Datasets:
File size: 7,018 Bytes
c340c6d ff54d11 c340c6d 14f512c c340c6d 14f512c c340c6d 14f512c c340c6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import json
import re
from typing import List
import datasets
logger = datasets.logging.get_logger(__name__)
class RedialConfig(datasets.BuilderConfig):
"""BuilderConfig for ReDIAL."""
def __init__(self, features, **kwargs):
"""BuilderConfig for ReDIAL.
Args:
features: *list[string]*, list of the features that will appear in the
feature dict. Should not include "label".
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("0.0.1"), **kwargs)
self.features = features
_URL = "./"
_URLS = {
"train": _URL + "train.jsonl",
"valid": _URL + "valid.jsonl",
"test": _URL + "test.jsonl",
}
class ReDIAL(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "rec"
BUILDER_CONFIGS = [
RedialConfig(
name="SA",
description="For using the ReDIAL dataset to train sentiment analysis on movies in sentences",
features={
"movieId": datasets.Value("int32"),
"movieName": datasets.Value("string"),
"messages": datasets.features.Sequence(datasets.Value("string")),
"senders": datasets.features.Sequence(datasets.Value("int32")),
"form": datasets.features.Sequence(
datasets.Value("int32"), length=6
)
},
),
RedialConfig(
name="autorec",
description="For training autorec model on ReDIAL data",
features=datasets.Features({
"movieIds": datasets.Sequence(datasets.Value("int32")),
"ratings": datasets.Sequence(datasets.Value("float"))
}),
),
RedialConfig(
name="rec",
description="For using the ReDIAL dataset to train recommender",
features={
"movieIds": datasets.Sequence(datasets.Value("int32")),
"messages": datasets.features.Sequence(datasets.Value("string")),
"senders": datasets.features.Sequence(datasets.Value("int32")),
},
),
]
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.last_sender = None
def _processMessage(self, msg, initialId):
"""
msg example: {
"timeOffset": 0,
"text": "Hi I am looking for a movie like @111776",
"senderWorkerId": 956,
"messageId": 204171
},
"""
res = {
"text": msg["text"],
"sender": 1 if msg["senderWorkerId"] == initialId else -1
}
return res
def _flattenMessages(self, conversation):
messages = []
senders = []
for message in conversation["messages"]:
role = 1 if message["senderWorkerId"] == conversation["initiatorWorkerId"] else -1
text = message["text"]
if len(senders) > 0 and senders[-1] == role:
messages[-1] += "\n" + text
else:
senders.append(role)
messages.append(text)
return messages, senders
def _info(self):
return datasets.DatasetInfo(
description= self.config.description,
features=datasets.Features(self.config.features),
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls_to_download = _URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
if self.config.name == "autorec":
with open(filepath, encoding="utf-8") as f:
idx = 0
for line in f:
conversation = json.loads(line)
movieIds = []
ratings = []
if len(conversation["initiatorQuestions"]) == 0:
continue
for id, form in conversation["initiatorQuestions"].items():
rating = int(form["liked"])
if rating < 2:
movieIds.append(id)
ratings.append(rating)
if len(movieIds) > 0:
yield idx, {
"movieIds": movieIds,
"ratings": ratings
}
idx += 1
elif "SA" in self.config.name:
Idx = 0
date_pattern = re.compile(r'\(\d{4}\)') # To match e.g. "(2009)"
with open(filepath, encoding="utf-8") as f:
for line in f:
conversation = json.loads(line)
init_q = conversation["initiatorQuestions"]
resp_q = conversation["respondentQuestions"]
msgs, senders = self._flattenMessages(conversation)
# get movies that are in both forms.
gen = [key for key in init_q if key in resp_q]
for id in gen:
# remove date from movie name
movieName = date_pattern.sub('', conversation["movieMentions"][id]).strip(" ")
if len(movieName) == 0:
continue
yield Idx, {
"movieId": int(id),
"movieName": movieName,
"messages": msgs,
"senders": senders,
"form": [init_q[id]["suggested"], init_q[id]["seen"], init_q[id]["liked"],
resp_q[id]["suggested"], resp_q[id]["seen"], resp_q[id]["liked"], ]
}
Idx += 1
if Idx > 100 and "debug" in self.config.name:
break
elif "rec" in self.config.name:
Idx = 0
with open(filepath, encoding="utf-8") as f:
for line in f:
conversation = json.loads(line)
msgs, senders = self._flattenMessages(conversation)
yield Idx, {
"messages": msgs,
"senders": senders,
"movieIds": [int(movieId) for movieId in conversation["movieMentions"]]
}
Idx += 1
|