Create renovation.py
Browse files- renovation.py +109 -0
renovation.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import random
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
from datasets.tasks import ImageClassification
|
7 |
+
|
8 |
+
_HOMEPAGE = "https://github.com/your-github/renovation"
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@ONLINE {renovationdata,
|
12 |
+
author="Your Name",
|
13 |
+
title="Renovation dataset",
|
14 |
+
month="January",
|
15 |
+
year="2023",
|
16 |
+
url="https://github.com/your-github/renovation"
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DESCRIPTION = """\
|
21 |
+
Renovations is a dataset of images of houses taken in the field using smartphone
|
22 |
+
cameras. It consists of 3 classes: cheap, average, and expensive renovations.
|
23 |
+
Data was collected by the your research lab.
|
24 |
+
"""
|
25 |
+
|
26 |
+
_URLS = {
|
27 |
+
'Not Applicable': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Not Applicable.zip",
|
28 |
+
'Very Poor': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Very Poor.zip",
|
29 |
+
'Poor': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Poor.zip",
|
30 |
+
'Fair': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Fair.zip",
|
31 |
+
'Good': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Good.zip",
|
32 |
+
'Excellent': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Excellent.zip",
|
33 |
+
'Exceptional': "https://huggingface.co/datasets/rshrott/photos/resolve/main/Exceptional.zip"
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
_NAMES = ['Not Applicable', 'Very Poor', 'Poor', 'Fair', 'Good', 'Excellent', 'Exceptional']
|
38 |
+
|
39 |
+
class Renovations(datasets.GeneratorBasedBuilder):
|
40 |
+
"""Renovations house images dataset."""
|
41 |
+
|
42 |
+
def _info(self):
|
43 |
+
return datasets.DatasetInfo(
|
44 |
+
description=_DESCRIPTION,
|
45 |
+
features=datasets.Features(
|
46 |
+
{
|
47 |
+
"image_file_path": datasets.Value("string"),
|
48 |
+
"image": datasets.Image(),
|
49 |
+
"labels": datasets.features.ClassLabel(names=_NAMES),
|
50 |
+
}
|
51 |
+
),
|
52 |
+
supervised_keys=("image", "labels"),
|
53 |
+
homepage=_HOMEPAGE,
|
54 |
+
citation=_CITATION,
|
55 |
+
task_templates=[ImageClassification(image_column="image", label_column="labels")],
|
56 |
+
)
|
57 |
+
|
58 |
+
def _split_generators(self, dl_manager):
|
59 |
+
data_files = dl_manager.download_and_extract(_URLS)
|
60 |
+
return [
|
61 |
+
datasets.SplitGenerator(
|
62 |
+
name=datasets.Split.TRAIN,
|
63 |
+
gen_kwargs={
|
64 |
+
"data_files": data_files,
|
65 |
+
"split": "train",
|
66 |
+
},
|
67 |
+
),
|
68 |
+
datasets.SplitGenerator(
|
69 |
+
name=datasets.Split.VALIDATION,
|
70 |
+
gen_kwargs={
|
71 |
+
"data_files": data_files,
|
72 |
+
"split": "val",
|
73 |
+
},
|
74 |
+
),
|
75 |
+
datasets.SplitGenerator(
|
76 |
+
name=datasets.Split.TEST,
|
77 |
+
gen_kwargs={
|
78 |
+
"data_files": data_files,
|
79 |
+
"split": "test",
|
80 |
+
},
|
81 |
+
),
|
82 |
+
]
|
83 |
+
def _generate_examples(self, data_files, split):
|
84 |
+
all_files_and_labels = []
|
85 |
+
for label, path in data_files.items():
|
86 |
+
files = glob.glob(path + '/*.jpeg', recursive=True)
|
87 |
+
all_files_and_labels.extend((file, label) for file in files)
|
88 |
+
|
89 |
+
random.seed(43) # ensure reproducibility
|
90 |
+
random.shuffle(all_files_and_labels)
|
91 |
+
|
92 |
+
num_files = len(all_files_and_labels)
|
93 |
+
train_data = all_files_and_labels[:int(num_files*0.9)]
|
94 |
+
val_test_data = all_files_and_labels[int(num_files*0.9):] # This will be used for both val and test
|
95 |
+
|
96 |
+
if split == "train":
|
97 |
+
data_to_use = train_data
|
98 |
+
else: # "val" or "test" split
|
99 |
+
data_to_use = val_test_data
|
100 |
+
|
101 |
+
for idx, (file, label) in enumerate(data_to_use):
|
102 |
+
yield idx, {
|
103 |
+
"image_file_path": file,
|
104 |
+
"image": file,
|
105 |
+
"labels": label,
|
106 |
+
}
|
107 |
+
|
108 |
+
|
109 |
+
|