File size: 1,926 Bytes
e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 e52c8ee 93418a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from dataclasses import dataclass
from typing import Any, Dict
import datasets
from pytorch_ie.annotations import Label
from pytorch_ie.documents import TextDocumentWithLabel
from pie_datasets import GeneratorBasedBuilder
@dataclass
class ImdbDocument(TextDocumentWithLabel):
pass
def example_to_document(example: Dict[str, Any], labels: datasets.ClassLabel) -> ImdbDocument:
text = example["text"]
document = ImdbDocument(text=text)
label_id = example["label"]
if label_id < 0:
return document
label = labels.int2str(label_id)
label_annotation = Label(label=label)
document.label.append(label_annotation)
return document
def document_to_example(document: ImdbDocument, labels: datasets.ClassLabel) -> Dict[str, Any]:
if len(document.label) > 0:
label_id = labels.str2int(document.label[0].label)
else:
label_id = -1
return {
"text": document.text,
"label": label_id,
}
class Imdb(GeneratorBasedBuilder):
DOCUMENT_TYPE = ImdbDocument
BASE_DATASET_PATH = "imdb"
BASE_DATASET_REVISION = "9c6ede893febf99215a29cc7b72992bb1138b06b"
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
version=datasets.Version("1.0.0"),
description="IMDB sentiment classification dataset",
),
]
DOCUMENT_CONVERTERS = {TextDocumentWithLabel: {}}
def _generate_document_kwargs(self, dataset) -> Dict[str, Any]:
return {"labels": dataset.features["label"]}
def _generate_document(self, example, **kwargs) -> ImdbDocument:
return example_to_document(example, **kwargs)
def _generate_example_kwargs(self, dataset) -> Dict[str, Any]:
return {"labels": dataset.features["label"]}
def _generate_example(self, document: ImdbDocument, **kwargs) -> Dict[str, Any]:
return document_to_example(document, **kwargs)
|