File size: 2,237 Bytes
8627a01
 
 
6485673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39fc07
6485673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: cc-by-4.0
---
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
{}
---

# Dataset Card for Dataset Name

## Dataset Description

- **Homepage:**
- https://github.com/AARSynth/Dataset
- **Repository:**
- https://github.com/AARSynth/Dataset
- **Paper:**
- App-Aware Response Synthesis for User Reviews.
  Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983.
- **Point of Contact:**
- Umar Farooq ([email protected])
- Abubakar Siddique ([email protected])

### Dataset Summary

AARSynth is a large-scale app review dataset. There are 570K review-response pairs and more than 2 million user
reviews for 103 popular applications. 


### Supported Tasks and Leaderboards

Question Answer
Response Generation

### Languages
English

## How to use the dataset?
```
from datasets import load_dataset
import pandas as pd

```

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

[More Information Needed]