File size: 7,015 Bytes
2eccbda
 
 
ca95bc9
4882dff
2eccbda
 
 
 
4882dff
 
2eccbda
 
 
 
 
658aa3c
2eccbda
658aa3c
2eccbda
658aa3c
2eccbda
 
 
 
 
 
4882dff
 
 
ca95bc9
2eccbda
4882dff
2eccbda
 
 
ca95bc9
2eccbda
 
4882dff
2eccbda
4882dff
 
2eccbda
 
 
 
 
4882dff
2eccbda
4882dff
 
2eccbda
4882dff
2eccbda
 
 
 
4882dff
 
 
2eccbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4882dff
 
6559553
4882dff
 
 
2eccbda
 
 
 
4882dff
2eccbda
 
 
4882dff
2eccbda
 
 
4882dff
2eccbda
 
 
 
 
4882dff
 
2eccbda
 
4882dff
3e3f6c5
4882dff
 
 
 
3e3f6c5
4882dff
3e3f6c5
 
 
 
 
 
 
 
 
4882dff
3e3f6c5
4882dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import json
import logging
import datasets
from pathlib import Path

logger = logging.getLogger(__name__)

_DESCRIPTION = """
A collection of T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement,
with JSON sidecar metadata indicating train/validation/test splits.
"""

_CITATION = """
@dataset{Radiata-Brain-Structure,
  author    = {Jesse Brown and Clayton Young},
  title     = {Brain-Structure: Processed Structural MRI Brain Scans Across the Lifespan},
  year      = {2025},
  url          = {https://huggingface.co/datasets/radiata-ai/brain-structure},
  note      = {Version 1.0},
  publisher    = {Hugging Face}
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure"
_LICENSE = "ODC-By v1.0"

# The "resolve/main/data.zip" part ensures it grabs data.zip from your 'main' branch.
_DATA_URL = "https://huggingface.co/datasets/radiata-ai/brain-structure/resolve/main/data.zip"


class BrainStructureConfig(datasets.BuilderConfig):
    """Configuration for Brain-Structure dataset (if you need multiple, define them here)."""
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class BrainStructure(datasets.GeneratorBasedBuilder):
    """
    A dataset loader for T1 .nii.gz files plus JSON sidecars stored in a single ZIP.

    Usage:
        ds_train = load_dataset("radiata-ai/brain-structure", split="train", trust_remote_code=True)
    """

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        BrainStructureConfig(
            name="default",
            version=VERSION,
            description="Structural MRIs with sidecar metadata. Splits (train/val/test) indicated in the sidecars.",
        )
    ]
    DEFAULT_CONFIG_NAME = "default"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "nii_filepath": datasets.Value("string"),
                    "metadata": {
                        "split": datasets.Value("string"),
                        "participant_id": datasets.Value("string"),
                        "session_id": datasets.Value("string"),
                        "study": datasets.Value("string"),
                        "age": datasets.Value("int32"),
                        "sex": datasets.Value("string"),
                        "clinical_diagnosis": datasets.Value("string"),
                        "scanner_manufacturer": datasets.Value("string"),
                        "scanner_model": datasets.Value("string"),
                        "field_strength": datasets.Value("string"),
                        "image_quality_rating": datasets.Value("float"),
                        "total_intracranial_volume": datasets.Value("float"),
                        "license": datasets.Value("string"),
                        "website": datasets.Value("string"),
                        "citation": datasets.Value("string"),
                        "t1_file_name": datasets.Value("string"),
                        "radiata_id": datasets.Value("int32"),
                    },
                }
            ),
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """
        Downloads and extracts 'data.zip', then defines train/validation/test splits
        by matching sidecars with 'split': 'train'/'validation'/'test'.
        """
        # Download and extract your single ZIP containing all subfolders
        extracted_dir = dl_manager.download_and_extract(_DATA_URL)
        # The ZIP will typically unzip into a folder named "data" or similar. We'll just scan everything inside.

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": extracted_dir, "desired_split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_dir": extracted_dir, "desired_split": "validation"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_dir": extracted_dir, "desired_split": "test"},
            ),
        ]

    def _generate_examples(self, data_dir, desired_split):
        """
        Recursively find sidecar JSONs with 'split' matching desired_split. 
        For each, yield an example containing the .nii.gz path + metadata.
        """
        id_ = 0
        data_path = Path(data_dir)

        for json_path in data_path.rglob("*_scandata.json"):
            with open(json_path, "r") as f:
                sidecar = json.load(f)

            # Only yield if sidecar["split"] matches
            if sidecar.get("split") == desired_split:
                # Build a base prefix from the JSON filename (minus "_scandata")
                # e.g. "msub-OASIS20133_ses-03"
                base_prefix = json_path.stem.replace("_scandata", "")

                # Search for a NIfTI that starts with that prefix and includes '_T1w'
                nii_path = None
                for potential_nii in json_path.parent.glob(f"{base_prefix}*_T1w*.nii.gz"):
                    nii_path = potential_nii
                    break

                if not nii_path or not nii_path.is_file():
                    logger.warning(f"No .nii.gz found for {json_path}")
                    continue

                yield id_, {
                    "id": str(id_),
                    "nii_filepath": str(nii_path),
                    "metadata": {
                        "split": sidecar.get("split", ""),
                        "participant_id": sidecar.get("participant_id", ""),
                        "session_id": sidecar.get("session_id", ""),
                        "study": sidecar.get("study", ""),
                        "age": sidecar.get("age", 0),
                        "sex": sidecar.get("sex", ""),
                        "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
                        "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),
                        "scanner_model": sidecar.get("scanner_model", ""),
                        "field_strength": sidecar.get("field_strength", ""),
                        "image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)),
                        "total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)),
                        "license": sidecar.get("license", ""),
                        "website": sidecar.get("website", ""),
                        "citation": sidecar.get("citation", ""),
                        "t1_file_name": sidecar.get("t1_file_name", ""),
                        "radiata_id": sidecar.get("radiata_id", 0),
                    },
                }
                id_ += 1