Add files using upload-large-folder tool
Browse files- .DS_Store +0 -0
- brain-structure.py +62 -69
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
brain-structure.py
CHANGED
@@ -29,7 +29,6 @@ _LICENSE = "ODC-By v1.0"
|
|
29 |
class BrainStructureConfig(datasets.BuilderConfig):
|
30 |
"""
|
31 |
Configuration class for the Brain-Structure dataset.
|
32 |
-
You can define multiple configurations if needed (e.g., different subsets).
|
33 |
"""
|
34 |
def __init__(self, **kwargs):
|
35 |
super().__init__(**kwargs)
|
@@ -38,19 +37,17 @@ class BrainStructureConfig(datasets.BuilderConfig):
|
|
38 |
class BrainStructure(datasets.GeneratorBasedBuilder):
|
39 |
"""
|
40 |
A dataset loader for T1 .nii.gz files plus JSON sidecars indicating splits
|
41 |
-
(train, validation, test).
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
)
|
49 |
"""
|
50 |
|
51 |
VERSION = datasets.Version("1.0.0")
|
52 |
|
53 |
-
# If you do NOT need multiple configs, you can define just one here:
|
54 |
BUILDER_CONFIGS = [
|
55 |
BrainStructureConfig(
|
56 |
name="all",
|
@@ -62,7 +59,7 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
|
|
62 |
|
63 |
def _info(self):
|
64 |
"""
|
65 |
-
Returns DatasetInfo, including feature
|
66 |
"""
|
67 |
return datasets.DatasetInfo(
|
68 |
description=_DESCRIPTION,
|
@@ -75,8 +72,6 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
|
|
75 |
"participant_id": datasets.Value("string"),
|
76 |
"session_id": datasets.Value("string"),
|
77 |
"study": datasets.Value("string"),
|
78 |
-
|
79 |
-
# Additional fields from the JSON sidecar
|
80 |
"age": datasets.Value("int32"),
|
81 |
"sex": datasets.Value("string"),
|
82 |
"clinical_diagnosis": datasets.Value("string"),
|
@@ -100,15 +95,14 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
|
|
100 |
|
101 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
102 |
"""
|
103 |
-
Creates SplitGenerators for train, validation, and test.
|
104 |
-
No
|
105 |
-
the local directory containing this script.
|
106 |
-
"""
|
107 |
-
# Typically, we use dl_manager.download_and_extract(...) for remote data,
|
108 |
-
# but here we assume the data is already in the same repo as this script.
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
return [
|
114 |
datasets.SplitGenerator(
|
@@ -127,56 +121,55 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
|
|
127 |
|
128 |
def _generate_examples(self, data_dir, desired_split):
|
129 |
"""
|
130 |
-
Recursively walks
|
131 |
-
|
|
|
|
|
|
|
132 |
"""
|
133 |
id_ = 0
|
134 |
for root, dirs, files in os.walk(data_dir):
|
135 |
for fname in files:
|
136 |
-
#
|
137 |
-
if
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
sidecar
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
"radiata_id": sidecar.get("radiata_id", 0),
|
180 |
-
},
|
181 |
-
}
|
182 |
-
id_ += 1
|
|
|
29 |
class BrainStructureConfig(datasets.BuilderConfig):
|
30 |
"""
|
31 |
Configuration class for the Brain-Structure dataset.
|
|
|
32 |
"""
|
33 |
def __init__(self, **kwargs):
|
34 |
super().__init__(**kwargs)
|
|
|
37 |
class BrainStructure(datasets.GeneratorBasedBuilder):
|
38 |
"""
|
39 |
A dataset loader for T1 .nii.gz files plus JSON sidecars indicating splits
|
40 |
+
(train, validation, test).
|
41 |
|
42 |
+
Examples of how users typically load this dataset:
|
43 |
+
|
44 |
+
>>> from datasets import load_dataset
|
45 |
+
>>> ds_val = load_dataset("radiata-ai/brain-structure", split="validation", trust_remote_code=True)
|
46 |
+
>>> ds_train = load_dataset("./brain-structure", split="train") # local clone
|
|
|
47 |
"""
|
48 |
|
49 |
VERSION = datasets.Version("1.0.0")
|
50 |
|
|
|
51 |
BUILDER_CONFIGS = [
|
52 |
BrainStructureConfig(
|
53 |
name="all",
|
|
|
59 |
|
60 |
def _info(self):
|
61 |
"""
|
62 |
+
Returns DatasetInfo, including the feature schema and other metadata.
