Datasets:
tillwenke
commited on
Commit
·
463a104
1
Parent(s):
90328a9
before creating dataset
Browse files- .gitignore +2 -1
- .ipynb +277 -0
- README.md +10 -1
- data/passages.parquet/part.0.parquet +3 -0
- data/test.parquet/part.0.parquet +3 -0
- bioasq_ir_pubmed_corpus_subset.py → generate.py +27 -19
- requirements.txt +39 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
/env
|
|
|
|
1 |
+
/env
|
2 |
+
credentials.json
|
.ipynb
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 9,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"a = pd.read_parquet(\"data/test.parquet\")\n",
|
11 |
+
"b = pd.read_parquet(\"data/passages.parquet\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 13,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"data": {
|
21 |
+
"text/html": [
|
22 |
+
"<div>\n",
|
23 |
+
"<style scoped>\n",
|
24 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
25 |
+
" vertical-align: middle;\n",
|
26 |
+
" }\n",
|
27 |
+
"\n",
|
28 |
+
" .dataframe tbody tr th {\n",
|
29 |
+
" vertical-align: top;\n",
|
30 |
+
" }\n",
|
31 |
+
"\n",
|
32 |
+
" .dataframe thead th {\n",
|
33 |
+
" text-align: right;\n",
|
34 |
+
" }\n",
|
35 |
+
"</style>\n",
|
36 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
37 |
+
" <thead>\n",
|
38 |
+
" <tr style=\"text-align: right;\">\n",
|
39 |
+
" <th></th>\n",
|
40 |
+
" <th>question</th>\n",
|
41 |
+
" <th>answer</th>\n",
|
42 |
+
" <th>relevant_passage_ids</th>\n",
|
43 |
+
" </tr>\n",
|
44 |
+
" <tr>\n",
|
45 |
+
" <th>id</th>\n",
|
46 |
+
" <th></th>\n",
|
47 |
+
" <th></th>\n",
|
48 |
+
" <th></th>\n",
|
49 |
+
" </tr>\n",
|
50 |
+
" </thead>\n",
|
51 |
+
" <tbody>\n",
|
52 |
+
" <tr>\n",
|
53 |
+
" <th>0</th>\n",
|
54 |
+
" <td>Is Hirschsprung disease a mendelian or a multi...</td>\n",
|
55 |
+
" <td>Coding sequence mutations in RET, GDNF, EDNRB,...</td>\n",
|
56 |
+
" <td>[20598273, 6650562, 15829955, 15617541, 230011...</td>\n",
|
57 |
+
" </tr>\n",
|
58 |
+
" <tr>\n",
|
59 |
+
" <th>1</th>\n",
|
60 |
+
" <td>List signaling molecules (ligands) that intera...</td>\n",
|
61 |
+
" <td>The 7 known EGFR ligands are: epidermal growt...</td>\n",
|
62 |
+
" <td>[23821377, 24323361, 23382875, 22247333, 23787...</td>\n",
|
63 |
+
" </tr>\n",
|
64 |
+
" <tr>\n",
|
65 |
+
" <th>2</th>\n",
|
66 |
+
" <td>Is the protein Papilin secreted?</td>\n",
|
67 |
+
" <td>Yes, papilin is a secreted protein</td>\n",
|
68 |
+
" <td>[21784067, 19297413, 15094122, 7515725, 332004...</td>\n",
|
69 |
+
" </tr>\n",
|
70 |
+
" <tr>\n",
|
71 |
+
" <th>3</th>\n",
|
72 |
+
" <td>Are long non coding RNAs spliced?</td>\n",
|
73 |
+
" <td>Long non coding RNAs appear to be spliced thro...</td>\n",
|
74 |
+
" <td>[22955974, 21622663, 22707570, 22955988, 24285...</td>\n",
|
75 |
+
" </tr>\n",
|
76 |
+
" <tr>\n",
|
77 |
+
" <th>4</th>\n",
|
78 |
+
" <td>Is RANKL secreted from the cells?</td>\n",
|
79 |
+
" <td>Receptor activator of nuclear factor κB ligand...</td>\n",
|
80 |
+
" <td>[22867712, 23827649, 21618594, 23835909, 24265...</td>\n",
|
81 |
+
" </tr>\n",
|
82 |
+
" <tr>\n",
|
83 |
+
" <th>...</th>\n",
|
84 |
+
