|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{pradhan2012conll, |
|
title={CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes}, |
|
author={Pradhan, Sameer and Moschitti, Alessandro and Xue, Nianwen and Uryupina, Olga and Zhang, Yuchen}, |
|
booktitle={Joint Conference on EMNLP and CoNLL-Shared Task}, |
|
pages={1--40}, |
|
year={2012} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The CoNLL-2012 shared task involved predicting coreference in English, Chinese, and Arabic, using the final version, v5.0, |
|
of the OntoNotes corpus. It was a follow-on to the English-only task organized in 2011. Until the creation of the OntoNotes |
|
corpus, resources in this sub-field of language processing were limited to noun phrase coreference, often on a restricted |
|
set of entities, such as the ACE entities. OntoNotes provides a large-scale corpus of general anaphoric coreference not |
|
restricted to noun phrases or to a specified set of entity types, and covers multiple languages. OntoNotes also provides |
|
additional layers of integrated annotation, capturing additional shallow semantic structure. This paper describes the |
|
OntoNotes annotation (coreference and other layers) and then describes the parameters of the shared task including the |
|
format, pre-processing information, evaluation criteria, and presents and discusses the results achieved by the participating |
|
systems. The task of coreference has had a complex evaluation history. Potentially many evaluation conditions, have, in the past, |
|
made it difficult to judge the improvement in new algorithms over previously reported results. Having a standard test set |
|
and standard evaluation parameters, all based on a resource that provides multiple integrated annotation layers (syntactic |
|
parses, semantic roles, word senses, named entities and coreference) and in multiple languages could support joint modeling |
|
and help ground and energize ongoing research in the task of entity and event coreference. |
|
For more details see https://aclanthology.org/W12-4501.pdf |
|
""" |
|
|
|
|
|
class Conll2012Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2012""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Conll2012. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Conll2012Config, self).__init__(**kwargs) |
|
|
|
|
|
class Conll2012(datasets.GeneratorBasedBuilder): |
|
"""Conll2012 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Conll2012Config(name="conll2012", version=datasets.Version("1.0.0"), description="Conll2012 dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'$', |
|
"''", |
|
'*', |
|
',', |
|
'-LRB-', |
|
'-RRB-', |
|
'.', |
|
':', |
|
'ADD', |
|
'AFX', |
|
'CC', |
|
'CD', |
|
'DT', |
|
'EX', |
|
'FW', |
|
'HYPH', |
|
'IN', |
|
'JJ', |
|
'JJR', |
|
'JJS', |
|
'LS', |
|
'MD', |
|
'NFP', |
|
'NN', |
|
'NNP', |
|
'NNPS', |
|
'NNS', |
|
'PDT', |
|
'POS', |
|
'PRP', |
|
'PRP$', |
|
'RB', |
|
'RBR', |
|
'RBS', |
|
'RP', |
|
'SYM', |
|
'TO', |
|
'UH', |
|
'VB', |
|
'VBD', |
|
'VBG', |
|
'VBN', |
|
'VBP', |
|
'VBZ', |
|
'VERB', |
|
'WDT', |
|
'WP', |
|
'WP$', |
|
'WRB', |
|
'XX', |
|
'``' |
|
] |
|
) |
|
), |
|
"tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'O', |
|
'B-CARDINAL', |
|
'B-DATE', |
|
'B-EVENT', |
|
'B-FAC', |
|
'B-GPE', |
|
'B-LANGUAGE', |
|
'B-LAW', |
|
'B-LOC', |
|
'B-MONEY', |
|
'B-NORP', |
|
'B-ORDINAL', |
|
'B-ORG', |
|
'B-PERCENT', |
|
'B-PERSON', |
|
'B-PRODUCT', |
|
'B-QUANTITY', |
|
'B-TIME', |
|
'B-WORK_OF_ART', |
|
'I-CARDINAL', |
|
'I-DATE', |
|
'I-EVENT', |
|
'I-FAC', |
|
'I-GPE', |
|
'I-LANGUAGE', |
|
'I-LAW', |
|
'I-LOC', |
|
'I-MONEY', |
|
'I-NORP', |
|
'I-ORDINAL', |
|
'I-ORG', |
|
'I-PERCENT', |
|
'I-PERSON', |
|
'I-PRODUCT', |
|
'I-QUANTITY', |
|
'I-TIME', |
|
'I-WORK_OF_ART' |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://catalog.ldc.upenn.edu/LDC2013T19", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
'train': 'train.txt', |
|
'validation': 'validation.txt', |
|
'test': 'test.txt', |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'filepath': downloaded_files['validation']}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files['test']}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
lines = f.readlines() |
|
|
|
guid = 0 |
|
tokens = [] |
|
tags = [] |
|
pos_tags = [] |
|
|
|
for line in lines: |
|
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
'id': str(guid), |
|
'tokens': tokens, |
|
'tags': tags, |
|
'pos_tags': pos_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
tags = [] |
|
pos_tags = [] |
|
else: |
|
|
|
splits = line.split('\t') |
|
tokens.append(splits[0]) |
|
pos_tags.append(splits[1]) |
|
tags.append(splits[3].rstrip()) |
|
|
|
|
|
yield guid, { |
|
'id': str(guid), |
|
'tokens': tokens, |
|
'tags': tags, |
|
'pos_tags': pos_tags, |
|
} |
|
|