--- license: mit Programminglanguage: "go" version: "N/A" Date: "Codesearchnet(Jun 2020 - paper release date)" Contaminated: "Very Likely" Size: "Standard Tokenizer (TreeSitter)" --- ### Dataset is imported from CodeXGLUE and pre-processed using their script. # Where to find in Semeru: The dataset can be found at /nfs/semeru/semeru_datasets/code_xglue/code-to-text/go in Semeru # CodeXGLUE -- Code-To-Text ## Task Definition The task is to generate natural language comments for a code, and evaluted by [smoothed bleu-4](https://www.aclweb.org/anthology/C04-1072.pdf) score. ## Dataset The dataset we use comes from [CodeSearchNet](https://arxiv.org/pdf/1909.09436.pdf) and we filter the dataset as the following: - Remove examples that codes cannot be parsed into an abstract syntax tree. - Remove examples that #tokens of documents is < 3 or >256 - Remove examples that documents contain special tokens (e.g. or https:...) - Remove examples that documents are not English. ### Data Format After preprocessing dataset, you can obtain three .jsonl files, i.e. train.jsonl, valid.jsonl, test.jsonl For each file, each line in the uncompressed file represents one function. One row is illustrated below. - **repo:** the owner/repo - **path:** the full path to the original file - **func_name:** the function or method name - **original_string:** the raw string before tokenization or parsing - **language:** the programming language - **code/function:** the part of the `original_string` that is code - **code_tokens/function_tokens:** tokenized version of `code` - **docstring:** the top-level comment or docstring, if it exists in the original string - **docstring_tokens:** tokenized version of `docstring` ### Data Statistic | Programming Language | Training | Dev | Test | | :------------------- | :------: | :----: | :----: | | Go | 167,288 | 7,325 | 8,122 | ## Reference
@article{husain2019codesearchnet,
title={Codesearchnet challenge: Evaluating the state of semantic code search},
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
journal={arXiv preprint arXiv:1909.09436},
year={2019}
}