|
import dataclasses |
|
from typing import Any, Dict, List |
|
|
|
import datasets |
|
from pytorch_ie.core import ( |
|
Annotation, |
|
AnnotationLayer, |
|
AnnotationList, |
|
annotation_field, |
|
) |
|
from pytorch_ie.documents import TextBasedDocument |
|
|
|
from pie_datasets import GeneratorBasedBuilder |
|
|
|
|
|
@dataclasses.dataclass(eq=True, frozen=True) |
|
class AbstractiveSummary(Annotation): |
|
"""A question about a context.""" |
|
|
|
text: str |
|
|
|
def __str__(self) -> str: |
|
return self.text |
|
|
|
|
|
@dataclasses.dataclass(eq=True, frozen=True) |
|
class SectionName(Annotation): |
|
"""A question about a context.""" |
|
|
|
text: str |
|
|
|
def __str__(self) -> str: |
|
return self.text |
|
|
|
|
|
@dataclasses.dataclass |
|
class ScientificPapersDocument(TextBasedDocument): |
|
"""A PIE document for scientific papers dataset.""" |
|
|
|
abstract: AnnotationLayer[AbstractiveSummary] = annotation_field() |
|
section_names: AnnotationList[SectionName] = annotation_field() |
|
|
|
|
|
def example_to_document( |
|
example: Dict[str, Any], |
|
) -> ScientificPapersDocument: |
|
"""Convert a Huggingface Scientific Papers example to a PIE document.""" |
|
document = ScientificPapersDocument( |
|
text=example["article"], |
|
) |
|
document.abstract.append(AbstractiveSummary(text=example["abstract"])) |
|
document.section_names.extend( |
|
[SectionName(text=section_name) for section_name in example["section_names"].split("\n")] |
|
) |
|
|
|
return document |
|
|
|
|
|
def document_to_example(doc: ScientificPapersDocument) -> Dict[str, Any]: |
|
"""Convert a PIE document to a Huggingface Scientific Papers example.""" |
|
example = { |
|
"article": doc.text, |
|
"abstract": doc.abstract[0].text, |
|
"section_names": "\n".join([section_name.text for section_name in doc.section_names]), |
|
} |
|
return example |
|
|
|
|
|
class ScientificPapersConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Scientific Papers.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Scientific Papers. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
|
|
class ScientificPapers(GeneratorBasedBuilder): |
|
DOCUMENT_TYPE = ScientificPapersDocument |
|
|
|
BASE_DATASET_PATH = "scientific_papers" |
|
BASE_DATASET_REVISION = "14c5296f2d707630f5835c9da59dcaddeea19b20" |
|
|
|
BUILDER_CONFIGS = [ |
|
ScientificPapersConfig( |
|
name="arxiv", |
|
version=datasets.Version("1.1.1"), |
|
description="Scientific Papers dataset - ArXiv variant", |
|
), |
|
ScientificPapersConfig( |
|
name="pubmed", |
|
version=datasets.Version("1.1.1"), |
|
description="Scientific Papers dataset - PubMed variant", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "arxiv" |
|
|
|
def _generate_document(self, example, **kwargs): |
|
return example_to_document(example) |
|
|
|
def _generate_example(self, document, **kwargs): |
|
return document_to_example(document) |
|
|