File size: 7,817 Bytes
ba46ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-foodspotting
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
paperswithcode_id: food-101
pretty_name: Food-101
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': apple_pie
          '1': baby_back_ribs
          '2': baklava
          '3': beef_carpaccio
          '4': beef_tartare
          '5': beet_salad
          '6': beignets
          '7': bibimbap
          '8': bread_pudding
          '9': breakfast_burrito
          '10': bruschetta
          '11': caesar_salad
          '12': cannoli
          '13': caprese_salad
          '14': carrot_cake
          '15': ceviche
          '16': cheesecake
          '17': cheese_plate
          '18': chicken_curry
          '19': chicken_quesadilla
          '20': chicken_wings
          '21': chocolate_cake
          '22': chocolate_mousse
          '23': churros
          '24': clam_chowder
          '25': club_sandwich
          '26': crab_cakes
          '27': creme_brulee
          '28': croque_madame
          '29': cup_cakes
          '30': deviled_eggs
          '31': donuts
          '32': dumplings
          '33': edamame
          '34': eggs_benedict
          '35': escargots
          '36': falafel
          '37': filet_mignon
          '38': fish_and_chips
          '39': foie_gras
          '40': french_fries
          '41': french_onion_soup
          '42': french_toast
          '43': fried_calamari
          '44': fried_rice
          '45': frozen_yogurt
          '46': garlic_bread
          '47': gnocchi
          '48': greek_salad
          '49': grilled_cheese_sandwich
          '50': grilled_salmon
          '51': guacamole
          '52': gyoza
          '53': hamburger
          '54': hot_and_sour_soup
          '55': hot_dog
          '56': huevos_rancheros
          '57': hummus
          '58': ice_cream
          '59': lasagna
          '60': lobster_bisque
          '61': lobster_roll_sandwich
          '62': macaroni_and_cheese
          '63': macarons
          '64': miso_soup
          '65': mussels
          '66': nachos
          '67': omelette
          '68': onion_rings
          '69': oysters
          '70': pad_thai
          '71': paella
          '72': pancakes
          '73': panna_cotta
          '74': peking_duck
          '75': pho
          '76': pizza
          '77': pork_chop
          '78': poutine
          '79': prime_rib
          '80': pulled_pork_sandwich
          '81': ramen
          '82': ravioli
          '83': red_velvet_cake
          '84': risotto
          '85': samosa
          '86': sashimi
          '87': scallops
          '88': seaweed_salad
          '89': shrimp_and_grits
          '90': spaghetti_bolognese
          '91': spaghetti_carbonara
          '92': spring_rolls
          '93': steak
          '94': strawberry_shortcake
          '95': sushi
          '96': tacos
          '97': takoyaki
          '98': tiramisu
          '99': tuna_tartare
          '100': waffles
  splits:
  - name: train
    num_bytes: 3842657187.0
    num_examples: 75750
  - name: validation
    num_bytes: 1275182340.5
    num_examples: 25250
  download_size: 5059972308
  dataset_size: 5117839527.5
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
---

## Dataset Description

- **Homepage:** [Food-101 Dataset](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
- **Repository:**
- **Paper:** [Paper](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

This dataset consists of 101 food categories, with 101'000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels.

### Supported Tasks and Leaderboards

- `image-classification`: The goal of this task is to classify a given image of a dish into one of 101 classes. The leaderboard is available [here](https://paperswithcode.com/sota/fine-grained-image-classification-on-food-101).

### Languages

English

### Data Instances

A sample from the training set is provided below:

```
{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x276021C5EB8>,
  'label': 23
}
```

### Data Fields

The data instances have the following fields:

- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `label`: an `int` classification label.

<details>
  <summary>Class Label Mappings</summary>

  ```json
  {
    "apple_pie": 0,
    "baby_back_ribs": 1,
    "baklava": 2,
    "beef_carpaccio": 3,
    "beef_tartare": 4,
    "beet_salad": 5,
    "beignets": 6,
    "bibimbap": 7,
    "bread_pudding": 8,
    "breakfast_burrito": 9,
    "bruschetta": 10,
    "caesar_salad": 11,
    "cannoli": 12,
    "caprese_salad": 13,
    "carrot_cake": 14,
    "ceviche": 15,
    "cheesecake": 16,
    "cheese_plate": 17,
    "chicken_curry": 18,
    "chicken_quesadilla": 19,
    "chicken_wings": 20,
    "chocolate_cake": 21,
    "chocolate_mousse": 22,
    "churros": 23,
    "clam_chowder": 24,
    "club_sandwich": 25,
    "crab_cakes": 26,
    "creme_brulee": 27,
    "croque_madame": 28,
    "cup_cakes": 29,
    "deviled_eggs": 30,
    "donuts": 31,
    "dumplings": 32,
    "edamame": 33,
    "eggs_benedict": 34,
    "escargots": 35,
    "falafel": 36,
    "filet_mignon": 37,
    "fish_and_chips": 38,
    "foie_gras": 39,
    "french_fries": 40,
    "french_onion_soup": 41,
    "french_toast": 42,
    "fried_calamari": 43,
    "fried_rice": 44,
    "frozen_yogurt": 45,
    "garlic_bread": 46,
    "gnocchi": 47,
    "greek_salad": 48,
    "grilled_cheese_sandwich": 49,
    "grilled_salmon": 50,
    "guacamole": 51,
    "gyoza": 52,
    "hamburger": 53,
    "hot_and_sour_soup": 54,
    "hot_dog": 55,
    "huevos_rancheros": 56,
    "hummus": 57,
    "ice_cream": 58,
    "lasagna": 59,
    "lobster_bisque": 60,
    "lobster_roll_sandwich": 61,
    "macaroni_and_cheese": 62,
    "macarons": 63,
    "miso_soup": 64,
    "mussels": 65,
    "nachos": 66,
    "omelette": 67,
    "onion_rings": 68,
    "oysters": 69,
    "pad_thai": 70,
    "paella": 71,
    "pancakes": 72,
    "panna_cotta": 73,
    "peking_duck": 74,
    "pho": 75,
    "pizza": 76,
    "pork_chop": 77,
    "poutine": 78,
    "prime_rib": 79,
    "pulled_pork_sandwich": 80,
    "ramen": 81,
    "ravioli": 82,
    "red_velvet_cake": 83,
    "risotto": 84,
    "samosa": 85,
    "sashimi": 86,
    "scallops": 87,
    "seaweed_salad": 88,
    "shrimp_and_grits": 89,
    "spaghetti_bolognese": 90,
    "spaghetti_carbonara": 91,
    "spring_rolls": 92,
    "steak": 93,
    "strawberry_shortcake": 94,
    "sushi": 95,
    "tacos": 96,
    "takoyaki": 97,
    "tiramisu": 98,
    "tuna_tartare": 99,
    "waffles": 100
  }
  ```
</details>


### Data Splits

 
|   |train|validation|
|----------|----:|---------:|
|# of examples|75750|25250|