Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
Tags:
midjourney
License:
File size: 1,345 Bytes
353eea1 a3b64ce 353eea1 29a11a6 353eea1 3f8009b 353eea1 3f8009b cb0540d 3f8009b cb0540d 6e1ee72 25e4bc4 6e1ee72 25e4bc4 6e1ee72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- en
license: apache-2.0
source_datasets: vivym/midjourney-messages
task_categories:
- text-generation
dataset_info:
features:
- name: id
dtype: string
- name: channel_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 3575844717.3610477
num_examples: 19716685
download_size: 1514418407
dataset_size: 3575844717.3610477
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- midjourney
---
# midjourney-messages-cleaned
This is [vivym/midjourney-messages](https://huggingface.co/datasets/vivym/midjourney-messages) but with the following cleaning steps:
- remove most columns (keep `id` columns for reference vs. original)
- Apply `clean-text` to all rows (_keep casing_)
- rename `content` to `text` (ffs)
- remove intermediate ID/tag (???) in angle brackets at the end, remove double asterisks `**`
- remove exact duplicate rows
## dataset structure
overall:
```python
DatasetDict({
train: Dataset({
features: ['id', 'channel_id', 'text'],
num_rows: 20164939
})
})
```
A single example looks like this:
```python
random.choice(dataset['train'])
{'id': '1108635049391308879',
'channel_id': '1008571088919343124',
'text': 'Warhammer 40k Chaos Space Marine with pink Armor and a guitar'}
```
|