Add files using upload-large-folder tool
Browse files- .DS_Store +0 -0
- IXI/.DS_Store +0 -0
- README.md +30 -23
- brain-structure.py +185 -0
- sample_images/.DS_Store +0 -0
- sample_images/18_F_CN_2966.png +3 -0
- sample_images/46_F_CN_436.png +3 -0
- sample_images/71_M_AD_3585.png +3 -0
- sample_images/86_M_CN_3765.png +3 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
IXI/.DS_Store
CHANGED
Binary files a/IXI/.DS_Store and b/IXI/.DS_Store differ
|
|
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# Description
|
2 |
3794 3D structural MRI brain scans (T1-weighted MPRAGE NIfTI files) from 2607 individuals included in five publicly available datasets: [IXI](https://brain-development.org/ixi-dataset/), [DLBS](https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), [NKI-RS](https://fcon_1000.projects.nitrc.org/indi/enhanced/sharing_neuro.html), [OASIS-1](https://sites.wustl.edu/oasisbrains/home/oasis-1/), and [OASIS-2](https://sites.wustl.edu/oasisbrains/home/oasis-2/). Subjects have a mean age of 45 Β± 24. 3773 scans come from cognitively normal individuals and 261 scans from individuals with an Alzheimer's disease clinical diagnosis. Scans dimensions are 113x137x113, 1.5mm^3 resolution, aligned to MNI152 space (see methods).
|
3 |
|
4 |
-
Scans are processed and no protected health information (PHI) is included - only the skull-stripped scan, integer age, biological sex, and clinical diagnosis. [Radiata](https://radiata.ai/) compiles and processes publicly available neuroimaging datasets to create
|
5 |
|
6 |
|
7 |
# License
|
@@ -20,23 +20,23 @@ The metadata provide the license for each object.
|
|
20 |
<table>
|
21 |
<tr>
|
22 |
<td align="center">
|
23 |
-
<img src="18_F_CN_2966.png" alt="18_F_CN_2966" width="150">
|
24 |
-
<br>Age 18 F
|
25 |
<br>Cognitively normal
|
26 |
</td>
|
27 |
<td align="center">
|
28 |
-
<img src="71_M_AD_3585.png" alt="71_M_AD_3585" width="150">
|
29 |
-
<br>Age 71 M
|
30 |
<br>Alzheimer's disease
|
31 |
</td>
|
32 |
<td align="center">
|
33 |
-
<img src="46_F_CN_436.png" alt="46_F_CN_436" width="150">
|
34 |
-
<br>Age 46 F
|
35 |
<br>Cognitively normal
|
36 |
</td>
|
37 |
<td align="center">
|
38 |
-
<img src="86_M_CN_3765.png" alt="86_M_CN_3765" width="150">
|
39 |
-
<br>Age 86 M
|
40 |
<br>Cognitively normal
|
41 |
</td>
|
42 |
</tr>
|
@@ -53,15 +53,15 @@ The metadata provide the license for each object.
|
|
53 |
|
54 |
# Folder organization
|
55 |
```bash
|
56 |
-
|
57 |
-
ββ
|
58 |
ββ metadata.csv
|
59 |
ββ IXI/
|
60 |
β ββ sub-002/
|
61 |
β β ββ ses-01/
|
62 |
β β ββ anat/
|
63 |
-
β β ββ
|
64 |
-
β β ββ
|
65 |
β ββ ...
|
66 |
ββ DLBS/
|
67 |
β ββ ...
|
@@ -79,9 +79,9 @@ pip install datasets
|
|
79 |
# load datasets
|
80 |
from datasets import load_dataset
|
81 |
|
82 |
-
ds_train = load_dataset("radiata-ai/
|
83 |
-
ds_val = load_dataset("radiata-ai/
|
84 |
-
ds_test = load_dataset("radiata-ai/
|
85 |
```
|
86 |
|
87 |
```
|
@@ -158,20 +158,27 @@ Citation: OASIS-2: Longitudinal: https://doi.org/10.1162/jocn.2009.21407
|
|
158 |
|
159 |
# Methods
|
160 |
## Image processing
|
161 |
-
T1-weighted structural MRI scans were processed with [CAT12](https://neuro-jena.github.io/cat12-help/) ([Gaser et al, 2024](https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giae049/7727520)).
