|
|
|
import cv2 |
|
import numpy as np |
|
import time |
|
from collections import Counter |
|
import pandas as pd |
|
|
|
def get_count_choices(a,b): |
|
total_count_choices = Counter() |
|
for i in range(a,b): |
|
training_data = np.load(f'training_data-{i}.npy', allow_pickle=True) |
|
choices = [str(data[1]) for data in training_data] |
|
|
|
total_count_choices.update(choices) |
|
count_choices_dict = dict(total_count_choices) |
|
print(count_choices_dict) |
|
|
|
def get_count_choices_per_file(a,b): |
|
df = pd.DataFrame(columns=['File','W','S','A','D','WA','WD','SA','SD','NK','NONE']) |
|
choice_to_column = {'[1, 0, 0, 0, 0, 0, 0, 0, 0]':'W', |
|
'[0, 1, 0, 0, 0, 0, 0, 0, 0]':'S', |
|
'[0, 0, 1, 0, 0, 0, 0, 0, 0]':'A', |
|
'[0, 0, 0, 1, 0, 0, 0, 0, 0]':'D', |
|
'[0, 0, 0, 0, 1, 0, 0, 0, 0]':'WA', |
|
'[0, 0, 0, 0, 0, 1, 0, 0, 0]':'WD', |
|
'[0, 0, 0, 0, 0, 0, 1, 0, 0]':'SA', |
|
'[0, 0, 0, 0, 0, 0, 0, 1, 0]':'SD', |
|
'[0, 0, 0, 0, 0, 0, 0, 0, 1]':'NK', |
|
'None':'NONE'} |
|
for i in range(a,b): |
|
training_data = np.load(f'training_data-{i}.npy', allow_pickle=True) |
|
choice = [str(data[1]) for data in training_data] |
|
count_choices = Counter(choice) |
|
count_choices_dict = dict(count_choices) |
|
df = df.append({'File': f'training_data-{i}.npy'}, ignore_index=True) |
|
for key in count_choices_dict: |
|
|
|
if key == None: |
|
df.loc[i-a,'NONE'] = count_choices_dict['NONE'] |
|
else: |
|
df.loc[i-a,choice_to_column[key]] = count_choices_dict[key] |
|
|
|
df.replace(np.nan, 0, inplace=True) |
|
df.to_csv('training_data_count_001-100.csv', index=False) |
|
|
|
def roi(img, vertices): |
|
|
|
mask = np.zeros_like(img) |
|
cv2.fillPoly(mask, vertices, color=[255,255,255]) |
|
masked = cv2.bitwise_and(img, mask) |
|
return masked |
|
|
|
def display_training_data(n): |
|
''' |
|
Displays training data |
|
''' |
|
training_data = np.load(f'training_data-{n}.npy', allow_pickle=True) |
|
mask = False |
|
|
|
if mask: |
|
|
|
vertices = np.array([[0,25],[0,270],[100,270],[100,200],[430,200],[430,270],[480,270],[480,25],], np.int32) |
|
|
|
for data in training_data: |
|
img = data[0] |
|
choice = data[1] |
|
|
|
if mask: |
|
img = roi(img, [vertices]) |
|
|
|
cv2.imshow('screen', img) |
|
print(choice) |
|
print(img.shape) |
|
|
|
if cv2.waitKey(25) & 0xFF == ord('q'): |
|
cv2.destroyAllWindows() |
|
break |
|
|
|
if __name__ == "__main__": |
|
start_time = time.time() |
|
|
|
get_count_choices_per_file(1,101) |
|
|
|
print(f'Elapsed time: {time.time() - start_time} seconds') |
|
|
|
|
|
''' |
|
Image Resolution : (270, 480, 3) |
|
'W': [1, 0, 0, 0, 0, 0, 0, 0, 0] : 353725 |
|
'S': [0, 1, 0, 0, 0, 0, 0, 0, 0] : 2243 |
|
'A': [0, 0, 1, 0, 0, 0, 0, 0, 0] : 14303 |
|
'D': [0, 0, 0, 1, 0, 0, 0, 0, 0] : 13114 |
|
'WA': [0, 0, 0, 0, 1, 0, 0, 0, 0] : 30877 |
|
'WD': [0, 0, 0, 0, 0, 1, 0, 0, 0] : 29837 |
|
'SA': [0, 0, 0, 0, 0, 0, 1, 0, 0] : 1952 |
|
'SD': [0, 0, 0, 0, 0, 0, 0, 1, 0] : 1451 |
|
'NK': [0, 0, 0, 0, 0, 0, 0, 0, 1] : 52256 |
|
NONE : 242 |
|
''' |
|
|