import logging from dataclasses import dataclass from typing import Any, Dict, Optional import datasets from pytorch_ie import AnnotationLayer, Document, annotation_field from pytorch_ie.annotations import BinaryRelation, LabeledSpan, Span from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations from pie_datasets import ArrowBasedBuilder logger = logging.getLogger(__name__) @dataclass(frozen=True) class NamedSpan(Span): name: str def resolve(self) -> Any: return self.name, super().resolve() @dataclass(frozen=True) class SpanWithNameAndType(Span): name: str type: str def resolve(self) -> Any: return self.name, self.type, super().resolve() @dataclass class ComagcDocument(Document): pmid: str sentence: str cge: str ccs: str cancer_type: str gene: AnnotationLayer[NamedSpan] = annotation_field(target="sentence") cancer: AnnotationLayer[NamedSpan] = annotation_field(target="sentence") pt: Optional[str] = None ige: Optional[str] = None expression_change_keyword1: AnnotationLayer[SpanWithNameAndType] = annotation_field( target="sentence" ) expression_change_keyword2: AnnotationLayer[SpanWithNameAndType] = annotation_field( target="sentence" ) def example_to_document(example) -> ComagcDocument: doc = ComagcDocument( pmid=example["pmid"], sentence=example["sentence"], cancer_type=example["cancer_type"], cge=example["CGE"], ccs=example["CCS"], pt=example["PT"], ige=example["IGE"], ) # Gene and cancer entities # name is (almost) always the text of the gene/cancer (between the start and end position) gene = NamedSpan( start=example["gene"]["pos"][0], end=example["gene"]["pos"][1] + 1, name=example["gene"]["name"], ) doc.gene.extend([gene]) cancer = NamedSpan( start=example["cancer"]["pos"][0], end=example["cancer"]["pos"][1] + 1, name=example["cancer"]["name"], ) doc.cancer.extend([cancer]) # Expression change keywords # expression_change_keyword_1 might have no values if example["expression_change_keyword_1"]["pos"] is not None: expression_change_keyword1 = SpanWithNameAndType( start=example["expression_change_keyword_1"]["pos"][0], end=example["expression_change_keyword_1"]["pos"][1] + 1, name=example["expression_change_keyword_1"]["name"], type=example["expression_change_keyword_1"]["type"], ) doc.expression_change_keyword1.extend([expression_change_keyword1]) expression_change_keyword2 = SpanWithNameAndType( start=example["expression_change_keyword_2"]["pos"][0], end=example["expression_change_keyword_2"]["pos"][1] + 1, name=example["expression_change_keyword_2"]["name"], type=example["expression_change_keyword_2"]["type"], ) doc.expression_change_keyword2.extend([expression_change_keyword2]) return doc def document_to_example(doc: ComagcDocument) -> Dict[str, Any]: gene = { "name": doc.gene[0].name, "pos": [doc.gene[0].start, doc.gene[0].end - 1], } cancer = { "name": doc.cancer[0].name, "pos": [doc.cancer[0].start, doc.cancer[0].end - 1], } if not doc.expression_change_keyword1.resolve(): expression_change_keyword_1 = { "name": "\nNone\n", "pos": None, "type": None, } else: expression_change_keyword_1 = { "name": doc.expression_change_keyword1[0].name, "pos": [ doc.expression_change_keyword1[0].start, doc.expression_change_keyword1[0].end - 1, ], "type": doc.expression_change_keyword1[0].type, } expression_change_keyword_2 = { "name": doc.expression_change_keyword2[0].name, "pos": [ doc.expression_change_keyword2[0].start, doc.expression_change_keyword2[0].end - 1, ], "type": doc.expression_change_keyword2[0].type, } return { "pmid": doc.pmid, "sentence": doc.sentence, "cancer_type": doc.cancer_type, "gene": gene, "cancer": cancer, "CGE": doc.cge, "CCS": doc.ccs, "PT": doc.pt, "IGE": doc.ige, "expression_change_keyword_1": expression_change_keyword_1, "expression_change_keyword_2": expression_change_keyword_2, } def convert_to_text_document_with_labeled_spans_and_binary_relations( document: