import os import json import logging import datasets from pathlib import Path logger = logging.getLogger(__name__) _DESCRIPTION = """ A collection of T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement, with JSON sidecar metadata indicating train/validation/test splits. """ _CITATION = """ @dataset{Radiata-Brain-Structure, author = {Jesse Brown and Clayton Young}, title = {Brain-Structure: Processed Structural MRI Brain Scans Across the Lifespan}, year = {2025}, url = {https://huggingface.co/datasets/radiata-ai/brain-structure}, note = {Version 1.0}, publisher = {Hugging Face} } """ _HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure" _LICENSE = "ODC-By v1.0" # The "resolve/main/data.zip" part ensures it grabs data.zip from your 'main' branch. _DATA_URL = "https://huggingface.co/datasets/radiata-ai/brain-structure/resolve/main/data.zip" class BrainStructureConfig(datasets.BuilderConfig): """Configuration for Brain-Structure dataset (if you need multiple, define them here).""" def __init__(self, **kwargs): super().__init__(**kwargs) class BrainStructure(datasets.GeneratorBasedBuilder): """ A dataset loader for T1 .nii.gz files plus JSON sidecars stored in a single ZIP. Usage: ds_train = load_dataset("radiata-ai/brain-structure", split="train", trust_remote_code=True) """ VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ BrainStructureConfig( name="default", version=VERSION, description="Structural MRIs with sidecar metadata. Splits (train/val/test) indicated in the sidecars.", ) ] DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, features=datasets.Features( { "id": datasets.Value("string"), "nii_filepath": datasets.Value("string"), "metadata": { "split": datasets.Value("string"), "participant_id": datasets.Value("string"), "session_id": datasets.Value("string"), "study": datasets.Value("string"), "age": datasets.Value("int32"), "sex": datasets.Value("string"), "clinical_diagnosis": datasets.Value("string"), "scanner_manufacturer": datasets.Value("string"), "scanner_model": datasets.Value("string"), "field_strength": datasets.Value("string"), "image_quality_rating": datasets.Value("float"), "total_intracranial_volume": datasets.Value("float"), "license": datasets.Value("string"), "website": datasets.Value("string"), "citation": datasets.Value("string"), "t1_file_name": datasets.Value("string"), "radiata_id": datasets.Value("int32"), }, } ), ) def _split_generators(self, dl_manager: datasets.DownloadManager): """ Downloads and extracts 'data.zip', then defines train/validation/test splits by matching sidecars with 'split': 'train'/'validation'/'test'. """ # Download and extract your single ZIP containing all subfolders extracted_dir = dl_manager.download_and_extract(_DATA_URL) # The ZIP will typically unzip into a folder named "data" or similar. We'll just scan everything inside. return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": extracted_dir, "desired_split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": extracted_dir, "desired_split": "validation"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": extracted_dir, "desired_split": "test"}, ), ] def _generate_examples(self, data_dir, desired_split): """ Recursively find sidecar JSONs with 'split' matching desired_split. For each, yield an example containing the .nii.gz path + metadata. """ id_ = 0 data_path = Path(data_dir) for json_path in data_path.rglob("*_scandata.json"): with open(json_path, "r") as f: sidecar = json.load(f) # Only yield if sidecar["split"] matches if sidecar.get("split") == desired_split: # Build a base prefix from the JSON filename (minus "_scandata") # e.g. "msub-OASIS20133_ses-03" base_prefix = json_path.stem.replace("_scandata", "") # Search for a NIfTI that starts with that prefix and includes '_T1w' nii_path = None for potential_nii in json_path.parent.glob(f"{base_prefix}*_T1w*.nii.gz"): nii_path = potential_nii break if not nii_path or not nii_path.is_file(): logger.warning(f"No .nii.gz found for {json_path}") continue yield id_, { "id": str(id_), "nii_filepath": str(nii_path), "metadata": { "split": sidecar.get("split", ""), "participant_id": sidecar.get("participant_id", ""), "session_id": sidecar.get("session_id", ""), "study": sidecar.get("study", ""), "age": sidecar.get("age", 0), "sex": sidecar.get("sex", ""), "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""), "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""), "scanner_model": sidecar.get("scanner_model", ""), "field_strength": sidecar.get("field_strength", ""), "image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)), "total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)), "license": sidecar.get("license", ""), "website": sidecar.get("website", ""), "citation": sidecar.get("citation", ""), "t1_file_name": sidecar.get("t1_file_name", ""), "radiata_id": sidecar.get("radiata_id", 0), }, } id_ += 1