File size: 12,559 Bytes
483791c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf34e2
483791c
 
 
 
 
 
 
 
498aa8a
 
 
483791c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed847b4
 
483791c
 
 
 
 
 
 
 
 
 
 
 
 
93f8e02
483791c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498aa8a
483791c
 
9cf34e2
 
483791c
 
 
 
 
ed847b4
 
 
483791c
 
 
199d992
483791c
 
ed847b4
199d992
483791c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498aa8a
483791c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cf34e2
483791c
 
9cf34e2
483791c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Wikipedia dataset containing cleaned articles of all languages."""


import bz2
import codecs
import json
import re
import xml.etree.cElementTree as etree

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@ONLINE {wikidump,
    author = {Wikimedia Foundation},
    title  = {Wikimedia Downloads},
    url    = {https://dumps.wikimedia.org}
}
"""

_DESCRIPTION = """\
Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump
(https://dumps.wikimedia.org/) with one split per language. Each example
contains the content of one full Wikipedia article with cleaning to strip
markdown and unwanted sections (references, etc.).
"""

_LICENSE = (
    "This work is licensed under the Creative Commons Attribution-ShareAlike "
    "3.0 Unported License. To view a copy of this license, visit "
    "http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to "
    "Creative Commons, PO Box 1866, Mountain View, CA 94042, USA."
)

# Source: https://en.wikipedia.org/wiki/List_of_Wikipedias (accessed 3/1/2019)
# Removed because no articles: hz.
WIKIPEDIA_LANGUAGES = [
    "aa",
    "ab",
    "ace",
    "ady",
    "af",
    "ak",
    "als",
    "am",
    "an",
    "ang",
    "ar",
    "arc",
    "arz",
    "as",
    "ast",
    "atj",
    "av",
    "ay",
    "az",
    "azb",
    "ba",
    "bar",
    "bat-smg",
    "bcl",
    "be",
    "be-x-old",
    "bg",
    "bh",
    "bi",
    "bjn",
    "bm",
    "bn",
    "bo",
    "bpy",
    "br",
    "bs",
    "bug",
    "bxr",
    "ca",
    "cbk-zam",
    "cdo",
    "ce",
    "ceb",
    "ch",
    "cho",
    "chr",
    "chy",
    "ckb",
    "co",
    "cr",
    "crh",
    "cs",
    "csb",
    "cu",
    "cv",
    "cy",
    "da",
    "de",
    "din",
    "diq",
    "dsb",
    "dty",
    "dv",
    "dz",
    "ee",
    "el",
    "eml",
    "en",
    "eo",
    "es",
    "et",
    "eu",
    "ext",
    "fa",
    "ff",
    "fi",
    "fiu-vro",
    "fj",
    "fo",
    "fr",
    "frp",
    "frr",
    "fur",
    "fy",
    "ga",
    "gag",
    "gan",
    "gd",
    "gl",
    "glk",
    "gn",
    "gom",
    "gor",
    "got",
    "gu",
    "gv",
    "ha",
    "hak",
    "haw",
    "he",
    "hi",
    "hif",
    "ho",
    "hr",
    "hsb",
    "ht",
    "hu",
    "hy",
    "ia",
    "id",
    "ie",
    "ig",
    "ii",
    "ik",
    "ilo",
    "inh",
    "io",
    "is",
    "it",
    "iu",
    "ja",
    "jam",
    "jbo",
    "jv",
    "ka",
    "kaa",
    "kab",
    "kbd",
    "kbp",
    "kg",
    "ki",
    "kj",
    "kk",
    "kl",
    "km",
    "kn",
    "ko",
    "koi",
    "krc",
    "ks",
    "ksh",
    "ku",
    "kv",
    "kw",
    "ky",
    "la",
    "lad",
    "lb",
    "lbe",
    "lez",
    "lfn",
    "lg",
    "li",
    "lij",
    "lmo",
    "ln",
    "lo",
    "lrc",
    "lt",
    "ltg",
    "lv",
    "mai",
    "map-bms",
    "mdf",
    "mg",
    "mh",
    "mhr",
    "mi",
    "min",
    "mk",
    "ml",
    "mn",
    "mr",
    "mrj",
    "ms",
    "mt",
    "mus",
    "mwl",
    "my",
    "myv",
    "mzn",
    "na",
    "nah",
    "nap",
    "nds",
    "nds-nl",
    "ne",
    "new",
    "ng",
    "nl",
    "nn",
    "no",
    "nov",
    "nrm",
    "nso",
    "nv",
    "ny",
    "oc",
    "olo",
    "om",
    "or",
    "os",
    "pa",
    "pag",
    "pam",
    "pap",
    "pcd",
    "pdc",
    "pfl",
    "pi",
    "pih",
    "pl",
    "pms",
    "pnb",
    "pnt",
    "ps",
    "pt",
    "qu",
    "rm",
    "rmy",
    "rn",
    "ro",
    "roa-rup",
    "roa-tara",
    "ru",
    "rue",
    "rw",
    "sa",
    "sah",
    "sat",
    "sc",
    "scn",
    "sco",
    "sd",
    "se",
    "sg",
    "sh",
    "si",
    "simple",
    "sk",
    "sl",
    "sm",
    "sn",
    "so",
    "sq",
    "sr",
    "srn",
    "ss",
    "st",
    "stq",
    "su",
    "sv",
    "sw",
    "szl",
    "ta",
    "tcy",
    "te",
    "tet",
    "tg",
    "th",
    "ti",
    "tk",
    "tl",
    "tn",
    "to",
    "tpi",
    "tr",
    "ts",
    "tt",
    "tum",
    "tw",
    "ty",
    "tyv",
    "udm",
    "ug",
    "uk",
    "ur",
    "uz",
    "ve",
    "vec",
    "vep",
    "vi",
    "vls",
    "vo",
    "wa",
    "war",
    "wo",
    "wuu",
    "xal",
    "xh",
    "xmf",
    "yi",
    "yo",
    "za",
    "zea",
    "zh",
    "zh-classical",
    "zh-min-nan",
    "zh-yue",
    "zu",
]

