# training_data_stats.py import cv2 import numpy as np import time from collections import Counter import pandas as pd def get_count_choices(a,b): total_count_choices = Counter() for i in range(a,b): training_data = np.load(f'training_data-{i}.npy', allow_pickle=True) choices = [str(data[1]) for data in training_data] total_count_choices.update(choices) count_choices_dict = dict(total_count_choices) print(count_choices_dict) def get_count_choices_per_file(a,b): df = pd.DataFrame(columns=['File','W','S','A','D','WA','WD','SA','SD','NK','NONE']) choice_to_column = {'[1, 0, 0, 0, 0, 0, 0, 0, 0]':'W', '[0, 1, 0, 0, 0, 0, 0, 0, 0]':'S', '[0, 0, 1, 0, 0, 0, 0, 0, 0]':'A', '[0, 0, 0, 1, 0, 0, 0, 0, 0]':'D', '[0, 0, 0, 0, 1, 0, 0, 0, 0]':'WA', '[0, 0, 0, 0, 0, 1, 0, 0, 0]':'WD', '[0, 0, 0, 0, 0, 0, 1, 0, 0]':'SA', '[0, 0, 0, 0, 0, 0, 0, 1, 0]':'SD', '[0, 0, 0, 0, 0, 0, 0, 0, 1]':'NK', 'None':'NONE'} for i in range(a,b): training_data = np.load(f'training_data-{i}.npy', allow_pickle=True) choice = [str(data[1]) for data in training_data] count_choices = Counter(choice) count_choices_dict = dict(count_choices) df = df.append({'File': f'training_data-{i}.npy'}, ignore_index=True) for key in count_choices_dict: #print(key,':',count_choices_dict[key]) if key == None: df.loc[i-a,'NONE'] = count_choices_dict['NONE'] else: df.loc[i-a,choice_to_column[key]] = count_choices_dict[key] #print(df) df.replace(np.nan, 0, inplace=True) df.to_csv('training_data_count_001-100.csv', index=False) def roi(img, vertices): # Applies ROI Mask to Image mask = np.zeros_like(img) cv2.fillPoly(mask, vertices, color=[255,255,255]) masked = cv2.bitwise_and(img, mask) return masked def display_training_data(n): ''' Displays training data ''' training_data = np.load(f'training_data-{n}.npy', allow_pickle=True) mask = False #True if mask: # Masking Region of Interest vertices = np.array([[0,25],[0,270],[100,270],[100,200],[430,200],[430,270],[480,270],[480,25],], np.int32) for data in training_data: img = data[0] choice = data[1] if mask: img = roi(img, [vertices]) cv2.imshow('screen', img) print(choice) print(img.shape) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break if __name__ == "__main__": start_time = time.time() #get_count_choices(1,101) get_count_choices_per_file(1,101) #display_training_data(74) print(f'Elapsed time: {time.time() - start_time} seconds') # Output: ''' Image Resolution : (270, 480, 3) 'W': [1, 0, 0, 0, 0, 0, 0, 0, 0] : 353725 'S': [0, 1, 0, 0, 0, 0, 0, 0, 0] : 2243 'A': [0, 0, 1, 0, 0, 0, 0, 0, 0] : 14303 'D': [0, 0, 0, 1, 0, 0, 0, 0, 0] : 13114 'WA': [0, 0, 0, 0, 1, 0, 0, 0, 0] : 30877 'WD': [0, 0, 0, 0, 0, 1, 0, 0, 0] : 29837 'SA': [0, 0, 0, 0, 0, 0, 1, 0, 0] : 1952 'SD': [0, 0, 0, 0, 0, 0, 0, 1, 0] : 1451 'NK': [0, 0, 0, 0, 0, 0, 0, 0, 1] : 52256 NONE : 242 ''' # Elapsed time: 181.86165976524353 seconds