File size: 5,748 Bytes
286b197
aaeeb0f
 
 
5326f98
 
 
aaeeb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dbdd64
09bf1c7
5dbdd64
 
 
5326f98
5dbdd64
3eb2985
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import json
import datasets
from datasets import Sequence, ClassLabel, Value

_TRAIN_FILE = "MACCROBAT2020-V2.json"
_NAME = "MACCROBAT_biomedical_ner"
_TRAIN_URL = f"https://huggingface.co/datasets/singh-aditya/{_NAME}/raw/main/{_TRAIN_FILE}"
class MACCROBAT_biomedical_ner(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description="",
            features=datasets.Features(
                {
                    "full_text": Value(dtype="string"),
                    "ner_info": [
                        {
                            "text": Value(dtype="string"),
                            "label": Value(dtype="string"),
                            "start": Value(dtype="int64"),
                            "end": Value(dtype="int64"),
                        }
                    ],
                    "tokens": Sequence(Value(dtype="string")),
                    "ner_labels": Sequence(
                        ClassLabel(
                            names=[
                                "O",
                                "B-ACTIVITY",
                                "I-ACTIVITY",
                                "I-ADMINISTRATION",
                                "B-ADMINISTRATION",
                                "B-AGE",
                                "I-AGE",
                                "I-AREA",
                                "B-AREA",
                                "B-BIOLOGICAL_ATTRIBUTE",
                                "I-BIOLOGICAL_ATTRIBUTE",
                                "I-BIOLOGICAL_STRUCTURE",
                                "B-BIOLOGICAL_STRUCTURE",
                                "B-CLINICAL_EVENT",
                                "I-CLINICAL_EVENT",
                                "B-COLOR",
                                "I-COLOR",
                                "I-COREFERENCE",
                                "B-COREFERENCE",
                                "B-DATE",
                                "I-DATE",
                                "I-DETAILED_DESCRIPTION",
                                "B-DETAILED_DESCRIPTION",
                                "I-DIAGNOSTIC_PROCEDURE",
                                "B-DIAGNOSTIC_PROCEDURE",
                                "I-DISEASE_DISORDER",
                                "B-DISEASE_DISORDER",
                                "B-DISTANCE",
                                "I-DISTANCE",
                                "B-DOSAGE",
                                "I-DOSAGE",
                                "I-DURATION",
                                "B-DURATION",
                                "I-FAMILY_HISTORY",
                                "B-FAMILY_HISTORY",
                                "B-FREQUENCY",
                                "I-FREQUENCY",
                                "I-HEIGHT",
                                "B-HEIGHT",
                                "B-HISTORY",
                                "I-HISTORY",
                                "I-LAB_VALUE",
                                "B-LAB_VALUE",
                                "I-MASS",
                                "B-MASS",
                                "I-MEDICATION",
                                "B-MEDICATION",
                                "I-NONBIOLOGICAL_LOCATION",
                                "B-NONBIOLOGICAL_LOCATION",
                                "I-OCCUPATION",
                                "B-OCCUPATION",
                                "B-OTHER_ENTITY",
                                "I-OTHER_ENTITY",
                                "B-OTHER_EVENT",
                                "I-OTHER_EVENT",
                                "I-OUTCOME",
                                "B-OUTCOME",
                                "I-PERSONAL_BACKGROUND",
                                "B-PERSONAL_BACKGROUND",
                                "B-QUALITATIVE_CONCEPT",
                                "I-QUALITATIVE_CONCEPT",
                                "I-QUANTITATIVE_CONCEPT",
                                "B-QUANTITATIVE_CONCEPT",
                                "B-SEVERITY",
                                "I-SEVERITY",
                                "B-SEX",
                                "I-SEX",
                                "B-SHAPE",
                                "I-SHAPE",
                                "B-SIGN_SYMPTOM",
                                "I-SIGN_SYMPTOM",
                                "B-SUBJECT",
                                "I-SUBJECT",
                                "B-TEXTURE",
                                "I-TEXTURE",
                                "B-THERAPEUTIC_PROCEDURE",
                                "I-THERAPEUTIC_PROCEDURE",
                                "I-TIME",
                                "B-TIME",
                                "B-VOLUME",
                                "I-VOLUME",
                                "I-WEIGHT",
                                "B-WEIGHT",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="",
            citation="",
        )

    def _split_generators(self, a):
        """Returns SplitGenerators."""

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": _TRAIN_URL}),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            datas = json.load(f)
            datas = datas["data"]
            guid = 0
            for data in datas:
                yield guid, data
                guid += 1