Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
License:
fist dataset version
Browse files- data/food101-metadata.parquet.gzip +0 -0
- data/food101_raw.tar.gz +3 -0
- food101-enriched.py +255 -0
data/food101-metadata.parquet.gzip
ADDED
Binary file (389 kB). View file
|
|
data/food101_raw.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0747e577985e9886d13f7c7399c397282ffeb36dd36efa52504effbae4a05a94
|
3 |
+
size 4139803338
|
food101-enriched.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Dataset class for Food-101 dataset."""
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
from datasets.tasks import ImageClassification
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
|
22 |
+
from pathlib import Path
|
23 |
+
from datasets import load_dataset
|
24 |
+
|
25 |
+
|
26 |
+
_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
|
27 |
+
|
28 |
+
_METADATA_URLS = {
|
29 |
+
"train": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/train.txt",
|
30 |
+
"test": "https://s3.amazonaws.com/datasets.huggingface.co/food101/meta/test.txt",
|
31 |
+
}
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/"
|
34 |
+
|
35 |
+
_DESCRIPTION = (
|
36 |
+
"This dataset consists of 101 food categories, with 101'000 images. For "
|
37 |
+
"each class, 250 manually reviewed test images are provided as well as 750"
|
38 |
+
" training images. On purpose, the training images were not cleaned, and "
|
39 |
+
"thus still contain some amount of noise. This comes mostly in the form of"
|
40 |
+
" intense colors and sometimes wrong labels. All images were rescaled to "
|
41 |
+
"have a maximum side length of 512 pixels."
|
42 |
+
)
|
43 |
+
|
44 |
+
_CITATION = """\
|
45 |
+
@inproceedings{bossard14,
|
46 |
+
title = {Food-101 -- Mining Discriminative Components with Random Forests},
|
47 |
+
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
|
48 |
+
booktitle = {European Conference on Computer Vision},
|
49 |
+
year = {2014}
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_LICENSE = """\
|
54 |
+
LICENSE AGREEMENT
|
55 |
+
=================
|
56 |
+
- The Food-101 data set consists of images from Foodspotting [1] which are not
|
57 |
+
property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
|
58 |
+
scientific fair use must be negociated with the respective picture owners
|
59 |
+
according to the Foodspotting terms of use [2].
|
60 |
+
|
61 |
+
[1] http://www.foodspotting.com/
|
62 |
+
[2] http://www.foodspotting.com/terms/
|
63 |
+
"""
|
64 |
+
|
65 |
+
_NAMES = [
|
66 |
+
"apple_pie",
|
67 |
+
"baby_back_ribs",
|
68 |
+
"baklava",
|
69 |
+
"beef_carpaccio",
|
70 |
+
"beef_tartare",
|
71 |
+
"beet_salad",
|
72 |
+
"beignets",
|
73 |
+
"bibimbap",
|
74 |
+
"bread_pudding",
|
75 |
+
"breakfast_burrito",
|
76 |
+
"bruschetta",
|
77 |
+
"caesar_salad",
|
78 |
+
"cannoli",
|
79 |
+
"caprese_salad",
|
80 |
+
"carrot_cake",
|
81 |
+
"ceviche",
|
82 |
+
"cheesecake",
|
83 |
+
"cheese_plate",
|
84 |
+
"chicken_curry",
|
85 |
+
"chicken_quesadilla",
|
86 |
+
"chicken_wings",
|
87 |
+
"chocolate_cake",
|
88 |
+
"chocolate_mousse",
|
89 |
+
"churros",
|
90 |
+
"clam_chowder",
|
91 |
+
"club_sandwich",
|
92 |
+
"crab_cakes",
|
93 |
+
"creme_brulee",
|
94 |
+
"croque_madame",
|
95 |
+
"cup_cakes",
|
96 |
+
"deviled_eggs",
|
97 |
+
"donuts",
|
98 |
+
"dumplings",
|
99 |
+
"edamame",
|
100 |
+
"eggs_benedict",
|
101 |
+
"escargots",
|
102 |
+
"falafel",
|
103 |
+
"filet_mignon",
|
104 |
+
"fish_and_chips",
|
105 |
+
"foie_gras",
|
106 |
+
"french_fries",
|
107 |
+
"french_onion_soup",
|
108 |
+
"french_toast",
|
109 |
+
"fried_calamari",
|
110 |
+
"fried_rice",
|
111 |
+
"frozen_yogurt",
|
112 |
+
"garlic_bread",
|
113 |
+
"gnocchi",
|
114 |
+
"greek_salad",
|
115 |
+
"grilled_cheese_sandwich",
|
116 |
+
"grilled_salmon",
|
117 |
+
"guacamole",
|
118 |
+
"gyoza",
|
119 |
+
"hamburger",
|
120 |
+
