File size: 4,947 Bytes
b1b9255
 
18291af
 
 
 
 
 
 
 
 
3a8534f
 
b1b9255
18291af
 
 
 
 
 
 
80bc211
18291af
 
80bc211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18291af
80bc211
18291af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8534f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
license: mit
task_categories:
- token-classification
language:
- en
tags:
- biology
- medical
size_categories:
- 1M<n<10M
field:
  - data
---

# MACCROBAT-biomedical-ner



## Uses
```Python
import datasets
from datasets import load_dataset

features_data = datasets.Features(
    {
        "full_text": Value(dtype="string"),
        "ner_info": [
            {
                "text": Value(dtype="string"),
                "label": Value(dtype="string"),
                "start": Value(dtype="int64"),
                "end": Value(dtype="int64"),
            }
        ],
        "tokens": Sequence(Value(dtype="string")),
        "ner_labels": Sequence(
            ClassLabel(
                names=[
                    "O",
                    "B-ACTIVITY",
                    "I-ACTIVITY",
                    "I-ADMINISTRATION",
                    "B-ADMINISTRATION",
                    "B-AGE",
                    "I-AGE",
                    "I-AREA",
                    "B-AREA",
                    "B-BIOLOGICAL_ATTRIBUTE",
                    "I-BIOLOGICAL_ATTRIBUTE",
                    "I-BIOLOGICAL_STRUCTURE",
                    "B-BIOLOGICAL_STRUCTURE",
                    "B-CLINICAL_EVENT",
                    "I-CLINICAL_EVENT",
                    "B-COLOR",
                    "I-COLOR",
                    "I-COREFERENCE",
                    "B-COREFERENCE",
                    "B-DATE",
                    "I-DATE",
                    "I-DETAILED_DESCRIPTION",
                    "B-DETAILED_DESCRIPTION",
                    "I-DIAGNOSTIC_PROCEDURE",
                    "B-DIAGNOSTIC_PROCEDURE",
                    "I-DISEASE_DISORDER",
                    "B-DISEASE_DISORDER",
                    "B-DISTANCE",
                    "I-DISTANCE",
                    "B-DOSAGE",
                    "I-DOSAGE",
                    "I-DURATION",
                    "B-DURATION",
                    "I-FAMILY_HISTORY",
                    "B-FAMILY_HISTORY",
                    "B-FREQUENCY",
                    "I-FREQUENCY",
                    "I-HEIGHT",
                    "B-HEIGHT",
                    "B-HISTORY",
                    "I-HISTORY",
                    "I-LAB_VALUE",
                    "B-LAB_VALUE",
                    "I-MASS",
                    "B-MASS",
                    "I-MEDICATION",
                    "B-MEDICATION",
                    "I-NONBIOLOGICAL_LOCATION",
                    "B-NONBIOLOGICAL_LOCATION",
                    "I-OCCUPATION",
                    "B-OCCUPATION",
                    "B-OTHER_ENTITY",
                    "I-OTHER_ENTITY",
                    "B-OTHER_EVENT",
                    "I-OTHER_EVENT",
                    "I-OUTCOME",
                    "B-OUTCOME",
                    "I-PERSONAL_BACKGROUND",
                    "B-PERSONAL_BACKGROUND",
                    "B-QUALITATIVE_CONCEPT",
                    "I-QUALITATIVE_CONCEPT",
                    "I-QUANTITATIVE_CONCEPT",
                    "B-QUANTITATIVE_CONCEPT",
                    "B-SEVERITY",
                    "I-SEVERITY",
                    "B-SEX",
                    "I-SEX",
                    "B-SHAPE",
                    "I-SHAPE",
                    "B-SIGN_SYMPTOM",
                    "I-SIGN_SYMPTOM",
                    "B-SUBJECT",
                    "I-SUBJECT",
                    "B-TEXTURE",
                    "I-TEXTURE",
                    "B-THERAPEUTIC_PROCEDURE",
                    "I-THERAPEUTIC_PROCEDURE",
                    "I-TIME",
                    "B-TIME",
                    "B-VOLUME",
                    "I-VOLUME",
                    "I-WEIGHT",
                    "B-WEIGHT",
                ]
            )
        ),
    }
)
# load the data
medical_ner_data = load_dataset("singh-aditya/MACCROBAT-biomedical-ner", field="data", features=features_data)
print(medical_ner_data)
```

```
DatasetDict({
    train: Dataset({
        features: ['ner_labels', 'tokens', 'full_text', 'ner_info'],
        num_rows: 200
    })
})
```
<!-- Address questions around how the dataset is intended to be used. -->


## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

[More Information Needed]

## Dataset Creation



#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

[More Information Needed]


**BibTeX:**
```JSON
{
  article= Caufield2020,
  author = "J. Harry Caufield",
  title = "{MACCROBAT}",
  year = "2020",
  month = "1",
  url = "https://figshare.com/articles/dataset/MACCROBAT2018/9764942",
  doi = "10.6084/m9.figshare.9764942.v2"
}
```