|
import json |
|
import re |
|
from typing import List |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
class RedialConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ReDIAL.""" |
|
|
|
def __init__(self, features, **kwargs): |
|
"""BuilderConfig for ReDIAL. |
|
|
|
Args: |
|
features: *list[string]*, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("0.0.1"), **kwargs) |
|
self.features = features |
|
|
|
_URL = "./" |
|
_URLS = { |
|
"train": _URL + "train.jsonl", |
|
"valid": _URL + "valid.jsonl", |
|
"test": _URL + "test.jsonl", |
|
} |
|
|
|
|
|
|
|
|
|
class ReDIAL(datasets.GeneratorBasedBuilder): |
|
DEFAULT_CONFIG_NAME = "rec" |
|
BUILDER_CONFIGS = [ |
|
RedialConfig( |
|
name="SA", |
|
description="For using the ReDIAL dataset to train sentiment analysis on movies in sentences", |
|
features={ |
|
"movieId": datasets.Value("int32"), |
|
"movieName": datasets.Value("string"), |
|
"messages": datasets.features.Sequence(datasets.Value("string")), |
|
"senders": datasets.features.Sequence(datasets.Value("int32")), |
|
"form": datasets.features.Sequence( |
|
datasets.Value("int32"), length=6 |
|
) |
|
}, |
|
), |
|
RedialConfig( |
|
name="autorec", |
|
description="For training autorec model on ReDIAL data", |
|
features=datasets.Features({ |
|
"movieIds": datasets.Sequence(datasets.Value("int32")), |
|
"ratings": datasets.Sequence(datasets.Value("float")) |
|
}), |
|
), |
|
RedialConfig( |
|
name="rec", |
|
description="For using the ReDIAL dataset to train recommender", |
|
features={ |
|
"movieIds": datasets.Sequence(datasets.Value("int32")), |
|
"messages": datasets.features.Sequence(datasets.Value("string")), |
|
"senders": datasets.features.Sequence(datasets.Value("int32")), |
|
}, |
|
), |
|
|
|
] |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.last_sender = None |
|
|
|
|
|
def _processMessage(self, msg, initialId): |
|
""" |
|
msg example: { |
|
"timeOffset": 0, |
|
"text": "Hi I am looking for a movie like @111776", |
|
"senderWorkerId": 956, |
|
"messageId": 204171 |
|
}, |
|
""" |
|
res = { |
|
"text": msg["text"], |
|
"sender": 1 if msg["senderWorkerId"] == initialId else -1 |
|
} |
|
return res |
|
|
|
def _flattenMessages(self, conversation): |
|
messages = [] |
|
senders = [] |
|
for message in conversation["messages"]: |
|
role = 1 if message["senderWorkerId"] == conversation["initiatorWorkerId"] else -1 |
|
text = message["text"] |
|
if len(senders) > 0 and senders[-1] == role: |
|
messages[-1] += "\n" + text |
|
else: |
|
senders.append(role) |
|
messages.append(text) |
|
return messages, senders |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description= self.config.description, |
|
features=datasets.Features(self.config.features), |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
|
|
if self.config.name == "autorec": |
|
with open(filepath, encoding="utf-8") as f: |
|
idx = 0 |
|
for line in f: |
|
conversation = json.loads(line) |
|
movieIds = [] |
|
ratings = [] |
|
if len(conversation["initiatorQuestions"]) == 0: |
|
continue |
|
for id, form in conversation["initiatorQuestions"].items(): |
|
rating = int(form["liked"]) |
|
if rating < 2: |
|
movieIds.append(id) |
|
ratings.append(rating) |
|
if len(movieIds) > 0: |
|
yield idx, { |
|
"movieIds": movieIds, |
|
"ratings": ratings |
|
} |
|
idx += 1 |
|
|
|
elif "SA" in self.config.name: |
|
Idx = 0 |
|
date_pattern = re.compile(r'\(\d{4}\)') |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
conversation = json.loads(line) |
|
init_q = conversation["initiatorQuestions"] |
|
resp_q = conversation["respondentQuestions"] |
|
msgs, senders = self._flattenMessages(conversation) |
|
|
|
gen = [key for key in init_q if key in resp_q] |
|
for id in gen: |
|
|
|
movieName = date_pattern.sub('', conversation["movieMentions"][id]).strip(" ") |
|
if len(movieName) == 0: |
|
continue |
|
yield Idx, { |
|
"movieId": int(id), |
|
"movieName": movieName, |
|
"messages": msgs, |
|
"senders": senders, |
|
"form": [init_q[id]["suggested"], init_q[id]["seen"], init_q[id]["liked"], |
|
resp_q[id]["suggested"], resp_q[id]["seen"], resp_q[id]["liked"], ] |
|
} |
|
Idx += 1 |
|
if Idx > 100 and "debug" in self.config.name: |
|
break |
|
elif "rec" in self.config.name: |
|
Idx = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
conversation = json.loads(line) |
|
msgs, senders = self._flattenMessages(conversation) |
|
|
|
yield Idx, { |
|
"messages": msgs, |
|
"senders": senders, |
|
"movieIds": [int(movieId) for movieId in conversation["movieMentions"]] |
|
} |
|
Idx += 1 |
|
|