|
|
|
|
|
|
|
|
|
|
|
"""Overview of FACT at IberLEF 2020: Events Detection and Classification""" |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{fact2020, |
|
title = "Overview of FACT at IberLEF 2020: Events Detection and Classification", |
|
author = "Rosa, Aiala and Chiruzzo, Luis and Wonsever, Dina and Malcuori, Marisa and Curell, Hortènsia and Castellón, Irene and Vázquez, Gloria and Fernández-Montraveta, Ana and Góngora, Santiago and Alonso, Laura", |
|
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003", |
|
year = "2020", |
|
url = "https://www.aclweb.org/anthology/W03-0419", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
In this paper we present the second edition of the FACT shared task (Factuality Annotation and Classification |
|
Task), included in IberLEF2020. The main objective of this task is to advance in the study of the factuality of |
|
the events mentioned in texts. This year, the FACT task includes a subtask on event identification in addition |
|
to the factuality classification subtask. We describe the submitted systems as well as the corpus used, which is |
|
the same used in FACT 2019 but extended by adding annotations for nominal events. |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/filevich/fact2020/raw/main/" |
|
_URLS = { |
|
"train": _URL + "train.json", |
|
"validation": _URL + "validation.json", |
|
"test": _URL + "test-task1.json", |
|
} |
|
|
|
|
|
class Fact2020Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Fact2020""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forFact2020. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Fact2020Config, self).__init__(**kwargs) |
|
|
|
|
|
class Fact2020(datasets.GeneratorBasedBuilder): |
|
"""Fact2020 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Fact2020Config(name="fact2020", version=datasets.Version("1.0.0"), description="Fact2020 dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"fact_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"F", |
|
"CF", |
|
"U", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://ceur-ws.org/Vol-2664/fact_overview.pdf", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
import json |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
return [(i, {"id": str(i), **d}) for i,d in enumerate(data)] |
|
|