_BASE_URL_TMPL = "https://dumps.wikimedia.org/{lang}wiki/{date}/"
_INFO_FILE = "dumpstatus.json"


class WikipediaConfig(datasets.BuilderConfig):
    """BuilderConfig for Wikipedia."""

    def __init__(self, language=None, date=None, **kwargs):
        """BuilderConfig for Wikipedia.

        Args:
          language: string, the language code for the Wikipedia dump to use.
          date: string, date of the Wikipedia dump in YYYYMMDD format. A list of
            available dates can be found at https://dumps.wikimedia.org/enwiki/.
          **kwargs: keyword arguments forwarded to super.
        """
        super(WikipediaConfig, self).__init__(
            name=f"{date}.{language}",
            description=f"Wikipedia dataset for {language}, parsed from {date} dump.",
            **kwargs,
        )
        self.date = date
        self.language = language


_VERSION = datasets.Version("1.0.0", "")


class Wikipedia(datasets.BeamBasedBuilder):
    """Wikipedia dataset."""

    # Use mirror (your.org) to avoid download caps.
    BUILDER_CONFIG_CLASS = WikipediaConfig
    BUILDER_CONFIGS = [
        WikipediaConfig(
            version=_VERSION,
            language=lang,
            date="20200501",
        )  # pylint:disable=g-complex-comprehension
        for lang in WIKIPEDIA_LANGUAGES
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({"title": datasets.Value("string"), "text": datasets.Value("string")}),
            # No default supervised_keys.
            supervised_keys=None,
            homepage="https://dumps.wikimedia.org",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager, pipeline):
        def _base_url(lang):
            return _BASE_URL_TMPL.format(lang=lang.replace("-", "_"), date=self.config.date)

        lang = self.config.language

        info_url = _base_url(lang) + _INFO_FILE
        # Use dictionary since testing mock always returns the same result.
        downloaded_files = dl_manager.download_and_extract({"info": info_url})

        xml_urls = []
        total_bytes = 0
        with open(downloaded_files["info"], encoding="utf-8") as f:
            dump_info = json.load(f)
        multistream_dump_info = dump_info["jobs"]["articlesmultistreamdump"]
        assert (
            multistream_dump_info["status"] == "done"
        ), "Specified dump (%s) multistream status is not 'done': %s" % (
            _base_url(lang),
            multistream_dump_info["status"],
        )

        for fname, info in multistream_dump_info["files"].items():
            if ".xml" not in fname:
                continue
            total_bytes += info["size"]
            xml_urls.append(_base_url(lang) + fname)