" <td>...</td>\n",
|
85 |
+
" <td>...</td>\n",
|
86 |
+
" <td>...</td>\n",
|
87 |
+
" </tr>\n",
|
88 |
+
" <tr>\n",
|
89 |
+
" <th>4714</th>\n",
|
90 |
+
" <td>Is PPROM a condition that occurs in males or f...</td>\n",
|
91 |
+
" <td>Preterm premature rupture of fetal membranes (...</td>\n",
|
92 |
+
" <td>[23599878, 23573382, 24304137, 18301713, 23179...</td>\n",
|
93 |
+
" </tr>\n",
|
94 |
+
" <tr>\n",
|
95 |
+
" <th>4715</th>\n",
|
96 |
+
" <td>What is EpiMethylTag?</td>\n",
|
97 |
+
" <td>EpiMethylTag is a fast, low-input, low sequenc...</td>\n",
|
98 |
+
" <td>[31752933]</td>\n",
|
99 |
+
" </tr>\n",
|
100 |
+
" <tr>\n",
|
101 |
+
" <th>4716</th>\n",
|
102 |
+
" <td>What is the target of Sutimlimab?</td>\n",
|
103 |
+
" <td>Sutimlimab is a novel humanized monoclonal ant...</td>\n",
|
104 |
+
" <td>[30635392, 31229501, 33826820, 32176765, 31114...</td>\n",
|
105 |
+
" </tr>\n",
|
106 |
+
" <tr>\n",
|
107 |
+
" <th>4717</th>\n",
|
108 |
+
" <td>Can parasite infections by Schistosoma japonic...</td>\n",
|
109 |
+
" <td>A peptide named as SJMHE1 from Schistosoma jap...</td>\n",
|
110 |
+
" <td>[26840774, 34703270, 28614408, 31496071, 18654...</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>4718</th>\n",
|
114 |
+
" <td>Describe Multilocus Inherited Neoplasia Allele...</td>\n",
|
115 |
+
" <td>Genetic testing of hereditary cancer using com...</td>\n",
|
116 |
+
" <td>[30580288]</td>\n",
|
117 |
+
" </tr>\n",
|
118 |
+
" </tbody>\n",
|
119 |
+
"</table>\n",
|
120 |
+
"<p>4719 rows × 3 columns</p>\n",
|
121 |
+
"</div>"
|
122 |
+
],
|
123 |
+
"text/plain": [
|
124 |
+
" question \\\n",
|
125 |
+
"id \n",
|
126 |
+
"0 Is Hirschsprung disease a mendelian or a multi... \n",
|
127 |
+
"1 List signaling molecules (ligands) that intera... \n",
|
128 |
+
"2 Is the protein Papilin secreted? \n",
|
129 |
+
"3 Are long non coding RNAs spliced? \n",
|
130 |
+
"4 Is RANKL secreted from the cells? \n",
|
131 |
+
"... ... \n",
|
132 |
+
"4714 Is PPROM a condition that occurs in males or f... \n",
|
133 |
+
"4715 What is EpiMethylTag? \n",
|
134 |
+
"4716 What is the target of Sutimlimab? \n",
|
135 |
+
"4717 Can parasite infections by Schistosoma japonic... \n",
|
136 |
+
"4718 Describe Multilocus Inherited Neoplasia Allele... \n",
|
137 |
+
"\n",
|
138 |
+
" answer \\\n",
|
139 |
+
"id \n",
|
140 |
+
"0 Coding sequence mutations in RET, GDNF, EDNRB,... \n",
|
141 |
+
"1 The 7 known EGFR ligands are: epidermal growt... \n",
|
142 |
+
"2 Yes, papilin is a secreted protein \n",
|
143 |
+
"3 Long non coding RNAs appear to be spliced thro... \n",
|
144 |
+
"4 Receptor activator of nuclear factor κB ligand... \n",
|
145 |
+
"... ... \n",
|
146 |
+
"4714 Preterm premature rupture of fetal membranes (... \n",
|
147 |
+
"4715 EpiMethylTag is a fast, low-input, low sequenc... \n",
|
148 |
+
"4716 Sutimlimab is a novel humanized monoclonal ant... \n",
|
149 |
+
"4717 A peptide named as SJMHE1 from Schistosoma jap... \n",
|
150 |
+
"4718 Genetic testing of hereditary cancer using com... \n",
|
151 |
+
"\n",
|
152 |
+
" relevant_passage_ids \n",
|
153 |
+
"id \n",
|
154 |
+
