Datasets:
File size: 6,343 Bytes
8929825 79d3904 8929825 0a98b99 8929825 0a98b99 8929825 54864fe 8929825 79d3904 8929825 17afaa0 f26a522 17afaa0 8929825 17afaa0 f26a522 8929825 17afaa0 8929825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
dataset_info:
- config_name: SA
features:
- name: movieId
dtype: int32
- name: movieName
dtype: string
- name: messages
sequence: string
- name: senders
sequence: int32
- name: form
sequence: int32
splits:
- name: train
num_bytes: 33174059
num_examples: 41370
- name: validation
num_bytes: 8224594
num_examples: 10329
- name: test
num_bytes: 5151856
num_examples: 6952
download_size: 32552755
dataset_size: 46550509
- config_name: rec
features:
- name: movieIds
sequence: int32
- name: messages
sequence: string
- name: senders
sequence: int32
splits:
- name: train
num_bytes: 6064195
num_examples: 8004
- name: validation
num_bytes: 1511644
num_examples: 2002
- name: test
num_bytes: 937739
num_examples: 1342
download_size: 4812520
dataset_size: 8513578
- config_name: autorec
features:
- name: movieIds
sequence: int32
- name: ratings
sequence: float32
splits:
- name: train
num_bytes: 350688
num_examples: 7840
- name: validation
num_bytes: 87496
num_examples: 1966
- name: test
num_bytes: 58704
num_examples: 1321
download_size: 32552755
dataset_size: 496888
config_names:
- SA
- rec
- autorec
tags:
- recommendation
- conversational recommendation
- sentiment analysis
language:
- en
pretty_name: ReDIAL
size_categories:
- 10K<n<100K
---
# Dataset Card for ReDIAL
## Dataset Description
- **Homepage:**
- **Repository:**
[RecBot](https://github.com/McAuley-Lab/RecBot).
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This is an adapted version of the [original redial dataset](https://huggingface.co/datasets/re_dial), for supporting different tasks in our project [RecBot](https://github.com/McAuley-Lab/RecBot).
The redial dataset provides over 10,000 conversations centered around movie recommendations. It was released in the paper ["Towards Deep Conversational Recommendations"](https://arxiv.org/abs/1812.07617) at NeurIPS 2018.
### Supported Tasks and Leaderboards
1. Sentiment Analysis: Use the SA config for sentiment analysis.
2. Recommendation: Use the autorec config for recommendation task.
3. Conversational recommendation: Use the rec config for conversational recommendation task.
### Languages
English
## Dataset Structure
### Data Instances
#### SA
An example of 'test' looks as follows.
```
{
"movieId": 111776,
"movieName": "Super Troopers",
"messages": [
"Hi I am looking for a movie like @111776",
"You should watch @151656",
"Is that a great one? I have never seen it. I have seen @192131\nI mean @134643",
"Yes @151656 is very funny and so is @94688",
"It sounds like I need to check them out",
"yes you will enjoy them",
"I appreciate your time. I will need to check those out. Are there any others you would recommend?",
"yes @101794",
"Thank you i will watch that too",
"and also @91481",
"Thanks for the suggestions.",
"you are welcome\nand also @124771",
"thanks goodbye"
],
"senders": [1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1],
"form": [0, 1, 1, 0, 1, 1]
}
```
#### rec
An example of 'test' looks as follows.
```
{
'movieIds': [111776, 91481, 151656, 134643, 192131, 124771, 94688, 101794],
'messages': ['Hi I am looking for a movie like @111776',
'You should watch @151656',
'Is that a great one? I have never seen it. I have seen @192131\nI mean @134643',
'Yes @151656 is very funny and so is @94688',
'It sounds like I need to check them out',
'yes you will enjoy them',
'I appreciate your time. I will need to check those out. Are there any others you would recommend?',
'yes @101794',
'Thank you i will watch that too',
'and also @91481',
'Thanks for the suggestions.',
'you are welcome\nand also @124771',
'thanks goodbye'],
'senders': [1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1]
}
```
#### autorec
An example of 'test' looks as follows.
```
{
"movieIds": [
111776,
151656,
134643,
192131,
94688
],
"ratings": [
1.0,
1.0,
1.0,
1.0,
1.0
]
}
```
### Data Fields
#### SA
- movieId: the movie's ID in the [MovieLens](https://grouplens.org/datasets/movielens/latest/) dataset.
- movieName: the movie's name.
- messages: a list of string. The conversation messages related to the movie. Note that one conversation can contain mutiple movies. The conversation messages are repeated for each movie as a sample.
- senders: a list of 1 or -1. It has the same length of messages. Each element indicates the message at the same index is from the initiatorWorker (with 1) or the respondentWorkerId (with -1).
- form: a list generated by: [init_q[movieId]["suggested"], init_q[movieId]["seen"], init_q[movieId]["liked"], resp_q[movieId]["suggested"], resp_q[movieId]["seen"], resp_q[movieId]["liked"]. init_q is the initiator questions in the conversation. resp_q is the respondent questions in the conversation.
#### rec
- movieIds: a list of movie ids in a conversation.
- messages: a list of string. see config SA for detail.
- senders: a list of 1 or -1. see config SA for detail.
#### autorec:
- movieIds: a list of movie ids in a conversation.
- ratings: a list of 0 or 1. It has the same length as movieIds. Each element indicates the inititator's "liked" value for the movie.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |