singh-aditya commited on
Commit
004ae91
1 Parent(s): ffa5c9b

Create create_dataset.py

Browse files

File to convert the dataset into JSON format so that it can be easily loaded in the Huggingface dataset.

Files changed (1) hide show
  1. create_dataset.py +162 -0
create_dataset.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import glob
4
+ from tqdm import tqdm
5
+ from io import StringIO
6
+ import pandas as pd
7
+
8
+ """
9
+ Steps to convert the data into JSON format.
10
+
11
+ Step-0: Use a python environment where pandas is installed.
12
+ Step-1: Download the source file from here: https://figshare.com/articles/dataset/MACCROBAT2018/9764942
13
+ Step-2: Unzip the file in put that into a folder (say `data` folder).
14
+ All unzipped files will be present here.
15
+ * data/MACCROBAT2020/*.txt
16
+ * data/MACCROBAT2020/*.ann
17
+ Step-3: Use the correct paths and run this file.
18
+ """
19
+
20
+ def remove_overlapped_ner_tags(ner_details: list[dict]):
21
+ """remove overlapping entities.
22
+
23
+ Args:
24
+ ner_details (List[dict]): a list of dictionary where each dictionary holds
25
+ the information of a entity.
26
+
27
+ NOTE: Priority is given to the entity that is labelled first after sorting all by start index in ascending order.
28
+ (i.e. it's end-index is less than other start of other overlapping entity.)
29
+
30
+ Returns:
31
+ list[dict]: updated list (removed item if something was overlapping)
32
+ """
33
+ # funtion to remove the overlapping NER-tags
34
+ new_ner_details = []
35
+
36
+ ner_details = sorted(ner_details, key=lambda x: x["start"])
37
+ for i, ner_detail in enumerate(ner_details):
38
+ if i == 0:
39
+ start = ner_detail["start"]
40
+ end = ner_detail["end"]
41
+ new_ner_details.append(ner_detail)
42
+ continue
43
+
44
+ current_start = ner_detail["start"]
45
+ current_end = ner_detail["end"]
46
+ if current_start < end:
47
+ continue
48
+
49
+ # update the start and end
50
+ start = current_start
51
+ end = current_end
52
+
53
+ new_ner_details.append(ner_detail)
54
+ return new_ner_details
55
+
56
+
57
+ def get_ner_details(ann_file):
58
+ with open(ann_file, "r") as f:
59
+ lines = f.readlines()
60
+ lines = [line.strip() for line in lines]
61
+ csv_data = "\n".join(lines)
62
+ csv_data = StringIO(csv_data)
63
+ df = pd.read_csv(csv_data, sep="\t", header=None)
64
+
65
+ df.columns = ["EntityID", "EntityDetails", "EntityText"]
66
+ # print(df.shape)
67
+
68
+ # remove rows where entity-id start other than `T`
69
+ df = df[df["EntityID"].apply(lambda x: str(x).strip().startswith("T"))]
70
+
71
+ # remove the rows which contains the ";" in the `EntityDetails`
72
+ df = df[df["EntityDetails"].apply(lambda x: ";" not in str(x))]
73
+
74
+ # drop where None is present
75
+ df.dropna(axis=1, inplace=True)
76
+
77
+ ner_info = []
78
+ for i, row in df.iterrows():
79
+ text = row["EntityText"]
80
+ details = row["EntityDetails"]
81
+ try:
82
+ ner_tag, start, end = details.split(" ")
83
+ except:
84
+ print(ann_file)
85
+ print(details)
86
+ start = int(float(start))
87
+ end = int(float(end))
88
+
89
+ ner_info.append({"text": text, "label": ner_tag.upper(), "start": start, "end": end})
90
+
91
+ # remove the overlapping entities
92
+ ner_info = remove_overlapped_ner_tags(ner_details=ner_info)
93
+ # print(ner_info)
94
+
95
+ return ner_info
96
+
97
+
98
+ def main(input_path: str = "data/MACCROBAT2020", output_path: str = "data/MACCROBAT2020-V2.json"):
99
+ txt_files = glob.glob(os.path.join(input_path, "*.txt"))
100
+ txt_files.sort()
101
+
102
+ ner_data = {"data": [], "verson": "MACCROBAT-V2 (https://figshare.com/articles/dataset/MACCROBAT2018/9764942)"}
103
+
104
+ for txt_file in tqdm(txt_files, desc="Extracting data..."):
105
+ with open(txt_file, "r") as f:
106
+ full_text = f.read()
107
+ a = txt_file.replace(".txt", ".ann")
108
+ ner_info = get_ner_details(a)
109
+ data = {"full_text": full_text, "ner_info": ner_info}
110
+ ner_data["data"].append(data)
111
+
112
+ ALL_NER_LABLES = set()
113
+ for details in tqdm(ner_data["data"], desc="Splitting into tokens..."):
114
+ text = details["full_text"]
115
+ ner_details = details["ner_info"]
116
+
117
+ tokens = []
118
+ ner_labels = []
119
+ start = 0
120
+ for ner_detail in ner_details:
121
+ ner_start = ner_detail["start"]
122
+ ner_end = ner_detail["end"]
123
+
124
+ before_ner_token = text[start:ner_start]
125
+ ner_token = text[ner_start:ner_end]
126
+
127
+ tokens.append(before_ner_token)
128
+ ner_labels.append("O")
129
+ tokens.append(ner_token)
130
+ ner_labels.append(f'B-{ner_detail["label"]}')
131
+ ALL_NER_LABLES.add(f'B-{ner_detail["label"]}')
132
+ ALL_NER_LABLES.add(f'I-{ner_detail["label"]}')
133
+ start = ner_end
134
+ if len(text) >= start:
135
+ ner_labels.append("O")
136
+ tokens.append(text[start:])
137
+ assert len(tokens) == len(ner_labels)
138
+
139
+ details["tokens"] = tokens
140
+ details["ner_labels"] = ner_labels
141
+
142
+ ner_data["all_ner_labels"] = sorted(list(ALL_NER_LABLES), key=lambda x: x.split("-")[-1])
143
+
144
+ label_2_index = {k: i for i, k in enumerate(ner_data["all_ner_labels"])}
145
+ index_2_label = {v: k for k, v in label_2_index.items()}
146
+ ner_data["label_2_index"] = label_2_index
147
+ ner_data["index_2_label"] = index_2_label
148
+
149
+ for details in tqdm(ner_data["data"], desc="label2index..."):
150
+ ner_labels = details["ner_labels"]
151
+ ner_labels_ids = []
152
+ for ner in ner_labels:
153
+ ner_labels_ids.append(label_2_index.get(ner))
154
+ details["ner_labels"] = ner_labels_ids
155
+ with open(output_path, "w") as f:
156
+ json.dump(ner_data, f, indent=4)
157
+
158
+
159
+ if __name__ == "__main__":
160
+ input_path: str = "data/MACCROBAT2020"
161
+ output_path: str = "data/MACCROBAT2020-V2.json"
162
+ main(input_path=input_path, output_path=output_path)