"0 [20598273, 6650562, 15829955, 15617541, 230011... \n",
|
155 |
+
"1 [23821377, 24323361, 23382875, 22247333, 23787... \n",
|
156 |
+
"2 [21784067, 19297413, 15094122, 7515725, 332004... \n",
|
157 |
+
"3 [22955974, 21622663, 22707570, 22955988, 24285... \n",
|
158 |
+
"4 [22867712, 23827649, 21618594, 23835909, 24265... \n",
|
159 |
+
"... ... \n",
|
160 |
+
"4714 [23599878, 23573382, 24304137, 18301713, 23179... \n",
|
161 |
+
"4715 [31752933] \n",
|
162 |
+
"4716 [30635392, 31229501, 33826820, 32176765, 31114... \n",
|
163 |
+
"4717 [26840774, 34703270, 28614408, 31496071, 18654... \n",
|
164 |
+
"4718 [30580288] \n",
|
165 |
+
"\n",
|
166 |
+
"[4719 rows x 3 columns]"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
"execution_count": 13,
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "execute_result"
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"source": [
|
175 |
+
"a"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 11,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"data": {
|
185 |
+
"text/html": [
|
186 |
+
"<div>\n",
|
187 |
+
"<style scoped>\n",
|
188 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
189 |
+
" vertical-align: middle;\n",
|
190 |
+
" }\n",
|
191 |
+
"\n",
|
192 |
+
" .dataframe tbody tr th {\n",
|
193 |
+
" vertical-align: top;\n",
|
194 |
+
" }\n",
|
195 |
+
"\n",
|
196 |
+
" .dataframe thead th {\n",
|
197 |
+
" text-align: right;\n",
|
198 |
+
" }\n",
|
199 |
+
"</style>\n",
|
200 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
201 |
+
" <thead>\n",
|
202 |
+
" <tr style=\"text-align: right;\">\n",
|
203 |
+
" <th></th>\n",
|
204 |
+
" <th>passage</th>\n",
|
205 |
+
" </tr>\n",
|
206 |
+
" <tr>\n",
|
207 |
+
" <th>id</th>\n",
|
208 |
+
" <th></th>\n",
|
209 |
+
" </tr>\n",
|
210 |
+
" </thead>\n",
|
211 |
+
" <tbody>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>21495810</th>\n",
|
214 |
+
" <td>OBJECT: Factors determining choice of an acade...</td>\n",
|
215 |
+
" </tr>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>26869762</th>\n",
|
218 |
+
" <td>Castleman disease (CD) is a rare, heterogeneou...</td>\n",
|
219 |
+
" </tr>\n",
|
220 |
+
" <tr>\n",
|
221 |
+
" <th>28049410</th>\n",
|
222 |
+
" <td>BACKGROUND: Data extraction and integration me...</td>\n",
|
223 |
+
" </tr>\n",
|
224 |
+
" <tr>\n",
|
225 |
+
" <th>24510469</th>\n",
|
226 |
+
" <td>Flecainide is recommended as a first-line anti...</td>\n",
|
227 |
+
" </tr>\n",
|
228 |
+
" <tr>\n",
|
229 |
+
" <th>8650761</th>\n",
|
230 |
+
" <td>Primary intestinal lymphangiectasia (PIL), fir...</td>\n",
|
231 |
+
" </tr>\n",
|
232 |
+
" </tbody>\n",
|
233 |
+
"</table>\n",
|
234 |
+
"</div>"
|
235 |
+
],
|
236 |
+
"text/plain": [
|
237 |
+
" passage\n",
|
238 |
+
"id \n",
|
239 |
+
"21495810 OBJECT: Factors determining choice of an acade...\n",
|
240 |
+
"26869762 Castleman disease (CD) is a rare, heterogeneou...\n",
|
241 |
+
"28049410 BACKGROUND: Data extraction and integration me...\n",
|
242 |
+
"24510469 Flecainide is recommended as a first-line anti...\n",
|
243 |
+
"8650761 Primary intestinal lymphangiectasia (PIL), fir..."
