Datasets:
File size: 9,721 Bytes
ee87308 347d95c 7b7ddb1 347d95c ee87308 58ed553 25ef80c ee87308 25ef80c 11e2766 2749540 5449ec1 9fa3f93 d7ca2ff 4fb356e ae1fda4 2e2f2a3 0adf2ae c620690 dc1b027 825d795 e42ba96 720f6eb a44ea53 b05ecbc f94ddc7 91bde55 ee87308 58ed553 ee87308 25ef80c 11e2766 2749540 5449ec1 9fa3f93 d7ca2ff 4fb356e ae1fda4 2e2f2a3 0adf2ae c620690 dc1b027 825d795 e42ba96 720f6eb a44ea53 b05ecbc f94ddc7 91bde55 ee87308 347d95c eae582b 347d95c 11007ec 347d95c 35bcb4c 347d95c 35bcb4c 347d95c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
---
language:
- en
- multilingual
- bg
- cs
- da
- de
- el
- es
- et
- fi
- fr
- hu
- it
- lt
- lv
- nl
- pl
- pt
- ro
- sk
- sl
- sv
size_categories:
- 10M<n<100M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: Europarl
tags:
- sentence-transformers
dataset_info:
- config_name: all
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 8172178281
num_examples: 25139999
download_size: 4579962976
dataset_size: 8172178281
- config_name: en-bg
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 173373239
num_examples: 394924
download_size: 84319064
dataset_size: 173373239
- config_name: en-cs
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 194944083
num_examples: 629197
download_size: 113807900
dataset_size: 194944083
- config_name: en-da
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 609755766
num_examples: 1956003
download_size: 346113839
dataset_size: 609755766
- config_name: en-de
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 638831087
num_examples: 1923172
download_size: 362287640
dataset_size: 638831087
- config_name: en-el
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 603993271
num_examples: 1266026
download_size: 302398116
dataset_size: 603993271
- config_name: en-es
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 642692903
num_examples: 1966848
download_size: 363006014
dataset_size: 642692903
- config_name: en-et
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 188487174
num_examples: 632966
download_size: 109112606
dataset_size: 188487174
- config_name: en-fi
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 609754482
num_examples: 1926110
download_size: 349606843
dataset_size: 609754482
- config_name: en-fr
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 671916700
num_examples: 2013831
download_size: 377512826
dataset_size: 671916700
- config_name: en-hu
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 198723167
num_examples: 608054
download_size: 112723155
dataset_size: 198723167
- config_name: en-it
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 646393729
num_examples: 1914005
download_size: 367393699
dataset_size: 646393729
- config_name: en-lt
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 187477265
num_examples: 618874
download_size: 107886383
dataset_size: 187477265
- config_name: en-lv
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 191818664
num_examples: 621679
download_size: 109111047
dataset_size: 191818664
- config_name: en-nl
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 646988353
num_examples: 2003507
download_size: 365547143
dataset_size: 646988353
- config_name: en-pl
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 195689057
num_examples: 614338
download_size: 113077056
dataset_size: 195689057
- config_name: en-pt
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 646359361
num_examples: 1961806
download_size: 367310146
dataset_size: 646359361
- config_name: en-ro
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 126201211
num_examples: 386686
download_size: 70298080
dataset_size: 126201211
- config_name: en-sk
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 192655739
num_examples: 620798
download_size: 112487113
dataset_size: 192655739
- config_name: en-sl
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 178016131
num_examples: 604958
download_size: 104085859
dataset_size: 178016131
- config_name: en-sv
features:
- name: english
dtype: string
- name: non_english
dtype: string
splits:
- name: train
num_bytes: 580300171
num_examples: 1853337
download_size: 328406795
dataset_size: 580300171
configs:
- config_name: all
data_files:
- split: train
path: all/train-*
- config_name: en-bg
data_files:
- split: train
path: en-bg/train-*
- config_name: en-cs
data_files:
- split: train
path: en-cs/train-*
- config_name: en-da
data_files:
- split: train
path: en-da/train-*
- config_name: en-de
data_files:
- split: train
path: en-de/train-*
- config_name: en-el
data_files:
- split: train
path: en-el/train-*
- config_name: en-es
data_files:
- split: train
path: en-es/train-*
- config_name: en-et
data_files:
- split: train
path: en-et/train-*
- config_name: en-fi
data_files:
- split: train
path: en-fi/train-*
- config_name: en-fr
data_files:
- split: train
path: en-fr/train-*
- config_name: en-hu
data_files:
- split: train
path: en-hu/train-*
- config_name: en-it
data_files:
- split: train
path: en-it/train-*
- config_name: en-lt
data_files:
- split: train
path: en-lt/train-*
- config_name: en-lv
data_files:
- split: train
path: en-lv/train-*
- config_name: en-nl
data_files:
- split: train
path: en-nl/train-*
- config_name: en-pl
data_files:
- split: train
path: en-pl/train-*
- config_name: en-pt
data_files:
- split: train
path: en-pt/train-*
- config_name: en-ro
data_files:
- split: train
path: en-ro/train-*
- config_name: en-sk
data_files:
- split: train
path: en-sk/train-*
- config_name: en-sl
data_files:
- split: train
path: en-sl/train-*
- config_name: en-sv
data_files:
- split: train
path: en-sv/train-*
---
# Dataset Card for Parallel Sentences - Europarl
This dataset contains parallel sentences (i.e. English sentence + the same sentences in another language) for numerous other languages. Most of the sentences originate from the [OPUS website](https://opus.nlpl.eu/).
In particular, this dataset contains the [Europarl](https://opus.nlpl.eu/Europarl/corpus/version/Europarl) dataset.
## Related Datasets
The following datasets are also a part of the Parallel Sentences collection:
* [parallel-sentences-europarl](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl)
* [parallel-sentences-global-voices](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices)
* [parallel-sentences-muse](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse)
* [parallel-sentences-jw300](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-jw300)
* [parallel-sentences-news-commentary](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-news-commentary)
* [parallel-sentences-opensubtitles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles)
* [parallel-sentences-talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
* [parallel-sentences-tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba)
* [parallel-sentences-wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix)
* [parallel-sentences-wikititles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles)
* [parallel-sentences-ccmatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-ccmatrix)
These datasets can be used to train multilingual sentence embedding models. For more information, see [sbert.net - Multilingual Models](https://www.sbert.net/examples/training/multilingual/README.html).
## Dataset Subsets
### `all` subset
* Columns: "english", "non_english"
* Column types: `str`, `str`
* Examples:
```python
{
"english": "Membership of Parliament: see Minutes",
"non_english": "Състав на Парламента: вж. протоколи"
}
```
* Collection strategy: Combining all other subsets from this dataset.
* Deduplified: No
### `en-...` subsets
* Columns: "english", "non_english"
* Column types: `str`, `str`
* Examples:
```python
{
"english": "Resumption of the session",
"non_english": "Reanudación del período de sesiones"
}
```
* Collection strategy: Processing the raw data from [parallel-sentences](https://huggingface.co/datasets/sentence-transformers/parallel-sentences) and formatting it in Parquet, followed by deduplication.
* Deduplified: Yes |