import os import json import datasets import logging logger = logging.getLogger(__name__) _DESCRIPTION = """ This dataset contains T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement. Each scan has an associated JSON sidecar with metadata, including fields such as subject demographics, scanner information, and a 'split' field indicating train/validation/test. """ _CITATION = """ @dataset{Radiata-Brain-Structure, author = {Jesse Brown and Clayton Young}, title = {Brain-Structure: A Collection of Processed Structural MRI Scans}, year = {2025}, url = {https://huggingface.co/datasets/radiata-ai/brain-structure}, note = {Version 1.0}, publisher = {Hugging Face} } """ _HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure" _LICENSE = "ODC-By v1.0" class BrainStructureConfig(datasets.BuilderConfig): """ Configuration class for the Brain-Structure dataset. You can define multiple configurations if needed (e.g. different subsets). """ def __init__(self, **kwargs): super().__init__(**kwargs) class BrainStructure(datasets.GeneratorBasedBuilder): """ A dataset loader for T1 .nii.gz files plus JSON sidecars. Each sidecar includes a 'split' field identifying whether the scan belongs to the train, validation, or test set. Usage Example: ds = load_dataset( "radiata-ai/brain-structure", name="all", split="train", trust_remote_code=True ) """ VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ BrainStructureConfig( name="all", version=VERSION, description=( "All structural MRI data in a BIDS-like arrangement, labeled " "with train/validation/test splits." ), ), ] DEFAULT_CONFIG_NAME = "all" def _info(self): """ Provides metadata about the dataset, including feature types and general dataset information. """ return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "nii_filepath": datasets.Value("string"), "metadata": { "split": datasets.Value("string"), "participant_id": datasets.Value("string"), "session_id": datasets.Value("string"), "study": datasets.Value("string"), # Additional fields from the JSON sidecar "age": datasets.Value("int32"), "sex": datasets.Value("string"), "clinical_diagnosis": datasets.Value("string"), "scanner_manufacturer": datasets.Value("string"), "scanner_model": datasets.Value("string"), "field_strength": datasets.Value("string"), "image_quality_rating": datasets.Value("float"), "total_intracranial_volume": datasets.Value("float"), "license": datasets.Value("string"), "website": datasets.Value("string"), "citation": datasets.Value("string"), "t1_file_name": datasets.Value("string"), "radiata_id": datasets.Value("int32"), }, } ), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): """ Returns SplitGenerators for 'train', 'validation', and 'test'. Each split is identified by matching the 'split' field in the JSON sidecar. """ data_dir = dl_manager.dataset_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "desired_split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": data_dir, "desired_split": "validation"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "desired_split": "test"}, ), ] def _generate_examples(self, data_dir, desired_split): """ Recursively scan the data_dir, locate JSON sidecar files, and yield examples whose 'split' field matches desired_split. Each yielded example includes: - 'nii_filepath': pointing to the corresponding .nii.gz file - 'metadata': dictionary of subject and scan information """ id_ = 0 for root, dirs, files in os.walk(data_dir): for fname in files: if fname.endswith("_scandata.json"): sidecar_path = os.path.join(root, fname) with open(sidecar_path, "r") as f: sidecar = json.load(f) # Only yield if 'split' matches the desired split if sidecar.get("split") == desired_split: # Attempt to locate the matching .nii.gz file # Typically the sidecar is named sub-xxx_ses-xxx_scandata.json # and the NIfTI file: sub-xxx_ses-xxx_T1w.nii.gz possible_nii_prefix = fname.replace("_scandata.json", "_T1w") nii_filepath = None for potential_file in files: if (potential_file.startswith(possible_nii_prefix) and potential_file.endswith(".nii.gz")): nii_filepath = os.path.join(root, potential_file) break if not nii_filepath: logger.warning( f"No corresponding .nii.gz file found for {sidecar_path}" ) continue # Build the example yield id_, { "id": str(id_), "nii_filepath": nii_filepath, "metadata": { "split": sidecar.get("split", ""), "participant_id": sidecar.get("participant_id", ""), "session_id": sidecar.get("session_id", ""), "study": sidecar.get("study", ""), "age": sidecar.get("age", 0), # default to 0 if missing "sex": sidecar.get("sex", ""), "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""), "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""), "scanner_model": sidecar.get("scanner_model", ""), "field_strength": sidecar.get("field_strength", ""), "image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)), "total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)), "license": sidecar.get("license", ""), "website": sidecar.get("website", ""), "citation": sidecar.get("citation", ""), "t1_file_name": sidecar.get("t1_file_name", ""), "radiata_id": sidecar.get("radiata_id", 0), }, } id_ += 1