--- license: mit dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: claim_input dtype: string - name: claim_idx dtype: int64 - name: applicationNumber dtype: int64 - name: applicationTypeCategory dtype: string - name: relatedDocumentData dtype: float64 - name: patentClassification dtype: string - name: applicantCitedExaminerReferenceIndicatorCount dtype: float64 - name: filingDate dtype: string - name: publicationDate dtype: string - name: claimNumberArrayDocument dtype: float64 - name: abstract dtype: string - name: percentile dtype: float64 - name: claim_label_101 dtype: int64 - name: claim_label_102 dtype: int64 - name: claim_label_103 dtype: int64 - name: claim_label_112 dtype: int64 - name: relatedApplicationNumber dtype: string - name: max_score_x dtype: float64 - name: mean_score dtype: float64 - name: max_citations dtype: float64 - name: max_other_citations dtype: float64 - name: max_article_citations dtype: float64 - name: max_score_y dtype: float64 - name: component dtype: int64 - name: is_closed dtype: int64 - name: is_open dtype: int64 - name: is_half dtype: int64 - name: similarity_product dtype: float64 - name: transitional_phrase dtype: string - name: app_claim_id dtype: string - name: bert_scores_102 dtype: float64 - name: claim_label_combined dtype: int64 - name: bert_scores_101 dtype: float64 - name: combined_pred_scores dtype: float64 - name: claim_label_101_adjusted dtype: int64 - name: bert_score_102_app_feats_no_hinge dtype: float64 - name: bert_score_101_app_feats dtype: float64 - name: bert_score_102_app_feats_w_hinge dtype: float64 - name: bert_score_102_no_app_feats dtype: float64 - name: dataset dtype: string - name: lexical_diversity dtype: float64 - name: patent_class dtype: float64 - name: foreignPriority dtype: bool splits: - name: train num_bytes: 2152439051 num_examples: 1485693 - name: validation num_bytes: 402312853 num_examples: 278215 - name: test num_bytes: 267789008 num_examples: 185477 download_size: 501745093 dataset_size: 2822540912 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # PatentAP A dataset for the task of Patent Approval Prediction, which is proposed in the paper "Beyond Scaling: Predicting Patent Approval with Domain-specific Fine-grained Claim Dependency Graph" ## Dataset Details ### Dataset Description - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Dataset Structure [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Data Collection and Processing [More Information Needed] #### Who are the source data producers? [More Information Needed] ### Annotations [optional] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] #### Personal and Sensitive Information [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]