|
63 |
"""
|
64 |
return datasets.DatasetInfo(
|
65 |
description=_DESCRIPTION,
|
|
|
72 |
"participant_id": datasets.Value("string"),
|
73 |
"session_id": datasets.Value("string"),
|
74 |
"study": datasets.Value("string"),
|
|
|
|
|
75 |
"age": datasets.Value("int32"),
|
76 |
"sex": datasets.Value("string"),
|
77 |
"clinical_diagnosis": datasets.Value("string"),
|
|
|
95 |
|
96 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
97 |
"""
|
98 |
+
Creates SplitGenerators for 'train', 'validation', and 'test'.
|
99 |
+
*No actual download* is done here, so data_dir is simply '.'.
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
Why '.'? Because whether the dataset is used locally or from the Hub,
|
102 |
+
Hugging Face will place (or reference) files in this same folder context.
|
103 |
+
"""
|
104 |
+
data_dir = "." # The local folder containing subdirectories like IXI/, DLBS/, etc.
|
105 |
+
logger.info(f"BrainStructure: scanning data in {os.path.abspath(data_dir)}")
|
106 |
|
107 |
return [
|
108 |
datasets.SplitGenerator(
|
|
|
121 |
|
122 |
def _generate_examples(self, data_dir, desired_split):
|
123 |
"""
|
124 |
+
Recursively walks the directory structure, looking for JSON sidecar files
|
125 |
+
ending in '_scandata.json'. For each matching file, yields an example
|
126 |
+
if sidecar["split"] == desired_split.
|
127 |
+
|
128 |
+
The corresponding .nii.gz is located by prefix matching.
|
129 |
"""
|
130 |
id_ = 0
|
131 |
for root, dirs, files in os.walk(data_dir):
|
132 |
for fname in files:
|
133 |
+
# If you only want "msub" files, you can add: if fname.startswith("msub") and ...
|
134 |
+
if fname.endswith("_scandata.json"):
|
135 |
+
sidecar_path = os.path.join(root, fname)
|
136 |
+
with open(sidecar_path, "r") as f:
|
137 |
+
sidecar = json.load(f)
|
138 |
+
|
139 |
+
if sidecar.get("split") == desired_split:
|
140 |
+
# Find the .nii.gz prefix
|
141 |
+
nii_prefix = fname.replace("_scandata.json", "_T1w")
|
142 |
+
nii_filepath = None
|
143 |
+
for potential_file in files:
|
144 |
+
if potential_file.startswith(nii_prefix) and potential_file.endswith(".nii.gz"):
|
145 |
+
nii_filepath = os.path.join(root, potential_file)
|
146 |
+
break
|
147 |
+
|
148 |
+
if not nii_filepath:
|
149 |
+
logger.warning(f"No corresponding .nii.gz found for {sidecar_path}")
|
150 |
+
continue
|
151 |
+
|
152 |
+
yield id_, {
|
153 |
+
"id": str(id_),
|
154 |
+
"nii_filepath": nii_filepath,
|
155 |
+
"metadata": {
|
156 |
+
"split": sidecar.get("split", ""),
|
157 |
+
"participant_id": sidecar.get("participant_id", ""),
|
158 |
+
"session_id": sidecar.get("session_id", ""),
|
159 |
+
"study": sidecar.get("study", ""),
|
160 |
+
"age": sidecar.get("age", 0),
|
161 |
+
"sex": sidecar.get("sex", ""),
|
162 |
+
"clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
|
163 |
+
"scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),
|
164 |
+
"scanner_model": sidecar.get("scanner_model", ""),
|
165 |
+
"field_strength": sidecar.get("field_strength", ""),
|
166 |
+
"image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)),
|
167 |
+
"total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)),
|
168 |
+
"license": sidecar.get("license", ""),
|
169 |
+
"website": sidecar.get("website", ""),
|
170 |
+
"citation": sidecar.get("citation", ""),
|
171 |
+
"t1_file_name": sidecar.get("t1_file_name", ""),
|
172 |
+
"radiata_id": sidecar.get("radiata_id", 0),
|
173 |
+
},
|
174 |
+
}
|
175 |
+
id_ += 1
|
|
|
|
|
|
|
|