            # Use dictionary since testing mock always returns the same result.
        downloaded_files = dl_manager.download({"xml": xml_urls})
        if not pipeline.is_local():
            downloaded_files = dl_manager.ship_files_with_pipeline(downloaded_files, pipeline)

        return [
            datasets.SplitGenerator(  # pylint:disable=g-complex-comprehension
                name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files["xml"], "language": lang}
            )
        ]

    def _build_pcollection(self, pipeline, filepaths, language):
        """Build PCollection of examples in the raw (text) form."""
        import apache_beam as beam
        import mwparserfromhell

        def _extract_content(filepath):
            """Extracts article content from a single WikiMedia XML file."""
            logger.info("generating examples from = %s", filepath)
            with beam.io.filesystems.FileSystems.open(filepath) as f:
                f = bz2.BZ2File(filename=f)
                # Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
                utf_f = codecs.getreader("utf-8")(f)
                context = etree.iterparse(utf_f, events=("end",))
                for unused_event, elem in context:
                    if not elem.tag.endswith("page"):
                        continue
                    namespace = elem.tag[:-4]
                    title = elem.find(f"./{namespace}title").text
                    ns = elem.find(f"./{namespace}ns").text
                    id_ = elem.find(f"./{namespace}id").text

                    # Filter pages that are not in the "main" namespace.
                    if ns != "0":
                        elem.clear()
                        continue

                    raw_content = elem.find(f"./{namespace}revision/{namespace}text").text
                    elem.clear()

                    # Filter redirects.
                    if raw_content is None or raw_content.lower().startswith("#redirect"):
                        beam.metrics.Metrics.counter(language, "filtered-redirects").inc()
                        continue

                    beam.metrics.Metrics.counter(language, "extracted-examples").inc()
                    yield (id_, title, raw_content)

        def _clean_content(inputs):
            """Cleans raw wikicode to extract text."""
            id_, title, raw_content = inputs
            try:
                text = _parse_and_clean_wikicode(raw_content, parser=mwparserfromhell)
            except (mwparserfromhell.parser.ParserError) as e:
                beam.metrics.Metrics.counter(language, "parser-error").inc()
                logger.error("mwparserfromhell ParseError: %s", e)
                return

            if not text:
                beam.metrics.Metrics.counter(language, "empty-clean-examples").inc()
                return

            beam.metrics.Metrics.counter(language, "cleaned-examples").inc()

            yield id_, {"title": title, "text": text}

        return (
            pipeline
            | "Initialize" >> beam.Create(filepaths)
            | "Extract content" >> beam.FlatMap(_extract_content)
            | "Distribute" >> beam.transforms.Reshuffle()
            | "Clean content" >> beam.FlatMap(_clean_content)
        )


def _parse_and_clean_wikicode(raw_content, parser):
    """Strips formatting and unwanted sections from raw page content."""
    wikicode = parser.parse(raw_content)

    # Filters for references, tables, and file/image links.
    re_rm_wikilink = re.compile("^(?:File|Image|Media):", flags=re.IGNORECASE | re.UNICODE)

    def rm_wikilink(obj):
        return bool(re_rm_wikilink.match(str(obj.title)))

    def rm_tag(obj):
        return str(obj.tag) in {"ref", "table"}

    def rm_template(obj):
        return obj.name.lower() in {"reflist", "notelist", "notelist-ua", "notelist-lr", "notelist-ur", "notelist-lg"}

    def try_remove_obj(obj, section):
        try:
            section.remove(obj)
        except ValueError:
            # For unknown reasons, objects are sometimes not found.
            pass

    section_text = []
    # Filter individual sections to clean.
    for section in wikicode.get_sections(flat=True, include_lead=True, include_headings=True):
        for obj in section.ifilter_wikilinks(matches=rm_wikilink, recursive=True):
            try_remove_obj(obj, section)
        for obj in section.ifilter_templates(matches=rm_template, recursive=True):
            try_remove_obj(obj, section)
        for obj in section.ifilter_tags(matches=rm_tag, recursive=True):
            try_remove_obj(obj, section)

        section_text.append(section.strip_code().strip())
    return "\n\n".join(section_text)