|
244 |
+
]
|
245 |
+
},
|
246 |
+
"execution_count": 11,
|
247 |
+
"metadata": {},
|
248 |
+
"output_type": "execute_result"
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"source": [
|
252 |
+
"b"
|
253 |
+
]
|
254 |
+
}
|
255 |
+
],
|
256 |
+
"metadata": {
|
257 |
+
"kernelspec": {
|
258 |
+
"display_name": "env",
|
259 |
+
"language": "python",
|
260 |
+
"name": "python3"
|
261 |
+
},
|
262 |
+
"language_info": {
|
263 |
+
"codemirror_mode": {
|
264 |
+
"name": "ipython",
|
265 |
+
"version": 3
|
266 |
+
},
|
267 |
+
"file_extension": ".py",
|
268 |
+
"mimetype": "text/x-python",
|
269 |
+
"name": "python",
|
270 |
+
"nbconvert_exporter": "python",
|
271 |
+
"pygments_lexer": "ipython3",
|
272 |
+
"version": "3.10.12"
|
273 |
+
}
|
274 |
+
},
|
275 |
+
"nbformat": 4,
|
276 |
+
"nbformat_minor": 2
|
277 |
+
}
|
README.md
CHANGED
@@ -11,5 +11,14 @@ tags:
|
|
11 |
- information-retrieval
|
12 |
- question-answering
|
13 |
- biomedical
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
-
Derives from http://participants-area.bioasq.org/Tasks/11b/trainingDataset/ we generated our own subset using `generate.py`.
|
|
|
11 |
- information-retrieval
|
12 |
- question-answering
|
13 |
- biomedical
|
14 |
+
configs:
|
15 |
+
- config_name: text-corpus
|
16 |
+
data_files:
|
17 |
+
- split: passages
|
18 |
+
path: "data/passages.parquet/*"
|
19 |
+
- config_name: question-answer
|
20 |
+
data_files:
|
21 |
+
- split: test
|
22 |
+
path: "data/test.parquet/*"
|
23 |
---
|
24 |
+
Derives from http://participants-area.bioasq.org/Tasks/11b/trainingDataset/ we generated our own subset using `generate.py`.
|
data/passages.parquet/part.0.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c288905f142dde9c3c21207333380a81d3f34603584851be02ccf7e543041934
|
3 |
+
size 12581
|
data/test.parquet/part.0.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12679e03615d16b423b5554f8b2a6eb334f4cad89e62d202da5cc43cb9aeafb0
|
3 |
+
size 1290026
|
bioasq_ir_pubmed_corpus_subset.py → generate.py
RENAMED
@@ -4,19 +4,23 @@ import pandas as pd
|
|
4 |
from Bio import Entrez
|
5 |
from retry import retry
|
6 |
from tqdm import tqdm
|
|
|
7 |
|
8 |
# provided your NIH credentials
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
# change output file names here if necessary
|
14 |
-
RAW_EVALUATION_DATASET = "training11b.json"
|
15 |
-
PATH_TO_PASSAGE_DATASET = "./passages.parquet"
|
16 |
-
PATH_TO_EVALUATION_DATASET = "./
|
17 |
|
18 |
# only use questions that have at most MAX_PASSAGES passages to control the size of the dataset
|
19 |
-
# set to None to use all
|
20 |
MAX_PASSAGES = None
|
21 |
|
22 |
|
@@ -42,43 +46,47 @@ if __name__ == "__main__":
|
|
42 |
eval_df = eval_df.rename(
|
43 |
columns={
|
44 |
"body": "question",
|
45 |
-
"documents": "
|
46 |
"ideal_answer": "answer",
|
47 |
}
|
48 |
)
|
49 |
eval_df.answer = eval_df.answer.apply(lambda x: x[0])
|
50 |
# get abstract id from url
|
51 |
-
eval_df.
|
52 |
-
lambda x: [url.split("/")[-1] for url in x]
|
53 |
)
|
54 |
if MAX_PASSAGES:
|
55 |
-
eval_df["passage_count"] = eval_df.
