Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""AmbigQA: Answering Ambiguous Open-domain Questions""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{ min2020ambigqa, | |
title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions }, | |
author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke }, | |
booktitle={ EMNLP }, | |
year={2020} | |
} | |
""" | |
_DESCRIPTION = """\ | |
AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with | |
14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity. | |
We provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs. | |
""" | |
_HOMEPAGE = "https://nlp.cs.washington.edu/ambigqa/" | |
_LICENSE = "CC BY-SA 3.0" | |
_URL = "https://nlp.cs.washington.edu/ambigqa/data/" | |
_URLS = { | |
"light": _URL + "ambignq_light.zip", | |
"full": _URL + "ambignq.zip", | |
} | |
class AmbigQa(datasets.GeneratorBasedBuilder): | |
"""AmbigQA dataset""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="light", | |
version=VERSION, | |
description="AmbigNQ light version with only inputs and outputs", | |
), | |
datasets.BuilderConfig( | |
name="full", | |
version=VERSION, | |
description="AmbigNQ full version with all annotation metadata", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "full" | |
def _info(self): | |
features_dict = { | |
"id": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"annotations": datasets.features.Sequence( | |
{ | |
"type": datasets.Value("string"), # datasets.ClassLabel(names = ["singleAnswer","multipleQAs"]) | |
"answer": datasets.features.Sequence(datasets.Value("string")), | |
"qaPairs": datasets.features.Sequence( | |
{ | |
"question": datasets.Value("string"), | |
"answer": datasets.features.Sequence(datasets.Value("string")), | |
} | |
), | |
} | |
), | |
} | |
if self.config.name == "full": | |
detail_features = { | |
"viewed_doc_titles": datasets.features.Sequence(datasets.Value("string")), | |
"used_queries": datasets.features.Sequence( | |
{ | |
"query": datasets.Value("string"), | |
"results": datasets.features.Sequence( | |
{ | |
"title": datasets.Value("string"), | |
"snippet": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
"nq_answer": datasets.features.Sequence(datasets.Value("string")), | |
"nq_doc_title": datasets.Value("string"), | |
} | |
features_dict.update(detail_features) | |
features = datasets.Features(features_dict) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# download and extract URLs | |
urls_to_download = _URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
train_file_name = "train.json" if self.config.name == "full" else "train_light.json" | |
dev_file_name = "dev.json" if self.config.name == "full" else "dev_light.json" | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], train_file_name)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], dev_file_name)}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for example in data: | |
id_ = example["id"] | |
annotations = example["annotations"] | |
# Add this because we cannot have None values (all keys in the schema should be present) | |
for an in annotations: | |
if "qaPairs" not in an: | |
an["qaPairs"] = [] | |
if "answer" not in an: | |
an["answer"] = [] | |
yield id_, example | |