|
|
|
|
|
|
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
## Train/validation/test partitioning
|
166 |
-
Scans were partitioned into train/validation/test datasets with a 80
|
167 |
|
168 |
|
169 |
# Citation
|
170 |
-
|
|
|
171 |
author = {Jesse Brown and Clayton Young},
|
172 |
-
title = {
|
173 |
year = {2025},
|
174 |
-
url = { https://huggingface.co/datasets/radiata-ai/
|
175 |
note = {Version 1.0},
|
176 |
publisher = { Hugging Face }
|
177 |
-
}
|
|
|
|
1 |
# Description
|
2 |
3794 3D structural MRI brain scans (T1-weighted MPRAGE NIfTI files) from 2607 individuals included in five publicly available datasets: [IXI](https://brain-development.org/ixi-dataset/), [DLBS](https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), [NKI-RS](https://fcon_1000.projects.nitrc.org/indi/enhanced/sharing_neuro.html), [OASIS-1](https://sites.wustl.edu/oasisbrains/home/oasis-1/), and [OASIS-2](https://sites.wustl.edu/oasisbrains/home/oasis-2/). Subjects have a mean age of 45 Β± 24. 3773 scans come from cognitively normal individuals and 261 scans from individuals with an Alzheimer's disease clinical diagnosis. Scans dimensions are 113x137x113, 1.5mm^3 resolution, aligned to MNI152 space (see methods).
|
3 |
|
4 |
+
Scans are processed and no protected health information (PHI) is included - only the skull-stripped scan, integer age, biological sex, and clinical diagnosis. [Radiata](https://radiata.ai/) compiles and processes publicly available neuroimaging datasets to create this open, unified, and harmonized dataset. For more information see https://radiata.ai/public-studies. Example uses including developing foundation-like models or tailored models for brain age prediction and disease classification.
|
5 |
|
6 |
|
7 |
# License
|
|
|
20 |
<table>
|
21 |
<tr>
|
22 |
<td align="center">
|
23 |
+
<img src="sample_images/18_F_CN_2966.png" alt="18_F_CN_2966" width="150">
|
24 |
+
<br>Age 18 F, NKI-RS
|
25 |
<br>Cognitively normal
|
26 |
</td>
|
27 |
<td align="center">
|
28 |
+
<img src="sample_images/71_M_AD_3585.png" alt="71_M_AD_3585" width="150">
|
29 |
+
<br>Age 71 M, OASIS-1
|
30 |
<br>Alzheimer's disease
|
31 |
</td>
|
32 |
<td align="center">
|
33 |
+
<img src="sample_images/46_F_CN_436.png" alt="46_F_CN_436" width="150">
|
34 |
+
<br>Age 46 F, IXI
|
35 |
<br>Cognitively normal
|
36 |
</td>
|
37 |
<td align="center">
|
38 |
+
<img src="sample_images/86_M_CN_3765.png" alt="86_M_CN_3765" width="150">
|
39 |
+
<br>Age 86 M, OASIS-2
|
40 |
<br>Cognitively normal
|
41 |
</td>
|
42 |
</tr>
|
|
|
53 |
|
54 |
# Folder organization
|
55 |
```bash
|
56 |
+
brain-structure/
|
57 |
+
ββ brain-structure.py
|
58 |
ββ metadata.csv
|
59 |
ββ IXI/
|
60 |
β ββ sub-002/
|
61 |
β β ββ ses-01/
|
62 |
β β ββ anat/
|
63 |
+
β β ββ msub-002_ses-01_T1w_brain_affine_mni.nii.gz
|
64 |
+
β β ββ msub-002_ses-01_scandata.json
|
65 |
β ββ ...
