Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
0a3a8b7
1
Parent(s):
5fe18c4
Convert dataset to Parquet (#7)
Browse files- Convert dataset to Parquet (06709de10ef08fc185216197b2819f24e8a40b3a)
- Delete loading script (9dab3f0a2e206e11b872424260872686647d63e1)
- Delete legacy dataset_infos.json (2d731f5185a5a9a7e515100d449803ab41930dcc)
- README.md +30 -22
- dataset_infos.json +0 -1
- plain_text/train-00000-of-00001.parquet +3 -0
- plain_text/validation-00000-of-00001.parquet +3 -0
- squad.py +0 -142
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
pretty_name: SQuAD
|
3 |
annotations_creators:
|
4 |
- crowdsourced
|
5 |
language_creators:
|
@@ -20,23 +19,9 @@ task_categories:
|
|
20 |
task_ids:
|
21 |
- extractive-qa
|
22 |
paperswithcode_id: squad
|
23 |
-
|
24 |
-
- config: plain_text
|
25 |
-
task: question-answering
|
26 |
-
task_id: extractive_question_answering
|
27 |
-
splits:
|
28 |
-
train_split: train
|
29 |
-
eval_split: validation
|
30 |
-
col_mapping:
|
31 |
-
question: question
|
32 |
-
context: context
|
33 |
-
answers:
|
34 |
-
text: text
|
35 |
-
answer_start: answer_start
|
36 |
-
metrics:
|
37 |
-
- type: squad
|
38 |
-
name: SQuAD
|
39 |
dataset_info:
|
|
|
40 |
features:
|
41 |
- name: id
|
42 |
dtype: string
|
@@ -52,16 +37,39 @@ dataset_info:
|
|
52 |
dtype: string
|
53 |
- name: answer_start
|
54 |
dtype: int32
|
55 |
-
config_name: plain_text
|
56 |
splits:
|
57 |
- name: train
|
58 |
-
num_bytes:
|
59 |
num_examples: 87599
|
60 |
- name: validation
|
61 |
-
num_bytes:
|
62 |
num_examples: 10570
|
63 |
-
download_size:
|
64 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
---
|
66 |
|
67 |
# Dataset Card for "squad"
|
|
|
1 |
---
|
|
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
4 |
language_creators:
|
|
|
19 |
task_ids:
|
20 |
- extractive-qa
|
21 |
paperswithcode_id: squad
|
22 |
+
pretty_name: SQuAD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
dataset_info:
|
24 |
+
config_name: plain_text
|
25 |
features:
|
26 |
- name: id
|
27 |
dtype: string
|
|
|
37 |
dtype: string
|
38 |
- name: answer_start
|
39 |
dtype: int32
|
|
|
40 |
splits:
|
41 |
- name: train
|
42 |
+
num_bytes: 79346108
|
43 |
num_examples: 87599
|
44 |
- name: validation
|
45 |
+
num_bytes: 10472984
|
46 |
num_examples: 10570
|
47 |
+
download_size: 16278203
|
48 |
+
dataset_size: 89819092
|
49 |
+
configs:
|
50 |
+
- config_name: plain_text
|
51 |
+
data_files:
|
52 |
+
- split: train
|
53 |
+
path: plain_text/train-*
|
54 |
+
- split: validation
|
55 |
+
path: plain_text/validation-*
|
56 |
+
default: true
|
57 |
+
train-eval-index:
|
58 |
+
- config: plain_text
|
59 |
+
task: question-answering
|
60 |
+
task_id: extractive_question_answering
|
61 |
+
splits:
|
62 |
+
train_split: train
|
63 |
+
eval_split: validation
|
64 |
+
col_mapping:
|
65 |
+
question: question
|
66 |
+
context: context
|
67 |
+
answers:
|
68 |
+
text: text
|
69 |
+
answer_start: answer_start
|
70 |
+
metrics:
|
71 |
+
- type: squad
|
72 |
+
name: SQuAD
|
73 |
---
|
74 |
|
75 |
# Dataset Card for "squad"
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"plain_text": {"description": "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "squad", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 79317110, "num_examples": 87599, "dataset_name": "squad"}, "validation": {"name": "validation", "num_bytes": 10472653, "num_examples": 10570, "dataset_name": "squad"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json": {"num_bytes": 30288272, "checksum": "3527663986b8295af4f7fcdff1ba1ff3f72d07d61a20f487cb238a6ef92fd955"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json": {"num_bytes": 4854279, "checksum": "95aa6a52d5d6a735563366753ca50492a658031da74f301ac5238b03966972c9"}}, "download_size": 35142551, "post_processing_size": null, "dataset_size": 89789763, "size_in_bytes": 124932314}}
|
|
|
|
plain_text/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea7f52bac024f6b1bdc7aaa2a4ee302cba8c2fdc8d4a235cf18a9a5196b6175b
|
3 |
+
size 14458314
|
plain_text/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c6646d36bd5a95061e076788cf3161d11f6f3e7d625dac7a83bbed0a49f69f7
|
3 |
+
size 1819889
|
squad.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""SQUAD: The Stanford Question Answering Dataset."""
