword2 = SpanWithNameAndType(
start=example["expression_change_keyword_2"]["pos"][0],
end=example["expression_change_keyword_2"]["pos"][1] + 1,
name=example["expression_change_keyword_2"]["name"],
type=example["expression_change_keyword_2"]["type"],
)
doc.expression_change_keyword2.extend([expression_change_keyword2])
return doc
def document_to_example(doc: ComagcDocument) -> Dict[str, Any]:
gene = {
"name": doc.gene[0].name,
"pos": [doc.gene[0].start, doc.gene[0].end - 1],
}
cancer = {
"name": doc.cancer[0].name,
"pos": [doc.cancer[0].start, doc.cancer[0].end - 1],
}
if not doc.expression_change_keyword1.resolve():
expression_change_keyword_1 = {
"name": "\nNone\n",
"pos": None,
"type": None,
}
else:
expression_change_keyword_1 = {
"name": doc.expression_change_keyword1[0].name,
"pos": [
doc.expression_change_keyword1[0].start,
doc.expression_change_keyword1[0].end - 1,
],
"type": doc.expression_change_keyword1[0].type,
}
expression_change_keyword_2 = {
"name": doc.expression_change_keyword2[0].name,
"pos": [
doc.expression_change_keyword2[0].start,
doc.expression_change_keyword2[0].end - 1,
],
"type": doc.expression_change_keyword2[0].type,
}
return {
"pmid": doc.pmid,
"sentence": doc.sentence,
"cancer_type": doc.cancer_type,
"gene": gene,
"cancer": cancer,
"CGE": doc.cge,
"CCS": doc.ccs,
"PT": doc.pt,
"IGE": doc.ige,
"expression_change_keyword_1": expression_change_keyword_1,
"expression_change_keyword_2": expression_change_keyword_2,
}
def convert_to_text_document_with_labeled_spans_and_binary_relations(
document: ComagcDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
metadata = {
"cancer_type": document.cancer_type,
"CGE": document.cge,
"CCS": document.ccs,
"PT": document.pt,
"IGE": document.ige,
"expression_change_keyword_1": document_to_example(document)[
"expression_change_keyword_1"
],
"expression_change_keyword_2": document_to_example(document)[
"expression_change_keyword_2"
],
}
text_document = TextDocumentWithLabeledSpansAndBinaryRelations(
id=document.pmid, text=document.sentence, metadata=metadata
)
gene = LabeledSpan(
start=document.gene[0].start,
end=document.gene[0].end,
label="GENE",
)
text_document.labeled_spans.append(gene)
cancer = LabeledSpan(
start=document.cancer[0].start,
end=document.cancer[0].end,
label="CANCER",
)
text_document.labeled_spans.append(cancer)
label = get_relation_label(
cge=document.cge, ccs=document.ccs, ige=document.ige, pt=document.pt
)
if label is not None:
relation = BinaryRelation(
head=gene,
tail=cancer,
label=label,
)
text_document.binary_relations.append(relation)
return text_document
class Comagc(ArrowBasedBuilder):
DOCUMENT_TYPE = ComagcDocument
BASE_DATASET_PATH = "DFKI-SLT/CoMAGC"
BASE_DATASET_REVISION = "8e2950b8a3967c2f45de86f60dd5c8ccb9ad3815"
BUILDER_CONFIGS = [
datasets.BuilderConfig(
version=datasets.Version("1.0.0"),
description="CoMAGC dataset",
)
]
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
}
def _generate_document(self, example, **kwargs):
return example_to_document(example)
def _generate_example(self, document: ComagcDocument, **kwargs) -> Dict[str, Any]:
return document_to_example(document)
def get_relation_label(cge: str, ccs: str, pt: str, ige: str) -> Optional[str]:
"""Simple rule-based function to determine the relation between the gene and the cancer.
As this dataset contains a multi-faceted annotation scheme
for gene-cancer relations, it does not only label the relation
between gene and cancer, but provides further information.
However, the relation of interest stays the gene-class,
which can be derived from inference rules
(https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-323/tables/3), based on the
information given in columns CGE, CCS, IGE, PT.
"""
rules = [
{
"CGE": "increased",
"CCS": "normalTOcancer",
"IGE": "*",
"PT": "causality",
"Gene class": "oncogene",
},
{
"CGE": "decreased",
"CCS": "cancerTOnormal",
"IGE": "unidentifiable",
"PT": "causality",
"Gene class": "oncogene",
},
{
"CGE": "decreased",
"CCS": "cancerTOnormal",
"IGE": "up-regulated",
"PT": "*",
"Gene class": "oncogene",
},
{
"CGE": "decreased",
"CCS": "normalTOcancer",
"IGE": "*",
"PT": "causality",
"Gene class": "tumor suppressor gene",
},
{
"CGE": "increased",
"CCS": "cancerTOnormal",
"IGE": "unidentifiable",
"PT": "causality",
"Gene class": "tumor suppressor gene",
},
{
"CGE": "increased",
"CCS": "cancerTOnormal",
"IGE": "down-regulated",
"PT": "*",
"Gene class": "tumor suppressor gene",
},
{
"CGE": "*",
"CCS": "normalTOcancer",
"IGE": "*",
"PT": "observation",
"Gene class": "biomarker",
},
{
"CGE": "*",
"CCS": "cancerTOnormal",
"IGE": "unidentifiable",
"PT": "observation",
"Gene class": "biomarker",
},
{
"CGE": "decreased",
"CCS": "cancerTOcancer",
"IGE": "up-regulated",
"PT": "observation",
"Gene class": "biomarker",
},
{
"CGE": "increased",
"CCS": "cancerTOcancer",
"IGE": "down-regulated",
"PT": "observation",
"Gene class": "biomarker",
},
]
for rule in rules:
if (
(rule["CGE"] == "*" or cge == rule["CGE"])
and (rule["CCS"] == "*" or ccs == rule["CCS"])
and (rule["IGE"] == "*" or ige == rule["IGE"])
and (rule["PT"] == "*" or pt == rule["PT"])
):
return rule["Gene class"]
# Commented out to avoid spamming the logs
# logger.warning("No rule matched. cge: " + cge + " - ccs: " + ccs + " - ige: " + ige + " - pt: " + pt)
# NOTE: In case no inference rule is applicable, no relation is returned and
# eventually no relation is added to the document.
return None