"hot_and_sour_soup",
|
121 |
+
"hot_dog",
|
122 |
+
"huevos_rancheros",
|
123 |
+
"hummus",
|
124 |
+
"ice_cream",
|
125 |
+
"lasagna",
|
126 |
+
"lobster_bisque",
|
127 |
+
"lobster_roll_sandwich",
|
128 |
+
"macaroni_and_cheese",
|
129 |
+
"macarons",
|
130 |
+
"miso_soup",
|
131 |
+
"mussels",
|
132 |
+
"nachos",
|
133 |
+
"omelette",
|
134 |
+
"onion_rings",
|
135 |
+
"oysters",
|
136 |
+
"pad_thai",
|
137 |
+
"paella",
|
138 |
+
"pancakes",
|
139 |
+
"panna_cotta",
|
140 |
+
"peking_duck",
|
141 |
+
"pho",
|
142 |
+
"pizza",
|
143 |
+
"pork_chop",
|
144 |
+
"poutine",
|
145 |
+
"prime_rib",
|
146 |
+
"pulled_pork_sandwich",
|
147 |
+
"ramen",
|
148 |
+
"ravioli",
|
149 |
+
"red_velvet_cake",
|
150 |
+
"risotto",
|
151 |
+
"samosa",
|
152 |
+
"sashimi",
|
153 |
+
"scallops",
|
154 |
+
"seaweed_salad",
|
155 |
+
"shrimp_and_grits",
|
156 |
+
"spaghetti_bolognese",
|
157 |
+
"spaghetti_carbonara",
|
158 |
+
"spring_rolls",
|
159 |
+
"steak",
|
160 |
+
"strawberry_shortcake",
|
161 |
+
"sushi",
|
162 |
+
"tacos",
|
163 |
+
"takoyaki",
|
164 |
+
"tiramisu",
|
165 |
+
"tuna_tartare",
|
166 |
+
"waffles",
|
167 |
+
]
|
168 |
+
|
169 |
+
_DATA_URLS = {
|
170 |
+
'raw': "data/food101_raw.tar.gz",
|
171 |
+
'metadata': 'data/food101-metadata.parquet.gzip'
|
172 |
+
}
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
class Food101Enriched(datasets.GeneratorBasedBuilder):
|
177 |
+
"""Food101Enriched Data Set"""
|
178 |
+
|
179 |
+
BUILDER_CONFIGS = [
|
180 |
+
datasets.BuilderConfig(
|
181 |
+
name="enriched",
|
182 |
+
version=datasets.Version("1.0.0", ""),
|
183 |
+
description="Import of enriched Food 101 Data Set",
|
184 |
+
)
|
185 |
+
]
|
186 |
+
|
187 |
+
def _info(self):
|
188 |
+
return datasets.DatasetInfo(
|
189 |
+
description=_DESCRIPTION,
|
190 |
+
features=datasets.Features(
|
191 |
+
{
|
192 |
+
"image": datasets.Value("string"),
|
193 |
+
"label": datasets.features.ClassLabel(names=_NAMES),
|
194 |
+
#"label_str": datasets.Value("string"),
|
195 |
+
"split": datasets.Value("string"),
|
196 |
+
}
|
197 |
+
),
|
198 |
+
supervised_keys=("image", "label"),
|
199 |
+
homepage=_HOMEPAGE,
|
200 |
+
citation=_CITATION,
|
201 |
+
license=_LICENSE,
|
202 |
+
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
203 |
+
)
|
204 |
+
|
205 |
+
def _split_generators(self, dl_manager):
|
206 |
+
|
207 |
+
archive_path = dl_manager.download_and_extract(_DATA_URLS['raw'])
|
208 |
+
metadata = pd.read_parquet(dl_manager.download(_DATA_URLS['metadata']))
|
209 |
+
|
210 |
+
|
211 |
+
return [
|
212 |
+
datasets.SplitGenerator(
|
213 |
+
name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, 'metadata': metadata, "split": "train"}
|
214 |
+
),
|
215 |
+
datasets.SplitGenerator(
|
216 |
+
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, 'metadata': metadata, "split": "test"}
|
217 |
+
),
|
218 |
+
]
|
219 |
+
|
220 |
+
def _generate_examples(self, archive_path, metadata, split):
|
221 |
+
"""This function returns the examples in the raw (text) form."""
|
222 |
+
|
223 |
+
if split == "train":
|
224 |
+
df = metadata[metadata['split']=='train']
|
225 |
+
|
226 |
+
if split == "test":
|
227 |
+
df = metadata[metadata['split']=='test']
|
228 |
+
|
229 |
+
if split == "all":
|
230 |
+
df = metadata
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
for index, row in df.iterrows():
|
236 |
+
img_path = archive_path + "/" + row['image']
|
237 |
+
#img = {"path": img_path, "bytes": None}
|
238 |
+
#print(str(len(row['probabilities'])))
|
239 |
+
#print(str(index))
|
240 |
+
result = {
|
241 |
+
'image': img_path,
|
242 |
+
'label': row['label'],
|
243 |
+
#'label_str': row['fine_label_str'],
|
244 |
+
'split': split,
|
245 |
+
}
|
246 |
+
yield index, result
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
if __name__ == "__main__":
|
255 |
+
ds = load_dataset("food101-enriched.py", split="all")
|