# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import csv import os import textwrap import numpy as np import datasets import pandas as pd _CITATION = """\ @article{sileo2022probing, title={Probing neural language models for understanding of words of estimative probability}, author={Sileo, Damien and Moens, Marie-Francine}, journal={arXiv preprint arXiv:2211.03358}, year={2022} } """ _DESCRIPTION = """\ Probing neural language models for understanding of words of estimative probability """ URL = 'https://huggingface.co/datasets/sileod/probability_words_nli/resolve/main/' class WepProbeConfig(datasets.BuilderConfig): """BuilderConfig for WepProbe.""" def __init__( self, data_dir, label_classes=None, process_label=lambda x: x, **kwargs, ): super(WepProbeConfig, self).__init__(version=datasets.Version("1.0.5", ""), **kwargs) self.text_features = {k:k for k in ['context', 'hypothesis', 'valid_hypothesis', 'invalid_hypothesis','problog','probability_word','distractor','hypothesis_assertion']} self.label_column = 'label' self.label_classes = ['valid', 'invalid'] self.data_url = URL self.url=URL self.data_dir=data_dir self.citation = _CITATION self.process_label = process_label class WepProbe(datasets.GeneratorBasedBuilder): """Evaluation of word estimative of probability understanding""" BUILDER_CONFIGS = [ WepProbeConfig( name="reasoning_1hop", data_dir="reasoning_1hop"), WepProbeConfig( name="reasoning_2hop", data_dir="reasoning_2hop"), WepProbeConfig( name="usnli", data_dir="usnli"), ] def _info(self): features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()} if self.config.name=='usnli': del features['problog'] if self.config.label_classes: features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) else: features["label"] = datasets.Value("float32") features["idx"] = datasets.Value("int32") features["probability"] = datasets.Value("float32") return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation + "\n" + _CITATION, ) def _split_generators(self, dl_manager): data_dirs=[] for split in ['train','validation','test']: url=f'{URL}{self.config.data_dir}_{split}.csv' print(url) data_dirs+=[dl_manager.download(url)] print(data_dirs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": data_dirs[0], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": data_dirs[1], "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": data_dirs[2], "split": "test", }, ), ] def _generate_examples(self, data_file, split): df = pd.read_csv(data_file).drop(['rnd','split','_'],axis=1,errors='ignore') df['idx']=df.index for idx, example in df.iterrows(): yield idx, dict(example)