Datasets:
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
+
multilinguality:
|
5 |
+
- monolingual
|
6 |
+
size_categories:
|
7 |
+
- 1K<n<10K
|
8 |
+
task_categories:
|
9 |
+
- feature-extraction
|
10 |
+
- sentence-similarity
|
11 |
+
tags:
|
12 |
+
- sentence-transformers
|
13 |
+
pretty_name: STSB-indo-mt
|
14 |
+
dataset_info:
|
15 |
+
features:
|
16 |
+
- name: sentence1
|
17 |
+
dtype: string
|
18 |
+
- name: sentence2
|
19 |
+
dtype: string
|
20 |
+
- name: score
|
21 |
+
dtype: float64
|
22 |
+
splits:
|
23 |
+
- name: train
|
24 |
+
num_bytes: 755098
|
25 |
+
num_examples: 5749
|
26 |
+
- name: validation
|
27 |
+
num_bytes: 216064
|
28 |
+
num_examples: 1500
|
29 |
+
- name: test
|
30 |
+
num_bytes: 169987
|
31 |
+
num_examples: 1379
|
32 |
+
download_size: 720899
|
33 |
+
dataset_size: 1141149
|
34 |
+
configs:
|
35 |
+
- config_name: default
|
36 |
+
data_files:
|
37 |
+
- split: train
|
38 |
+
path: data/train-*
|
39 |
+
- split: validation
|
40 |
+
path: data/validation-*
|
41 |
+
- split: test
|
42 |
+
path: data/test-*
|
43 |
+
---
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
# Dataset Card for STSB
|
48 |
+
|
49 |
+
This dataset is machine translated using DeepL.
|
50 |
+
|
51 |
+
The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence pairs drawn from news headlines, video and image captions, and natural language inference data.
|
52 |
+
Each pair is human-annotated with a similarity score from 1 to 5. However, for this variant, the similarity scores are normalized to between 0 and 1.
|
53 |
+
|
54 |
+
## Dataset Details
|
55 |
+
|
56 |
+
* Columns: "sentence1", "sentence2", "score"
|
57 |
+
* Column types: `str`, `str`, `float`
|
58 |
+
* Examples:
|
59 |
+
```python
|
60 |
+
{
|
61 |
+
'sentence1': 'A man is playing a large flute.',
|
62 |
+
'sentence2': 'A man is playing a flute.',
|
63 |
+
'score': 0.76,
|
64 |
+
}
|
65 |
+
```
|
66 |
+
* Collection strategy: Reading the sentences and score from STSB dataset and dividing the score by 5.
|
67 |
+
* Deduplified: No
|