File size: 12,559 Bytes
483791c 9cf34e2 483791c 498aa8a 483791c ed847b4 483791c 93f8e02 483791c 498aa8a 483791c 9cf34e2 483791c ed847b4 483791c 199d992 483791c ed847b4 199d992 483791c 498aa8a 483791c 9cf34e2 483791c 9cf34e2 483791c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Wikipedia dataset containing cleaned articles of all languages."""
import bz2
import codecs
import json
import re
import xml.etree.cElementTree as etree
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@ONLINE {wikidump,
author = {Wikimedia Foundation},
title = {Wikimedia Downloads},
url = {https://dumps.wikimedia.org}
}
"""
_DESCRIPTION = """\
Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump
(https://dumps.wikimedia.org/) with one split per language. Each example
contains the content of one full Wikipedia article with cleaning to strip
markdown and unwanted sections (references, etc.).
"""
_LICENSE = (
"This work is licensed under the Creative Commons Attribution-ShareAlike "
"3.0 Unported License. To view a copy of this license, visit "
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to "
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA."
)
# Source: https://en.wikipedia.org/wiki/List_of_Wikipedias (accessed 3/1/2019)
# Removed because no articles: hz.
WIKIPEDIA_LANGUAGES = [
"aa",
"ab",
"ace",
"ady",
"af",
"ak",
"als",
"am",
"an",
"ang",
"ar",
"arc",
"arz",
"as",
"ast",
"atj",
"av",
"ay",
"az",
"azb",
"ba",
"bar",
"bat-smg",
"bcl",
"be",
"be-x-old",
"bg",
"bh",
"bi",
"bjn",
"bm",
"bn",
"bo",
"bpy",
"br",
"bs",
"bug",
"bxr",
"ca",
"cbk-zam",
"cdo",
"ce",
"ceb",
"ch",
"cho",
"chr",
"chy",
"ckb",
"co",
"cr",
"crh",
"cs",
"csb",
"cu",
"cv",
"cy",
"da",
"de",
"din",
"diq",
"dsb",
"dty",
"dv",
"dz",
"ee",
"el",
"eml",
"en",
"eo",
"es",
"et",
"eu",
"ext",
"fa",
"ff",
"fi",
"fiu-vro",
"fj",
"fo",
"fr",
"frp",
"frr",
"fur",
"fy",
"ga",
"gag",
"gan",
"gd",
"gl",
"glk",
"gn",
"gom",
"gor",
"got",
"gu",
"gv",
"ha",
"hak",
"haw",
"he",
"hi",
"hif",
"ho",
"hr",
"hsb",
"ht",
"hu",
"hy",
"ia",
"id",
"ie",
"ig",
"ii",
"ik",
"ilo",
"inh",
"io",
"is",
"it",
"iu",
"ja",
"jam",
"jbo",
"jv",
"ka",
"kaa",
"kab",
"kbd",
"kbp",
"kg",
"ki",
"kj",
"kk",
"kl",
"km",
"kn",
"ko",
"koi",
"krc",
"ks",
"ksh",
"ku",
"kv",
"kw",
"ky",
"la",
"lad",
"lb",
"lbe",
"lez",
"lfn",
"lg",
"li",
"lij",
"lmo",
"ln",
"lo",
"lrc",
"lt",
"ltg",
"lv",
"mai",
"map-bms",
"mdf",
"mg",
"mh",
"mhr",
"mi",
"min",
"mk",
"ml",
"mn",
"mr",
"mrj",
"ms",
"mt",
"mus",
"mwl",
"my",
"myv",
"mzn",
"na",
"nah",
"nap",
"nds",
"nds-nl",
"ne",
"new",
"ng",
"nl",
"nn",
"no",
"nov",
"nrm",
"nso",
"nv",
"ny",
"oc",
"olo",
"om",
"or",
"os",
"pa",
"pag",
"pam",
"pap",
"pcd",
"pdc",
"pfl",
"pi",
"pih",
"pl",
"pms",
"pnb",
"pnt",
"ps",
"pt",
"qu",
"rm",
"rmy",
"rn",
"ro",
"roa-rup",
"roa-tara",
"ru",
"rue",
"rw",
"sa",
"sah",
"sat",
"sc",
"scn",
"sco",
"sd",
"se",
"sg",
"sh",
"si",
"simple",
"sk",
"sl",
"sm",
"sn",
"so",
"sq",
"sr",
"srn",
"ss",
"st",
"stq",
"su",
"sv",
"sw",
"szl",
"ta",
"tcy",
"te",
"tet",
"tg",
"th",
"ti",
"tk",
"tl",
"tn",
"to",
"tpi",
"tr",
"ts",
"tt",
"tum",
"tw",
"ty",
"tyv",
"udm",
"ug",
"uk",
"ur",
"uz",
"ve",
"vec",
"vep",
"vi",
"vls",
"vo",
"wa",
"war",
"wo",
"wuu",
"xal",
"xh",
"xmf",
"yi",
"yo",
"za",
"zea",
"zh",
"zh-classical",
"zh-min-nan",
"zh-yue",
"zu",
]
_BASE_URL_TMPL = "https://dumps.wikimedia.org/{lang}wiki/{date}/"
_INFO_FILE = "dumpstatus.json"
class WikipediaConfig(datasets.BuilderConfig):
"""BuilderConfig for Wikipedia."""
def __init__(self, language=None, date=None, **kwargs):
"""BuilderConfig for Wikipedia.
Args:
language: string, the language code for the Wikipedia dump to use.
date: string, date of the Wikipedia dump in YYYYMMDD format. A list of
available dates can be found at https://dumps.wikimedia.org/enwiki/.
