Datasets:

Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 3,830 Bytes
6278ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aec05e6
 
 
 
 
6278ea5
6dd037e
6278ea5
98d0ff2
6278ea5
 
6dd037e
6278ea5
2c055fc
6278ea5
2c055fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6278ea5
 
 
2c055fc
6278ea5
 
 
 
 
 
676847f
2c055fc
6dd037e
98d0ff2
6278ea5
98d0ff2
6dd037e
98d0ff2
6278ea5
 
 
6dd037e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

class RumourEval2019Config(datasets.BuilderConfig):

    def __init__(self, **kwargs):
        super(RumourEval2019Config, self).__init__(**kwargs)

class RumourEval2019(datasets.GeneratorBasedBuilder):
    """RumourEval2019 Stance Detection Dataset formatted in triples of (source_text, reply_text, label)"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        RumourEval2019Config(name="RumourEval2019", version=VERSION, description="Stance Detection Dataset"),
    ]
    
    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "source_text": datasets.Value("string"),
                "reply_text": datasets.Value("string"),
                "label": datasets.features.ClassLabel(
                    names=[
                        "support",
                        "query",
                        "deny",
                        "comment"
                    ]
                )
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
        validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv")
        test_text = dl_manager.download_and_extract("rumoureval2019_test.csv")
        
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,      gen_kwargs={"filepath": train_text, "split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"}),
            datasets.SplitGenerator(name=datasets.Split.TEST,       gen_kwargs={"filepath": test_text, "split": "test"}),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter=",")
            guid = 0
            for instance in reader:
                instance["source_text"] = instance.pop("source_text")
                instance["reply_text"] = instance.pop("reply_text")
                instance["label"] = instance.pop("label")
                instance['id'] = str(guid)
                yield guid, instance
                guid += 1