File size: 9,721 Bytes
ee87308
347d95c
 
7b7ddb1
347d95c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee87308
58ed553
 
 
 
 
 
 
 
 
 
 
 
25ef80c
ee87308
 
 
 
 
 
 
 
 
 
 
25ef80c
 
 
 
 
 
 
 
 
 
 
 
11e2766
 
 
 
 
 
 
 
 
 
 
 
2749540
 
 
 
 
 
 
 
 
 
 
 
5449ec1
 
 
 
 
 
 
 
 
 
 
 
9fa3f93
 
 
 
 
 
 
 
 
 
 
 
d7ca2ff
 
 
 
 
 
 
 
 
 
 
 
4fb356e
 
 
 
 
 
 
 
 
 
 
 
ae1fda4
 
 
 
 
 
 
 
 
 
 
 
2e2f2a3
 
 
 
 
 
 
 
 
 
 
 
0adf2ae
 
 
 
 
 
 
 
 
 
 
 
c620690
 
 
 
 
 
 
 
 
 
 
 
dc1b027
 
 
 
 
 
 
 
 
 
 
 
825d795
 
 
 
 
 
 
 
 
 
 
 
e42ba96
 
 
 
 
 
 
 
 
 
 
 
720f6eb
 
 
 
 
 
 
 
 
 
 
 
a44ea53
 
 
 
 
 
 
 
 
 
 
 
b05ecbc
 
 
 
 
 
 
 
 
 
 
 
f94ddc7
 
 
 
 
 
 
 
 
 
 
 
91bde55
 
 
 
 
 
 
 
 
 
 
 
ee87308
58ed553
 
 
 
ee87308
 
 
 
25ef80c
 
 
 
11e2766
 
 
 
2749540
 
 
 
5449ec1
 
 
 
9fa3f93
 
 
 
d7ca2ff
 
 
 
4fb356e
 
 
 
ae1fda4
 
 
 
2e2f2a3
 
 
 
0adf2ae
 
 
 
c620690
 
 
 
dc1b027
 
 
 
825d795
 
 
 
e42ba96
 
 
 
720f6eb
 
 
 
a44ea53
 
 
 
b05ecbc
 
 
 
f94ddc7
 
 
 
91bde55
 
 
 
ee87308
347d95c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae582b
347d95c
 
11007ec
347d95c
 
 
 
 
 
 
 
 
 
 
35bcb4c
 
 
 
347d95c
 
 
 
 
 
 
 
 
 
35bcb4c
 
 
 