|
18 |
-
|
19 |
-
|
20 |
-
import json
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
from datasets.tasks import QuestionAnsweringExtractive
|
24 |
-
|
25 |
-
|
26 |
-
logger = datasets.logging.get_logger(__name__)
|
27 |
-
|
28 |
-
|
29 |
-
_CITATION = """\
|
30 |
-
@article{2016arXiv160605250R,
|
31 |
-
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
|
32 |
-
Konstantin and {Liang}, Percy},
|
33 |
-
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
|
34 |
-
journal = {arXiv e-prints},
|
35 |
-
year = 2016,
|
36 |
-
eid = {arXiv:1606.05250},
|
37 |
-
pages = {arXiv:1606.05250},
|
38 |
-
archivePrefix = {arXiv},
|
39 |
-
eprint = {1606.05250},
|
40 |
-
}
|
41 |
-
"""
|
42 |
-
|
43 |
-
_DESCRIPTION = """\
|
44 |
-
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
|
45 |
-
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
|
46 |
-
articles, where the answer to every question is a segment of text, or span, \
|
47 |
-
from the corresponding reading passage, or the question might be unanswerable.
|
48 |
-
"""
|
49 |
-
|
50 |
-
_URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
|
51 |
-
_URLS = {
|
52 |
-
"train": _URL + "train-v1.1.json",
|
53 |
-
"dev": _URL + "dev-v1.1.json",
|
54 |
-
}
|
55 |
-
|
56 |
-
|
57 |
-
class SquadConfig(datasets.BuilderConfig):
|
58 |
-
"""BuilderConfig for SQUAD."""
|
59 |
-
|
60 |
-
def __init__(self, **kwargs):
|
61 |
-
"""BuilderConfig for SQUAD.
|
62 |
-
|
63 |
-
Args:
|
64 |
-
**kwargs: keyword arguments forwarded to super.
|
65 |
-
"""
|
66 |
-
super(SquadConfig, self).__init__(**kwargs)
|
67 |
-
|
68 |
-
|
69 |
-
class Squad(datasets.GeneratorBasedBuilder):
|
70 |
-
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
|
71 |
-
|
72 |
-
BUILDER_CONFIGS = [
|
73 |
-
SquadConfig(
|
74 |
-
name="plain_text",
|
75 |
-
version=datasets.Version("1.0.0", ""),
|
76 |
-
description="Plain text",
|
77 |
-
),
|
78 |
-
]
|
79 |
-
|
80 |
-
def _info(self):
|
81 |
-
return datasets.DatasetInfo(
|
82 |
-
description=_DESCRIPTION,
|
83 |
-
features=datasets.Features(
|
84 |
-
{
|
85 |
-
"id": datasets.Value("string"),
|
86 |
-
"title": datasets.Value("string"),
|
87 |
-
"context": datasets.Value("string"),
|
88 |
-
"question": datasets.Value("string"),
|
89 |
-
"answers": datasets.features.Sequence(
|
90 |
-
{
|
91 |
-
"text": datasets.Value("string"),
|
92 |
-
"answer_start": datasets.Value("int32"),
|
93 |
-
}
|
94 |
-
),
|
95 |
-
}
|
96 |
-
),
|
97 |
-
# No default supervised_keys (as we have to pass both question
|
98 |
-
# and context as input).
|
99 |
-
supervised_keys=None,
|
100 |
-
homepage="https://rajpurkar.github.io/SQuAD-explorer/",
|
101 |
-
citation=_CITATION,
|
102 |
-
task_templates=[
|
103 |
-
QuestionAnsweringExtractive(
|
104 |
-
question_column="question", context_column="context", answers_column="answers"
|
105 |
-
)
|
106 |
-
],
|
107 |
-
)
|
108 |
-
|
109 |
-
def _split_generators(self, dl_manager):
|
110 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
111 |
-
|
112 |
-
return [
|
113 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
114 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
115 |
-
]
|
116 |
-
|
117 |
-
def _generate_examples(self, filepath):
|
118 |
-
"""This function returns the examples in the raw (text) form."""
|
119 |
-
logger.info("generating examples from = %s", filepath)
|
120 |
-
key = 0
|
121 |
-
with open(filepath, encoding="utf-8") as f:
|
122 |
-
squad = json.load(f)
|
123 |
-
for article in squad["data"]:
|
124 |
-
title = article.get("title", "")
|
125 |
-
for paragraph in article["paragraphs"]:
|
126 |
-
context = paragraph["context"] # do not strip leading blank spaces GH-2585
|
127 |
-
for qa in paragraph["qas"]:
|
128 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
129 |
-
answers = [answer["text"] for answer in qa["answers"]]
|
130 |
-
# Features currently used are "context", "question", and "answers".
|
131 |
-
# Others are extracted here for the ease of future expansions.
|
132 |
-
yield key, {
|
133 |
-
"title": title,
|
134 |
-
"context": context,
|
135 |
-
"question": qa["question"],
|
136 |
-
"id": qa["id"],
|
137 |
-
"answers": {
|
138 |
-
"answer_start": answer_starts,
|
139 |
-
"text": answers,
|
140 |
-
},
|
141 |
-
}
|
142 |
-
key += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|