|
66 |
ββ DLBS/
|
67 |
β ββ ...
|
|
|
79 |
# load datasets
|
80 |
from datasets import load_dataset
|
81 |
|
82 |
+
ds_train = load_dataset("radiata-ai/brain-structure", name="all", split="train", trust_remote_code=True)
|
83 |
+
ds_val = load_dataset("radiata-ai/brain-structure", name="all", split="validation", trust_remote_code=True)
|
84 |
+
ds_test = load_dataset("radiata-ai/brain-structure", name="all", split="test", trust_remote_code=True)
|
85 |
```
|
86 |
|
87 |
```
|
|
|
158 |
|
159 |
# Methods
|
160 |
## Image processing
|
161 |
+
T1-weighted structural MRI scans were processed with [CAT12](https://neuro-jena.github.io/cat12-help/) ([Gaser et al, 2024](https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giae049/7727520)). The image processing steps were:
|
162 |
+
- correct for bias, noise and intensity
|
163 |
+
- mask to brain-only (gray matter + white matter + CSF)
|
164 |
+
- register to ICBM 2009c Nonlinear Asymmetric space (MNI152NLin2009cAsym 1.5mm^3) using linear affine registration with 12 degrees of freedom in [FSL FLIRT](https://fsl.fmrib.ox.ac.uk/fsl/docs/#/registration/flirt/index) ('flirt -in t1.nii.gz -ref mni_icbm152_t1_tal_nlin_asym_09c_brain_1_5_mm.nii.gz -dof 12 -noresampblur').
|
165 |
|
166 |
+
The goal was to get denoised, unsmoothed scans that were maximally aligned to standard space while preserving individual anatomy.
|
167 |
+
|
168 |
+
Metadata includes the total intracranial volume (TIV), image quality rating (IQR; larger value = worse quality), MRI scanner manufacturer/model, and field strength.
|
169 |
|
170 |
## Train/validation/test partitioning
|
171 |
+
Scans were partitioned into train/validation/test datasets with a 80%/10%/10% split. Splits were balanced for age, sex, clinical diagnosis, and study. Subjects with multiple scans only appear in one split.
|
172 |
|
173 |
|
174 |
# Citation
|
175 |
+
```
|
176 |
+
@dataset{Radiata-Brain-Structure,
|
177 |
author = {Jesse Brown and Clayton Young},
|
178 |
+
title = {Brain-Structure: A Collection of Processed Structural MRI Scans},
|
179 |
year = {2025},
|
180 |
+
url = { https://huggingface.co/datasets/radiata-ai/brain-structure },
|
181 |
note = {Version 1.0},
|
182 |
publisher = { Hugging Face }
|
183 |
+
}
|
184 |
+
```
|
brain-structure.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import datasets
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
_DESCRIPTION = """
|
9 |
+
This dataset contains T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement.
|
10 |
+
Each scan has an associated JSON sidecar with metadata, including fields such as subject
|
11 |
+
demographics, scanner information, and a 'split' field indicating train/validation/test.
|
12 |
+
"""
|
13 |
+
|
14 |
+
_CITATION = """
|
15 |
+
@dataset{Radiata-Brain-Structure,
|
16 |
+
author = {Jesse Brown and Clayton Young},
|
17 |
+
title = {Brain-Structure: A Collection of Processed Structural MRI Scans},
|
18 |
+
year = {2025},
|
19 |
+
url = {https://huggingface.co/datasets/radiata-ai/brain-structure},
|
20 |
+
note = {Version 1.0},
|
21 |
+
publisher = {Hugging Face}
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure"
|
26 |
+
_LICENSE = "ODC-By v1.0"
|
27 |
+
|
28 |
+
class BrainStructureConfig(datasets.BuilderConfig):
|
29 |
+
"""
|
30 |
+
Configuration class for the Brain-Structure dataset.
|
31 |
+
You can define multiple configurations if needed (e.g. different subsets).
