|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ESCI-product-dataset dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
@misc{reddy2022shopping, |
|
title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search}, |
|
author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and |
|
Arnab Biswas and Anlu Xing and Karthik Subbian}, |
|
year={2022}, |
|
eprint={2206.06588}, |
|
archivePrefix={arXiv} |
|
} |
|
|
|
|
|
} |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for ESCI-product-dataset recall" |
|
|
|
_DATASET_URLS = { |
|
'train': "https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset/resolve/main/train.jsonl.gz", |
|
'dev': "https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset/resolve/main/dev.jsonl.gz", |
|
|
|
} |
|
|
|
|
|
class ESCIproduct(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(version=VERSION, |
|
description="Wikipedia NQ train/dev/test datasets"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
'positive_passages': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), |
|
'color': datasets.Value('string'), 'locale': datasets.Value('string'), |
|
'brand': datasets.Value('string'),'contents': datasets.Value('string')} |
|
], |
|
'positive_passages_substitue': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), |
|
'color': datasets.Value('string'), 'locale': datasets.Value('string'), |
|
'brand': datasets.Value('string'),'contents': datasets.Value('string')} |
|
|
|
], |
|
'negative_passages': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), |
|
'color': datasets.Value('string'), 'locale': datasets.Value('string'), |
|
'brand': datasets.Value('string'),'contents': datasets.Value('string')} |
|
], |
|
'negative_passages_true': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), |
|
'color': datasets.Value('string'), 'locale': datasets.Value('string'), |
|
'brand': datasets.Value('string'),'contents': datasets.Value('string')} |
|
], |
|
'negative_passages_complement': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), |
|
'color': datasets.Value('string'), 'locale': datasets.Value('string'), |
|
'brand': datasets.Value('string'),'contents': datasets.Value('string')} |
|
], |
|
'query-inject-det': datasets.Value('string'), |
|
'query-stem': datasets.Value('string'), |
|
'query-synonym': datasets.Value('string'), |
|
'query-random-char-swap': datasets.Value('string'), |
|
'query-char-keyboard': datasets.Value('string'), |
|
'query-paraphrase': datasets.Value('string'), |
|
'query-reorder-words': datasets.Value('string'), |
|
'query-backtranslation': datasets.Value('string'), |
|
'query-char-delete': datasets.Value('string'), |
|
'query-lemmatize': datasets.Value('string') |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.data_files: |
|
downloaded_files = self.config.data_files |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], |
|
}, |
|
) for split in downloaded_files |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, files): |
|
"""Yields examples.""" |
|
for filepath in files: |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
if data.get('negative_passages') is None: |
|
data['negative_passages'] = [] |
|
if data.get('positive_passages') is None: |
|
data['positive_passages'] = [] |
|
if data.get('answers') is None: |
|
data['answers'] = [] |
|
yield data['query_id'], data |
|
|