Datasets:
tillwenke
commited on
Commit
·
fa4acc1
1
Parent(s):
1031552
init with scrip for ds generation
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- bioasq_ir_pubmed_corpus_subset.py +84 -0
- requirements.txt +4 -0
- training11b.json +3 -0
.gitattributes
CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
training11b.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/env
|
bioasq_ir_pubmed_corpus_subset.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from Bio import Entrez
|
5 |
+
from retry import retry
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
# provided your NIH credentials
|
9 |
+
Entrez.email = "***"
|
10 |
+
Entrez.api_key = "***"
|
11 |
+
|
12 |
+
|
13 |
+
# change output file names here if necessary
|
14 |
+
RAW_EVALUATION_DATASET = "training11b.json"
|
15 |
+
PATH_TO_PASSAGE_DATASET = "./passages.parquet"
|
16 |
+
PATH_TO_EVALUATION_DATASET = "./eval.parquet"
|
17 |
+
|
18 |
+
# only use questions that have at most MAX_PASSAGES passages to control the size of the dataset
|
19 |
+
# set to None to use all passages
|
20 |
+
MAX_PASSAGES = None
|
21 |
+
|
22 |
+
|
23 |
+
@retry()
|
24 |
+
def get_abstract(passage_id):
|
25 |
+
with Entrez.efetch(
|
26 |
+
db="pubmed", id=passage_id, rettype="abstract", retmode="text"
|
27 |
+
) as response:
|
28 |
+
# get only the abstract - no metadata
|
29 |
+
r = response.read()
|
30 |
+
r = r.split("\n\n")
|
31 |
+
abstract = max(r, key=len)
|
32 |
+
return abstract
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
# load the training data containing the questions, answers and the ids of relevant passages
|
37 |
+
# but lacks the actual passages
|
38 |
+
with open(RAW_EVALUATION_DATASET) as f:
|
39 |
+
eval_data = json.load(f)["questions"]
|
40 |
+
|
41 |
+
eval_df = pd.DataFrame(eval_data, columns=["body", "documents", "ideal_answer"])
|
42 |
+
eval_df = eval_df.rename(
|
43 |
+
columns={
|
44 |
+
"body": "question",
|
45 |
+
"documents": "relevant_passages",
|
46 |
+
"ideal_answer": "answer",
|
47 |
+
}
|
48 |
+
)
|
49 |
+
eval_df.answer = eval_df.answer.apply(lambda x: x[0])
|
50 |
+
# get abstract id from url
|
51 |
+
eval_df.relevant_passages = eval_df.relevant_passages.apply(
|
52 |
+
lambda x: [url.split("/")[-1] for url in x]
|
53 |
+
)
|
54 |
+
if MAX_PASSAGES:
|
55 |
+
eval_df["passage_count"] = eval_df.relevant_passages.apply(lambda x: len(x))
|
56 |
+
eval_df = eval_df.drop(columns=["passage_count"])
|
57 |
+
|
58 |
+
# remove duplicate passage ids
|
59 |
+
eval_df.relevant_passages = eval_df.relevant_passages.apply(lambda x: set(x))
|
60 |
+
eval_df.relevant_passages = eval_df.relevant_passages.apply(lambda x: list(x))
|
61 |
+
|
62 |
+
# get all passage ids that are relevant
|
63 |
+
passage_ids = set().union(*eval_df.relevant_passages)
|
64 |
+
passage_ids = list(passage_ids)
|
65 |
+
passages = pd.DataFrame(index=passage_ids)
|
66 |
+
|
67 |
+
for i, passage_id in enumerate(tqdm(passages.index)):
|
68 |
+
passages.loc[passage_id, "passage"] = get_abstract(passage_id)
|
69 |
+
|
70 |
+
# intermidiate save
|
71 |
+
if i % 4000 == 0:
|
72 |
+
passages.to_parquet(PATH_TO_PASSAGE_DATASET)
|
73 |
+
|
74 |
+
# filter out the passages whos pmids (pubmed ids) where not available
|
75 |
+
unavailable_passages = passages[passages["passage"] == "1. "]
|
76 |
+
passages = passages[passages["passage"] != "1. "]
|
77 |
+
passages.to_parquet(PATH_TO_PASSAGE_DATASET)
|
78 |
+
|
79 |
+
# remove passages from evaluation dataset whose abstract could not be retrieved from pubmed website
|
80 |
+
unavailable_ids = unavailable_passages.index.tolist()
|
81 |
+
eval_df["relevant_passages"] = eval_df["relevant_passages"].apply(
|
82 |
+
lambda x: [i for i in x if i not in unavailable_ids]
|
83 |
+
)
|
84 |
+
eval_df.to_parquet(PATH_TO_EVALUATION_DATASET)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
biopython
|
2 |
+
pandas
|
3 |
+
retry
|
4 |
+
tqdm
|
training11b.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6df656862ca860efc355c7805d07ddca700d64ecc3785c519a49afccaaeeac98
|
3 |
+
size 37639648
|