|
32 |
+
"""
|
33 |
+
def __init__(self, **kwargs):
|
34 |
+
super().__init__(**kwargs)
|
35 |
+
|
36 |
+
class BrainStructure(datasets.GeneratorBasedBuilder):
|
37 |
+
"""
|
38 |
+
A dataset loader for T1 .nii.gz files plus JSON sidecars.
|
39 |
+
Each sidecar includes a 'split' field identifying whether the scan
|
40 |
+
belongs to the train, validation, or test set.
|
41 |
+
|
42 |
+
Usage Example:
|
43 |
+
ds = load_dataset(
|
44 |
+
"radiata-ai/brain-structure",
|
45 |
+
name="all",
|
46 |
+
split="train",
|
47 |
+
trust_remote_code=True
|
48 |
+
)
|
49 |
+
"""
|
50 |
+
|
51 |
+
VERSION = datasets.Version("1.0.0")
|
52 |
+
BUILDER_CONFIGS = [
|
53 |
+
BrainStructureConfig(
|
54 |
+
name="all",
|
55 |
+
version=VERSION,
|
56 |
+
description=(
|
57 |
+
"All structural MRI data in a BIDS-like arrangement, labeled "
|
58 |
+
"with train/validation/test splits."
|
59 |
+
),
|
60 |
+
),
|
61 |
+
]
|
62 |
+
DEFAULT_CONFIG_NAME = "all"
|
63 |
+
|
64 |
+
def _info(self):
|
65 |
+
"""
|
66 |
+
Provides metadata about the dataset, including feature types
|
67 |
+
and general dataset information.
|
68 |
+
"""
|
69 |
+
return datasets.DatasetInfo(
|
70 |
+
description=_DESCRIPTION,
|
71 |
+
features=datasets.Features(
|
72 |
+
{
|
73 |
+
"id": datasets.Value("string"),
|
74 |
+
"nii_filepath": datasets.Value("string"),
|
75 |
+
"metadata": {
|
76 |
+
"split": datasets.Value("string"),
|
77 |
+
"participant_id": datasets.Value("string"),
|
78 |
+
"session_id": datasets.Value("string"),
|
79 |
+
"study": datasets.Value("string"),
|
80 |
+
|
81 |
+
# Additional fields from the JSON sidecar
|
82 |
+
"age": datasets.Value("int32"),
|
83 |
+
"sex": datasets.Value("string"),
|
84 |
+
"clinical_diagnosis": datasets.Value("string"),
|
85 |
+
"scanner_manufacturer": datasets.Value("string"),
|
86 |
+
"scanner_model": datasets.Value("string"),
|
87 |
+
"field_strength": datasets.Value("string"),
|
88 |
+
"image_quality_rating": datasets.Value("float"),
|
89 |
+
"total_intracranial_volume": datasets.Value("float"),
|
90 |
+
"license": datasets.Value("string"),
|
91 |
+
"website": datasets.Value("string"),
|
92 |
+
"citation": datasets.Value("string"),
|
93 |
+
"t1_file_name": datasets.Value("string"),
|
94 |
+
"radiata_id": datasets.Value("int32"),
|
95 |
+
},
|
96 |
+
}
|
97 |
+
),
|
98 |
+
homepage=_HOMEPAGE,
|
99 |
+
license=_LICENSE,
|
100 |
+
citation=_CITATION,
|
101 |
+
)
|
102 |
+
|
103 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
104 |
+
"""
|
105 |
+
Returns SplitGenerators for 'train', 'validation', and 'test'.
|
106 |
+
Each split is identified by matching the 'split' field in the JSON sidecar.
