Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
0b7cc9e
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/plain_text/1.0.0/dummy_data.zip +3 -0
- dummy/plain_text/1.0.0/dummy_data/dev +25 -0
- dummy/plain_text/1.0.0/dummy_data/train +25 -0
- squad.py +140 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"plain_text": {"description": "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "squad", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 79426386, "num_examples": 87599, "dataset_name": "squad"}, "validation": {"name": "validation", "num_bytes": 10491883, "num_examples": 10570, "dataset_name": "squad"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json": {"num_bytes": 30288272, "checksum": "3527663986b8295af4f7fcdff1ba1ff3f72d07d61a20f487cb238a6ef92fd955"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json": {"num_bytes": 4854279, "checksum": "95aa6a52d5d6a735563366753ca50492a658031da74f301ac5238b03966972c9"}}, "download_size": 35142551, "dataset_size": 89918269, "size_in_bytes": 125060820}}
|
dummy/plain_text/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5248bc997c6de0a053ebd1f73cc2fc94900bd7ddcb0483ebfabf4785ab938ef1
|
3 |
+
size 1502
|
dummy/plain_text/1.0.0/dummy_data/dev
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data": [
|
3 |
+
{ "title": "dev test",
|
4 |
+
"paragraphs": [
|
5 |
+
{ "context": "This is a test context.",
|
6 |
+
"qas": [
|
7 |
+
{ "question": "Is this a test?",
|
8 |
+
"id": "2",
|
9 |
+
"answers": [
|
10 |
+
{ "answer_start": 6,
|
11 |
+
"text": "This is a test text"
|
12 |
+
}
|
13 |
+
]
|
14 |
+
}
|
15 |
+
]
|
16 |
+
}
|
17 |
+
]
|
18 |
+
}
|
19 |
+
]
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
dummy/plain_text/1.0.0/dummy_data/train
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data": [
|
3 |
+
{ "title": "train test",
|
4 |
+
"paragraphs": [
|
5 |
+
{ "context": "This is a test context.",
|
6 |
+
"qas": [
|
7 |
+
{ "question": "Is this a test?",
|
8 |
+
"id": "1",
|
9 |
+
"answers": [
|
10 |
+
{ "answer_start": 1,
|
11 |
+
"text": "This is a test text"
|
12 |
+
}
|
13 |
+
]
|
14 |
+
}
|
15 |
+
]
|
16 |
+
}
|
17 |
+
]
|
18 |
+
}
|
19 |
+
]
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
squad.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""SQUAD: The Stanford Question Answering Dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import json
|
22 |
+
import logging
|
23 |
+
import os
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@article{2016arXiv160605250R,
|
30 |
+
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
|
31 |
+
Konstantin and {Liang}, Percy},
|
32 |
+
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
|
33 |
+
journal = {arXiv e-prints},
|
34 |
+
year = 2016,
|
35 |
+
eid = {arXiv:1606.05250},
|
36 |
+
pages = {arXiv:1606.05250},
|
37 |
+
archivePrefix = {arXiv},
|
38 |
+
eprint = {1606.05250},
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
|
44 |
+
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
|
45 |
+
articles, where the answer to every question is a segment of text, or span, \
|
46 |
+
from the corresponding reading passage, or the question might be unanswerable.
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
+
class SquadConfig(datasets.BuilderConfig):
|
51 |
+
"""BuilderConfig for SQUAD."""
|
52 |
+
|
53 |
+
def __init__(self, **kwargs):
|
54 |
+
"""BuilderConfig for SQUAD.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
**kwargs: keyword arguments forwarded to super.
|
58 |
+
"""
|
59 |
+
super(SquadConfig, self).__init__(**kwargs)
|
60 |
+
|
61 |
+
|
62 |
+
class Squad(datasets.GeneratorBasedBuilder):
|
63 |
+
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
|
64 |
+
|
65 |
+
_URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
|
66 |
+
_DEV_FILE = "dev-v1.1.json"
|
67 |
+
_TRAINING_FILE = "train-v1.1.json"
|
68 |
+
|
69 |
+
BUILDER_CONFIGS = [
|
70 |
+
SquadConfig(
|
71 |
+
name="plain_text",
|
72 |
+
version=datasets.Version("1.0.0", ""),
|
73 |
+
description="Plain text",
|
74 |
+
),
|
75 |
+
]
|
76 |
+
|
77 |
+
def _info(self):
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
description=_DESCRIPTION,
|
80 |
+
features=datasets.Features(
|
81 |
+
{
|
82 |
+
"id": datasets.Value("string"),
|
83 |
+
"title": datasets.Value("string"),
|
84 |
+
"context": datasets.Value("string"),
|
85 |
+
"question": datasets.Value("string"),
|
86 |
+
"answers": datasets.features.Sequence(
|
87 |
+
{
|
88 |
+
"text": datasets.Value("string"),
|
89 |
+
"answer_start": datasets.Value("int32"),
|
90 |
+
}
|
91 |
+
),
|
92 |
+
}
|
93 |
+
),
|
94 |
+
# No default supervised_keys (as we have to pass both question
|
95 |
+
# and context as input).
|
96 |
+
supervised_keys=None,
|
97 |
+
homepage="https://rajpurkar.github.io/SQuAD-explorer/",
|
98 |
+
citation=_CITATION,
|
99 |
+
)
|
100 |
+
|
101 |
+
def _split_generators(self, dl_manager):
|
102 |
+
urls_to_download = {
|
103 |
+
"train": os.path.join(self._URL, self._TRAINING_FILE),
|
104 |
+
"dev": os.path.join(self._URL, self._DEV_FILE),
|
105 |
+
}
|
106 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
107 |
+
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
110 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
111 |
+
]
|
112 |
+
|
113 |
+
def _generate_examples(self, filepath):
|
114 |
+
"""This function returns the examples in the raw (text) form."""
|
115 |
+
logging.info("generating examples from = %s", filepath)
|
116 |
+
with open(filepath, encoding="utf-8") as f:
|
117 |
+
squad = json.load(f)
|
118 |
+
for article in squad["data"]:
|
119 |
+
title = article.get("title", "").strip()
|
120 |
+
for paragraph in article["paragraphs"]:
|
121 |
+
context = paragraph["context"].strip()
|
122 |
+
for qa in paragraph["qas"]:
|
123 |
+
question = qa["question"].strip()
|
124 |
+
id_ = qa["id"]
|
125 |
+
|
126 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
127 |
+
answers = [answer["text"].strip() for answer in qa["answers"]]
|
128 |
+
|
129 |
+
# Features currently used are "context", "question", and "answers".
|
130 |
+
# Others are extracted here for the ease of future expansions.
|
131 |
+
yield id_, {
|
132 |
+
"title": title,
|
133 |
+
"context": context,
|
134 |
+
"question": question,
|
135 |
+
"id": id_,
|
136 |
+
"answers": {
|
137 |
+
"answer_start": answer_starts,
|
138 |
+
"text": answers,
|
139 |
+
},
|
140 |
+
}
|