|
56 |
eval_df = eval_df.drop(columns=["passage_count"])
|
57 |
|
58 |
# remove duplicate passage ids
|
59 |
-
eval_df.
|
60 |
-
eval_df.
|
61 |
|
62 |
# get all passage ids that are relevant
|
63 |
-
passage_ids = set().union(*eval_df.
|
64 |
passage_ids = list(passage_ids)
|
65 |
passages = pd.DataFrame(index=passage_ids)
|
66 |
|
67 |
for i, passage_id in enumerate(tqdm(passages.index)):
|
68 |
passages.loc[passage_id, "passage"] = get_abstract(passage_id)
|
69 |
|
70 |
-
#
|
71 |
-
if i %
|
72 |
-
passages.to_parquet(PATH_TO_PASSAGE_DATASET)
|
|
|
73 |
|
74 |
# filter out the passages whos pmids (pubmed ids) where not available
|
75 |
unavailable_passages = passages[passages["passage"] == "1. "]
|
76 |
passages = passages[passages["passage"] != "1. "]
|
77 |
-
passages.
|
|
|
78 |
|
79 |
# remove passages from evaluation dataset whose abstract could not be retrieved from pubmed website
|
80 |
unavailable_ids = unavailable_passages.index.tolist()
|
81 |
-
eval_df["
|
82 |
lambda x: [i for i in x if i not in unavailable_ids]
|
83 |
)
|
84 |
-
eval_df.
|
|
|
|
|
|
4 |
from Bio import Entrez
|
5 |
from retry import retry
|
6 |
from tqdm import tqdm
|
7 |
+
import dask.dataframe as dd
|
8 |
|
9 |
# provided your NIH credentials
|
10 |
+
# read from .json file
|
11 |
+
with open("credentials.json") as f:
|
12 |
+
credentials = json.load(f)
|
13 |
+
Entrez.email = credentials["email"]
|
14 |
+
Entrez.api_key = credentials["api_key"]
|
15 |
|
16 |
|
17 |
# change output file names here if necessary
|
18 |
+
RAW_EVALUATION_DATASET = "./raw_data/training11b.json"
|
19 |
+
PATH_TO_PASSAGE_DATASET = "./data/passages.parquet"
|
20 |
+
PATH_TO_EVALUATION_DATASET = "./data/test.parquet"
|
21 |
|
22 |
# only use questions that have at most MAX_PASSAGES passages to control the size of the dataset
|
23 |
+
# set to None to use all questions
|
24 |
MAX_PASSAGES = None
|
25 |
|
26 |
|
|
|
46 |
eval_df = eval_df.rename(
|
47 |
columns={
|
48 |
"body": "question",
|
49 |
+
"documents": "relevant_passage_ids",
|
50 |
"ideal_answer": "answer",
|
51 |
}
|
52 |
)
|
53 |
eval_df.answer = eval_df.answer.apply(lambda x: x[0])
|
54 |
# get abstract id from url
|
55 |
+
eval_df.relevant_passage_ids = eval_df.relevant_passage_ids.apply(
|
56 |
+
lambda x: [int(url.split("/")[-1]) for url in x]
|
57 |
)
|
58 |
if MAX_PASSAGES:
|
59 |
+
eval_df["passage_count"] = eval_df.relevant_passage_ids.apply(lambda x: len(x))
|
60 |
eval_df = eval_df.drop(columns=["passage_count"])
|
61 |
|
62 |
# remove duplicate passage ids
|
63 |
+
eval_df.relevant_passage_ids = eval_df.relevant_passage_ids.apply(lambda x: set(x))
|
64 |
+
eval_df.relevant_passage_ids = eval_df.relevant_passage_ids.apply(lambda x: list(x))
|
65 |
|
66 |
# get all passage ids that are relevant
|
67 |
+
passage_ids = set().union(*eval_df.relevant_passage_ids)
|
68 |
passage_ids = list(passage_ids)
|
69 |