347d95c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
---
language:
- en
- multilingual
- bg
- cs
- da
- de
- el
- es
- et
- fi
- fr
- hu
- it
- lt
- lv
- nl
- pl
- pt
- ro
- sk
- sl
- sv
size_categories:
- 10M<n<100M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: Europarl
tags:
- sentence-transformers
dataset_info:
- config_name: all
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 8172178281
    num_examples: 25139999
  download_size: 4579962976
  dataset_size: 8172178281
- config_name: en-bg
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 173373239
    num_examples: 394924
  download_size: 84319064
  dataset_size: 173373239
- config_name: en-cs
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 194944083
    num_examples: 629197
  download_size: 113807900
  dataset_size: 194944083
- config_name: en-da
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 609755766
    num_examples: 1956003
  download_size: 346113839
  dataset_size: 609755766
- config_name: en-de
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 638831087
    num_examples: 1923172
  download_size: 362287640
  dataset_size: 638831087
- config_name: en-el
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 603993271
    num_examples: 1266026
  download_size: 302398116
  dataset_size: 603993271
- config_name: en-es
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 642692903
    num_examples: 1966848
  download_size: 363006014
  dataset_size: 642692903
- config_name: en-et
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 188487174
    num_examples: 632966
  download_size: 109112606
  dataset_size: 188487174
- config_name: en-fi
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 609754482
    num_examples: 1926110
  download_size: 349606843
  dataset_size: 609754482
- config_name: en-fr
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 671916700
    num_examples: 2013831
  download_size: 377512826
  dataset_size: 671916700
- config_name: en-hu
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 198723167
    num_examples: 608054
  download_size: 112723155
  dataset_size: 198723167
- config_name: en-it
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 646393729
    num_examples: 1914005
  download_size: 367393699
  dataset_size: 646393729
- config_name: en-lt
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 187477265
    num_examples: 618874
  download_size: 107886383
  dataset_size: 187477265
- config_name: en-lv
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 191818664
    num_examples: 621679
  download_size: 109111047
  dataset_size: 191818664
- config_name: en-nl
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 646988353
    num_examples: 2003507
  download_size: 365547143
  dataset_size: 646988353
- config_name: en-pl
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 195689057
    num_examples: 614338
  download_size: 113077056
  dataset_size: 195689057
- config_name: en-pt
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 646359361
    num_examples: 1961806
  download_size: 367310146
  dataset_size: 646359361
- config_name: en-ro
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 126201211
    num_examples: 386686
  download_size: 70298080
  dataset_size: 126201211
- config_name: en-sk
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 192655739
    num_examples: 620798
  download_size: 112487113
  dataset_size: 192655739
- config_name: en-sl
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 178016131
    num_examples: 604958
  download_size: 104085859
  dataset_size: 178016131
- config_name: en-sv
  features:
  - name: english
    dtype: string
  - name: non_english
    dtype: string
  splits:
  - name: train
    num_bytes: 580300171
    num_examples: 1853337
  download_size: 328406795
  dataset_size: 580300171
configs:
- config_name: all
  data_files:
  - split: train
    path: all/train-*
- config_name: en-bg
  data_files:
  - split: train
    path: en-bg/train-*
- config_name: en-cs
  data_files:
  - split: train
    path: en-cs/train-*
- config_name: en-da
  data_files:
  - split: train
    path: en-da/train-*
- config_name: en-de
  data_files:
  - split: train
    path: en-de/train-*
- config_name: en-el
  data_files:
  - split: train
    path: en-el/train-*
- config_name: en-es
  data_files:
  - split: train
    path: en-es/train-*
- config_name: en-et
  data_files:
  - split: train
    path: en-et/train-*
- config_name: en-fi
  data_files:
  - split: train
    path: en-fi/train-*
- config_name: en-fr
  data_files:
  - split: train
    path: en-fr/train-*
- config_name: en-hu
  data_files:
  - split: train
    path: en-hu/train-*
- config_name: en-it
  data_files:
  - split: train
    path: en-it/train-*
- config_name: en-lt
  data_files:
  - split: train
    path: en-lt/train-*
- config_name: en-lv
  data_files:
  - split: train
    path: en-lv/train-*
- config_name: en-nl
  data_files:
  - split: train
    path: en-nl/train-*
- config_name: en-pl
  data_files:
  - split: train
    path: en-pl/train-*
- config_name: en-pt
  data_files:
  - split: train
    path: en-pt/train-*
- config_name: en-ro
  data_files:
  - split: train
    path: en-ro/train-*
- config_name: en-sk
  data_files:
  - split: train
    path: en-sk/train-*
- config_name: en-sl
  data_files:
  - split: train
    path: en-sl/train-*
- config_name: en-sv
  data_files:
  - split: train
    path: en-sv/train-*
---

# Dataset Card for Parallel Sentences - Europarl

This dataset contains parallel sentences (i.e. English sentence + the same sentences in another language) for numerous other languages. Most of the sentences originate from the [OPUS website](https://opus.nlpl.eu/).
In particular, this dataset contains the [Europarl](https://opus.nlpl.eu/Europarl/corpus/version/Europarl) dataset.

## Related Datasets

The following datasets are also a part of the Parallel Sentences collection:
* [parallel-sentences-europarl](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-europarl)
* [parallel-sentences-global-voices](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-global-voices)
* [parallel-sentences-muse](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-muse)
* [parallel-sentences-jw300](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-jw300)
* [parallel-sentences-news-commentary](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-news-commentary)
* [parallel-sentences-opensubtitles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-opensubtitles)
* [parallel-sentences-talks](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
* [parallel-sentences-tatoeba](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-tatoeba)
* [parallel-sentences-wikimatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikimatrix)
* [parallel-sentences-wikititles](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-wikititles)
* [parallel-sentences-ccmatrix](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-ccmatrix)

These datasets can be used to train multilingual sentence embedding models. For more information, see [sbert.net - Multilingual Models](https://www.sbert.net/examples/training/multilingual/README.html).

## Dataset Subsets

### `all` subset

* Columns: "english", "non_english"
* Column types: `str`, `str`
* Examples:
    ```python
    {
      "english": "Membership of Parliament: see Minutes",
  	  "non_english": "Състав на Парламента: вж. протоколи"
    }
    ```
* Collection strategy: Combining all other subsets from this dataset.
* Deduplified: No

### `en-...` subsets

* Columns: "english", "non_english"
* Column types: `str`, `str`
* Examples:
    ```python
    {
      "english": "Resumption of the session",
      "non_english": "Reanudación del período de sesiones"
    }
    ```
* Collection strategy: Processing the raw data from [parallel-sentences](https://huggingface.co/datasets/sentence-transformers/parallel-sentences) and formatting it in Parquet, followed by deduplication.
* Deduplified: Yes