ComagcDocument, ) -> TextDocumentWithLabeledSpansAndBinaryRelations: metadata = { "cancer_type": document.cancer_type, "CGE": document.cge, "CCS": document.ccs, "PT": document.pt, "IGE": document.ige, "expression_change_keyword_1": document_to_example(document)[ "expression_change_keyword_1" ], "expression_change_keyword_2": document_to_example(document)[ "expression_change_keyword_2" ], } text_document = TextDocumentWithLabeledSpansAndBinaryRelations( id=document.pmid, text=document.sentence, metadata=metadata ) gene = LabeledSpan( start=document.gene[0].start, end=document.gene[0].end, label="GENE", ) text_document.labeled_spans.append(gene) cancer = LabeledSpan( start=document.cancer[0].start, end=document.cancer[0].end, label="CANCER", ) text_document.labeled_spans.append(cancer) label = get_relation_label( cge=document.cge, ccs=document.ccs, ige=document.ige, pt=document.pt ) if label is not None: relation = BinaryRelation( head=gene, tail=cancer, label=label, ) text_document.binary_relations.append(relation) return text_document class Comagc(ArrowBasedBuilder): DOCUMENT_TYPE = ComagcDocument BASE_DATASET_PATH = "DFKI-SLT/CoMAGC" BASE_DATASET_REVISION = "8e2950b8a3967c2f45de86f60dd5c8ccb9ad3815" BUILDER_CONFIGS = [ datasets.BuilderConfig( version=datasets.Version("1.0.0"), description="CoMAGC dataset", ) ] DOCUMENT_CONVERTERS = { TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations } def _generate_document(self, example, **kwargs): return example_to_document(example) def _generate_example(self, document: ComagcDocument, **kwargs) -> Dict[str, Any]: return document_to_example(document) def get_relation_label(cge: str, ccs: str, pt: str, ige: str) -> Optional[str]: """Simple rule-based function to determine the relation between the gene and the cancer. As this dataset contains a multi-faceted annotation scheme for gene-cancer relations, it does not only label the relation between gene and cancer, but provides further information. However, the relation of interest stays the gene-class, which can be derived from inference rules (https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-323/tables/3), based on the information given in columns CGE, CCS, IGE, PT. """ rules = [ { "CGE": "increased", "CCS": "normalTOcancer", "IGE": "*", "PT": "causality", "Gene class": "oncogene", }, { "CGE": "decreased", "CCS": "cancerTOnormal", "IGE": "unidentifiable", "PT": "causality", "Gene class": "oncogene", }, { "CGE": "decreased", "CCS": "cancerTOnormal", "IGE": "up-regulated", "PT": "*", "Gene class": "oncogene", }, { "CGE": "decreased", "CCS": "normalTOcancer", "IGE": "*", "PT": "causality", "Gene class": "tumor suppressor gene", }, { "CGE": "increased", "CCS": "cancerTOnormal", "IGE": "unidentifiable", "PT": "causality", "Gene class": "tumor suppressor gene", }, { "CGE": "increased", "CCS": "cancerTOnormal", "IGE": "down-regulated", "PT": "*", "Gene class": "tumor suppressor gene", }, { "CGE": "*", "CCS": "normalTOcancer", "IGE": "*", "PT": "observation", "Gene class": "biomarker", }, { "CGE": "*", "CCS": "cancerTOnormal", "IGE": "unidentifiable", "PT": "observation", "Gene class": "biomarker", }, { "CGE": "decreased", "CCS": "cancerTOcancer", "IGE": "up-regulated", "PT": "observation", "Gene class": "biomarker", }, { "CGE": "increased", "CCS": "cancerTOcancer", "IGE": "down-regulated", "PT": "observation", "Gene class": "biomarker", }, ] for rule in rules: if ( (rule["CGE"] == "*" or cge == rule["CGE"]) and (rule["CCS"] == "*" or ccs == rule["CCS"]) and (rule["IGE"] == "*" or ige == rule["IGE"]) and (rule["PT"] == "*" or pt == rule["PT"]) ): return rule["Gene class"] # Commented out to avoid spamming the logs # logger.warning("No rule matched. cge: " + cge + " - ccs: " + ccs + " - ige: " + ige + " - pt: " + pt) # NOTE: In case no inference rule is applicable, no relation is returned and # eventually no relation is added to the document. return None