import os import json import logging import datasets logger = logging.getLogger(__name__) _DESCRIPTION = """ This dataset contains T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement. Each scan has an associated JSON sidecar with metadata, including a 'split' field indicating whether it's train, validation, or test. """ _CITATION = """ @dataset{Radiata-Brain-Structure, author = {Jesse Brown and Clayton Young}, title = {Brain-Structure: A Collection of Processed Structural MRI Scans}, year = {2025}, url = {https://huggingface.co/datasets/radiata-ai/brain-structure}, note = {Version 1.0}, publisher = {Hugging Face} } """ _HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure" _LICENSE = "ODC-By v1.0" class BrainStructureConfig(datasets.BuilderConfig): """ Configuration class for the Brain-Structure dataset. You can define multiple configurations if needed (e.g., different subsets). """ def __init__(self, **kwargs): super().__init__(**kwargs) class BrainStructure(datasets.GeneratorBasedBuilder): """ A dataset loader for T1 .nii.gz files plus JSON sidecars indicating splits (train, validation, test). Usage example: ds = load_dataset( "radiata-ai/brain-structure", name="all", split="train", trust_remote_code=True ) """ VERSION = datasets.Version("1.0.0") # If you do NOT need multiple configs, you can define just one here: BUILDER_CONFIGS = [ BrainStructureConfig( name="all", version=VERSION, description="All structural MRI data in a BIDS-like arrangement, labeled with train/val/test splits." ), ] DEFAULT_CONFIG_NAME = "all" def _info(self): """ Returns DatasetInfo, including feature types and other meta information. """ return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "nii_filepath": datasets.Value("string"), "metadata": { "split": datasets.Value("string"), "participant_id": datasets.Value("string"), "session_id": datasets.Value("string"), "study": datasets.Value("string"), # Additional fields from the JSON sidecar "age": datasets.Value("int32"), "sex": datasets.Value("string"), "clinical_diagnosis": datasets.Value("string"), "scanner_manufacturer": datasets.Value("string"), "scanner_model": datasets.Value("string"), "field_strength": datasets.Value("string"), "image_quality_rating": datasets.Value("float"), "total_intracranial_volume": datasets.Value("float"), "license": datasets.Value("string"), "website": datasets.Value("string"), "citation": datasets.Value("string"), "t1_file_name": datasets.Value("string"), "radiata_id": datasets.Value("int32"), }, } ), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): """ Creates SplitGenerators for train, validation, and test. No remote download is performed here. Instead, we reference the local directory containing this script. """ # Typically, we use dl_manager.download_and_extract(...) for remote data, # but here we assume the data is already in the same repo as this script. # Path to the folder containing this script (and presumably the data). data_dir = os.path.abspath(os.path.dirname(__file__)) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "desired_split": "train"} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": data_dir, "desired_split": "validation"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "desired_split": "test"} ), ] def _generate_examples(self, data_dir, desired_split): """ Recursively walks data_dir, locates JSON sidecar files, and yields examples that match the specified 'desired_split'. """ id_ = 0 for root, dirs, files in os.walk(data_dir): for fname in files: if fname.endswith("_scandata.json"): sidecar_path = os.path.join(root, fname) with open(sidecar_path, "r") as f: sidecar = json.load(f) # Only yield if 'split' matches the requested split if sidecar.get("split") == desired_split: # Locate corresponding NIfTI .nii.gz nii_prefix = fname.replace("_scandata.json", "_T1w") nii_filepath = None for potential_file in files: if (potential_file.startswith(nii_prefix) and potential_file.endswith(".nii.gz")): nii_filepath = os.path.join(root, potential_file) break if not nii_filepath: logger.warning(f"No .nii.gz found for {sidecar_path}") continue yield id_, { "id": str(id_), "nii_filepath": nii_filepath, "metadata": { "split": sidecar.get("split", ""), "participant_id": sidecar.get("participant_id", ""), "session_id": sidecar.get("session_id", ""), "study": sidecar.get("study", ""), "age": sidecar.get("age", 0), "sex": sidecar.get("sex", ""), "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""), "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""), "scanner_model": sidecar.get("scanner_model", ""), "field_strength": sidecar.get("field_strength", ""), "image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)), "total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)), "license": sidecar.get("license", ""), "website": sidecar.get("website", ""), "citation": sidecar.get("citation", ""), "t1_file_name": sidecar.get("t1_file_name", ""), "radiata_id": sidecar.get("radiata_id", 0), }, } id_ += 1