passages = pd.DataFrame(index=passage_ids)
|
70 |
|
71 |
for i, passage_id in enumerate(tqdm(passages.index)):
|
72 |
passages.loc[passage_id, "passage"] = get_abstract(passage_id)
|
73 |
|
74 |
+
# intermediate save
|
75 |
+
if i % 1000 == 0:
|
76 |
+
dd.from_pandas(passages, npartitions=1).to_parquet(PATH_TO_PASSAGE_DATASET)
|
77 |
+
|
78 |
|
79 |
# filter out the passages whos pmids (pubmed ids) where not available
|
80 |
unavailable_passages = passages[passages["passage"] == "1. "]
|
81 |
passages = passages[passages["passage"] != "1. "]
|
82 |
+
passages.index.name = "id"
|
83 |
+
dd.from_pandas(passages, npartitions=1).to_parquet(PATH_TO_PASSAGE_DATASET)
|
84 |
|
85 |
# remove passages from evaluation dataset whose abstract could not be retrieved from pubmed website
|
86 |
unavailable_ids = unavailable_passages.index.tolist()
|
87 |
+
eval_df["relevant_passage_ids"] = eval_df["relevant_passage_ids"].apply(
|
88 |
lambda x: [i for i in x if i not in unavailable_ids]
|
89 |
)
|
90 |
+
eval_df.index.name = "id"
|
91 |
+
eval_df = eval_df[["question", "answer", "relevant_passage_ids"]]
|
92 |
+
dd.from_pandas(eval_df, npartitions=1).to_parquet(PATH_TO_EVALUATION_DATASET)
|
requirements.txt
CHANGED
@@ -1,11 +1,50 @@
|
|
|
|
|
|
1 |
biopython==1.81
|
|
|
|
|
|
|
|
|
|
|
2 |
decorator==5.1.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
numpy==1.26.1
|
|
|
4 |
pandas==2.1.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
py==1.11.0
|
|
|
|
|
6 |
python-dateutil==2.8.2
|
7 |
pytz==2023.3.post1
|
|
|
|
|
8 |
retry==0.9.2
|
9 |
six==1.16.0
|
|
|
|
|
|
|
10 |
tqdm==4.66.1
|
|
|
11 |
tzdata==2023.3
|
|
|
|
|
|
1 |
+
asttokens==2.4.1
|
2 |
+
backcall==0.2.0
|
3 |
biopython==1.81
|
4 |
+
click==8.1.7
|
5 |
+
cloudpickle==3.0.0
|
6 |
+
comm==0.1.4
|
7 |
+
dask==2023.10.1
|
8 |
+
debugpy==1.8.0
|
9 |
decorator==5.1.1
|
10 |
+
exceptiongroup==1.1.3
|
11 |
+
executing==2.0.0
|
12 |
+
fsspec==2023.10.0
|
13 |
+
importlib-metadata==6.8.0
|
14 |
+
ipykernel==6.26.0
|
15 |
+
ipython==8.16.1
|
16 |
+
jedi==0.19.1
|
17 |
+
jupyter_client==8.5.0
|
18 |
+
jupyter_core==5.4.0
|
19 |
+
locket==1.0.0
|
20 |
+
matplotlib-inline==0.1.6
|
21 |
+
nest-asyncio==1.5.8
|
22 |
numpy==1.26.1
|
23 |
+
packaging==23.2
|
24 |
pandas==2.1.2
|
25 |
+
parso==0.8.3
|
26 |
+
partd==1.4.1
|
27 |
+
pexpect==4.8.0
|
28 |
+
pickleshare==0.7.5
|
29 |
+
platformdirs==3.11.0
|
30 |
+
prompt-toolkit==3.0.39
|
31 |
+
psutil==5.9.6
|
32 |
+
ptyprocess==0.7.0
|
33 |
+
pure-eval==0.2.2
|
34 |
py==1.11.0
|
35 |
+
pyarrow==13.0.0
|
36 |
+
Pygments==2.16.1
|
37 |
python-dateutil==2.8.2
|
38 |
pytz==2023.3.post1
|
39 |
+
PyYAML==6.0.1
|
40 |
+
pyzmq==25.1.1
|
41 |
retry==0.9.2
|
42 |
six==1.16.0
|
43 |
+
stack-data==0.6.3
|
44 |
+
toolz==0.12.0
|
45 |
+
tornado==6.3.3
|
46 |
tqdm==4.66.1
|
47 |
+
traitlets==5.12.0
|
48 |
tzdata==2023.3
|
49 |
+
wcwidth==0.2.8
|
50 |
+
zipp==3.17.0
|