File size: 2,882 Bytes
231a52f
b1be79d
 
 
 
 
 
 
 
 
 
b6f20f7
5810bbc
b1be79d
 
 
 
 
a180b7d
b1be79d
015ac88
b1be79d
 
 
 
76a058b
7e75aa2
 
 
 
 
 
edfc230
 
 
 
68cfd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e75aa2
 
 
763cee4
82e30f2
 
 
3cad699
 
763cee4
3cad699
27d9d5d
7e75aa2
 
 
 
 
 
 
2e6f070
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
pretty_name: 'probability_words_nli'
paperwithcoode_id: probability-words-nli
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
- multiple-choice
- question-answering
task_ids:
- open-domain-qa
- multiple-choice-qa
- natural-language-inference
- multi-input-text-classification
tags:
- wep
- words of estimative probability
- probability
- logical reasoning
- soft logic
- nli
- natural-language-inference
- reasoning
- logic
train-eval-index:
  - config: usnli
    task: text-classification
    task_id: multi-class-classification
    splits:
      train_split: train
      eval_split: validation
    col_mapping:
      sentence1: context
      sentence2: hypothesis
      label: label
    metrics:
      - type: accuracy
        name: Accuracy
      - type: f1
        name: F1 binary
  - config: reasoning-1hop
    task: text-classification
    task_id: multi-class-classification
    splits:
      train_split: train
      eval_split: validation
    col_mapping:
      sentence1: context
      sentence2: hypothesis
      label: label
    metrics:
      - type: accuracy
        name: Accuracy
      - type: f1
        name: F1 binary
  - config: reasoning-2hop
    task: text-classification
    task_id: multi-class-classification
    splits:
      train_split: train
      eval_split: validation
    col_mapping:
      sentence1: context
      sentence2: hypothesis
      label: label
    metrics:
      - type: accuracy
        name: Accuracy
      - type: f1
        name: F1 binary
---

# Dataset accompanying the "Probing neural language models for understanding of words of estimative probability" article

This dataset tests the capabilities of language models to correctly capture the meaning of words denoting probabilities (WEP), e.g. words like "probably", "maybe", "surely", "impossible".

We used probabilitic soft logic to combine probabilistic statements expressed with WEP (WEP-Reasoning) and we also used the UNLI dataset (https://nlp.jhu.edu/unli/) to directly check whether models can detect the WEP matching human-annotated probabilities.
The dataset can be used as natural language inference data (context, premise, label) or multiple choice question answering (context,valid_hypothesis, invalid_hypothesis).
Code : https://colab.research.google.com/drive/10ILEWY2-J6Q1hT97cCB3eoHJwGSflKHp?usp=sharing

*Accepted at Starsem2023* (The 12th Joint Conference on Lexical and Computational Semantics). Temporary citation:

```bib
@article{sileo2022probing,
  title={Probing neural language models for understanding of words of estimative probability},
  author={Sileo, Damien and Moens, Marie-Francine},
  journal={arXiv preprint arXiv:2211.03358},
  year={2022}
}
```