**kwargs: keyword arguments forwarded to super.
"""
super(WikipediaConfig, self).__init__(
name=f"{date}.{language}",
description=f"Wikipedia dataset for {language}, parsed from {date} dump.",
**kwargs,
)
self.date = date
self.language = language
_VERSION = datasets.Version("1.0.0", "")
class Wikipedia(datasets.BeamBasedBuilder):
"""Wikipedia dataset."""
# Use mirror (your.org) to avoid download caps.
BUILDER_CONFIG_CLASS = WikipediaConfig
BUILDER_CONFIGS = [
WikipediaConfig(
version=_VERSION,
language=lang,
date="20200501",
) # pylint:disable=g-complex-comprehension
for lang in WIKIPEDIA_LANGUAGES
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"title": datasets.Value("string"), "text": datasets.Value("string")}),
# No default supervised_keys.
supervised_keys=None,
homepage="https://dumps.wikimedia.org",
citation=_CITATION,
)
def _split_generators(self, dl_manager, pipeline):
def _base_url(lang):
return _BASE_URL_TMPL.format(lang=lang.replace("-", "_"), date=self.config.date)
lang = self.config.language
info_url = _base_url(lang) + _INFO_FILE
# Use dictionary since testing mock always returns the same result.
downloaded_files = dl_manager.download_and_extract({"info": info_url})
xml_urls = []
total_bytes = 0
with open(downloaded_files["info"], encoding="utf-8") as f:
dump_info = json.load(f)
multistream_dump_info = dump_info["jobs"]["articlesmultistreamdump"]
assert (
multistream_dump_info["status"] == "done"
), "Specified dump (%s) multistream status is not 'done': %s" % (
_base_url(lang),
multistream_dump_info["status"],
)
for fname, info in multistream_dump_info["files"].items():
if ".xml" not in fname:
continue
total_bytes += info["size"]
xml_urls.append(_base_url(lang) + fname)
# Use dictionary since testing mock always returns the same result.
downloaded_files = dl_manager.download({"xml": xml_urls})
if not pipeline.is_local():
downloaded_files = dl_manager.ship_files_with_pipeline(downloaded_files, pipeline)
return [
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files["xml"], "language": lang}
)
]
def _build_pcollection(self, pipeline, filepaths, language):
"""Build PCollection of examples in the raw (text) form."""
import apache_beam as beam
import mwparserfromhell
def _extract_content(filepath):
"""Extracts article content from a single WikiMedia XML file."""
logger.info("generating examples from = %s", filepath)
with beam.io.filesystems.FileSystems.open(filepath) as f:
f = bz2.BZ2File(filename=f)
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
utf_f = codecs.getreader("utf-8")(f)
context = etree.iterparse(utf_f, events=("end",))
for unused_event, elem in context:
if not elem.tag.endswith("page"):
continue
namespace = elem.tag[:-4]
title = elem.find(f"./{namespace}title").text
ns = elem.find(f"./{namespace}ns").text
id_ = elem.find(f"./{namespace}id").text
# Filter pages that are not in the "main" namespace.
if ns != "0":
elem.clear()
continue
raw_content = elem.find(f"./{namespace}revision/{namespace}text").text
elem.clear()
# Filter redirects.
if raw_content is None or raw_content.lower().startswith("#redirect"):
beam.metrics.Metrics.counter(language, "filtered-redirects").inc()
continue
beam.metrics.Metrics.counter(language, "extracted-examples").inc()
yield (id_, title, raw_content)
def _clean_content(inputs):
"""Cleans raw wikicode to extract text."""
id_, title, raw_content = inputs
try:
text = _parse_and_clean_wikicode(raw_content, parser=mwparserfromhell)
except (mwparserfromhell.parser.ParserError) as e:
beam.metrics.Metrics.counter(language, "parser-error").inc()
logger.error("mwparserfromhell ParseError: %s", e)
return
if not text:
beam.metrics.Metrics.counter(language, "empty-clean-examples").inc()
return
beam.metrics.Metrics.counter(language, "cleaned-examples").inc()
yield id_, {"title": title, "text": text}
return (
pipeline
| "Initialize" >> beam.Create(filepaths)
| "Extract content" >> beam.FlatMap(_extract_content)
| "Distribute" >> beam.transforms.Reshuffle()
| "Clean content" >> beam.FlatMap(_clean_content)
)
def _parse_and_clean_wikicode(raw_content, parser):
"""Strips formatting and unwanted sections from raw page content."""
wikicode = parser.parse(raw_content)
# Filters for references, tables, and file/image links.
re_rm_wikilink = re.compile("^(?:File|Image|Media):", flags=re.IGNORECASE | re.UNICODE)
def rm_wikilink(obj):
return bool(re_rm_wikilink.match(str(obj.title)))
def rm_tag(obj):
return str(obj.tag) in {"ref", "table"}
def rm_template(obj):
return obj.name.lower() in {"reflist", "notelist", "notelist-ua", "notelist-lr", "notelist-ur", "notelist-lg"}
def try_remove_obj(obj, section):
try:
section.remove(obj)
except ValueError:
# For unknown reasons, objects are sometimes not found.
pass
section_text = []
# Filter individual sections to clean.
for section in wikicode.get_sections(flat=True, include_lead=True, include_headings=True):
for obj in section.ifilter_wikilinks(matches=rm_wikilink, recursive=True):
try_remove_obj(obj, section)
for obj in section.ifilter_templates(matches=rm_template, recursive=True):
try_remove_obj(obj, section)
for obj in section.ifilter_tags(matches=rm_tag, recursive=True):
try_remove_obj(obj, section)
section_text.append(section.strip_code().strip())
return "\n\n".join(section_text)
|