|
107 |
+
"""
|
108 |
+
data_dir = dl_manager.dataset_dir
|
109 |
+
|
110 |
+
return [
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TRAIN,
|
113 |
+
gen_kwargs={"data_dir": data_dir, "desired_split": "train"},
|
114 |
+
),
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.VALIDATION,
|
117 |
+
gen_kwargs={"data_dir": data_dir, "desired_split": "validation"},
|
118 |
+
),
|
119 |
+
datasets.SplitGenerator(
|
120 |
+
name=datasets.Split.TEST,
|
121 |
+
gen_kwargs={"data_dir": data_dir, "desired_split": "test"},
|
122 |
+
),
|
123 |
+
]
|
124 |
+
|
125 |
+
def _generate_examples(self, data_dir, desired_split):
|
126 |
+
"""
|
127 |
+
Recursively scan the data_dir, locate JSON sidecar files, and yield
|
128 |
+
examples whose 'split' field matches desired_split.
|
129 |
+
|
130 |
+
Each yielded example includes:
|
131 |
+
- 'nii_filepath': pointing to the corresponding .nii.gz file
|
132 |
+
- 'metadata': dictionary of subject and scan information
|
133 |
+
"""
|
134 |
+
id_ = 0
|
135 |
+
for root, dirs, files in os.walk(data_dir):
|
136 |
+
for fname in files:
|
137 |
+
if fname.endswith("_scandata.json"):
|
138 |
+
sidecar_path = os.path.join(root, fname)
|
139 |
+
with open(sidecar_path, "r") as f:
|
140 |
+
sidecar = json.load(f)
|
141 |
+
|
142 |
+
# Only yield if 'split' matches the desired split
|
143 |
+
if sidecar.get("split") == desired_split:
|
144 |
+
# Attempt to locate the matching .nii.gz file
|
145 |
+
# Typically the sidecar is named sub-xxx_ses-xxx_scandata.json
|
146 |
+
# and the NIfTI file: sub-xxx_ses-xxx_T1w.nii.gz
|
147 |
+
possible_nii_prefix = fname.replace("_scandata.json", "_T1w")
|
148 |
+
nii_filepath = None
|
149 |
+
for potential_file in files:
|
150 |
+
if (potential_file.startswith(possible_nii_prefix)
|
151 |
+
and potential_file.endswith(".nii.gz")):
|
152 |
+
nii_filepath = os.path.join(root, potential_file)
|
153 |
+
break
|
154 |
+
|
155 |
+
if not nii_filepath:
|
156 |
+
logger.warning(
|
157 |
+
f"No corresponding .nii.gz file found for {sidecar_path}"
|
158 |
+
)
|
159 |
+
continue
|
160 |
+
|
161 |
+
# Build the example
|
162 |
+
yield id_, {
|
163 |
+
"id": str(id_),
|
164 |
+
"nii_filepath": nii_filepath,
|
165 |
+
"metadata": {
|
166 |
+
"split": sidecar.get("split", ""),
|
167 |
+
"participant_id": sidecar.get("participant_id", ""),
|
168 |
+
"session_id": sidecar.get("session_id", ""),
|
169 |
+
"study": sidecar.get("study", ""),
|
170 |
+
"age": sidecar.get("age", 0), # default to 0 if missing
|
171 |
+
"sex": sidecar.get("sex", ""),
|
172 |
+
"clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
|
173 |
+
"scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),
|
174 |
+
"scanner_model": sidecar.get("scanner_model", ""),
|
175 |
+
"field_strength": sidecar.get("field_strength", ""),
|
176 |
+
"image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)),
|
177 |
+
"total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)),
|
178 |
+
"license": sidecar.get("license", ""),
|
179 |
+
"website": sidecar.get("website", ""),
|
180 |
+
"citation": sidecar.get("citation", ""),
|
181 |
+
"t1_file_name": sidecar.get("t1_file_name", ""),
|
182 |
+
"radiata_id": sidecar.get("radiata_id", 0),
|
183 |
+
},
|
184 |
+
}
|
185 |
+
id_ += 1
|
sample_images/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
sample_images/18_F_CN_2966.png
ADDED
![]() |
Git LFS Details
|
sample_images/46_F_CN_436.png
ADDED
![]() |
Git LFS Details
|
sample_images/71_M_AD_3585.png
ADDED
![]() |
Git LFS Details
|
sample_images/86_M_CN_3765.png
ADDED
![]() |
Git LFS Details
|