Datasets:
File size: 38,671 Bytes
1af941b b60fb97 1af941b 4bcfb96 1af941b d9a8829 1af941b b60fb97 1af941b 4bcfb96 1af941b d9a8829 1af941b 59e8c8f 1af941b 59e8c8f 1af941b 59e8c8f 44af1c2 59e8c8f c3bd000 65722d1 1af941b b4ce3c0 1af941b 5e131e9 1af941b b4ce3c0 1af941b 5e131e9 1af941b b4ce3c0 1af941b 5e131e9 1af941b b4ce3c0 1af941b 5e131e9 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b 9b665e0 1af941b b4ce3c0 9b665e0 b4ce3c0 9b665e0 b4ce3c0 1af941b 9b665e0 1af941b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
---
language:
- pt
license: apache-2.0
size_categories:
- 10K<n<100K
task_categories:
- text-classification
- token-classification
- sentence-similarity
pretty_name: BidCorpus
dataset_info:
- config_name: bidCorpus_NER_keyphrase
features:
- name: tokens
sequence: string
- name: id
dtype: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-LOCAL
'2': I-LOCAL
'3': B-OBJETO
'4': I-OBJETO
splits:
- name: train
num_bytes: 3657983
num_examples: 1632
- name: test
num_bytes: 442382
num_examples: 204
- name: validation
num_bytes: 464585
num_examples: 204
download_size: 514441
dataset_size: 4564950
- config_name: bidCorpus_gold
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 10979027
num_examples: 1454
- name: test
num_bytes: 1499746
num_examples: 182
- name: validation
num_bytes: 1460916
num_examples: 182
download_size: 5647239
dataset_size: 13939689
- config_name: bidCorpus_object_similarity
features:
- name: objeto1
dtype: string
- name: nerObjeto1
dtype: string
- name: objeto2
dtype: string
- name: nerObjeto2
dtype: string
- name: humanScore
dtype: float64
- name: nerObjeto1_words
dtype: int64
- name: objeto1_words
dtype: int64
- name: percentual_words
dtype: float64
- name: nerObjeto2_words
dtype: int64
- name: objeto2_words
dtype: int64
- name: bertscore_ner
dtype: int64
- name: bertscore_objs
dtype: int64
splits:
- name: train
num_bytes: 2682850
num_examples: 1403
- name: test
num_bytes: 342301
num_examples: 176
- name: validation
num_bytes: 364743
num_examples: 175
download_size: 911048
dataset_size: 3389894
- config_name: bidCorpus_objects_correct_allowed
features:
- name: text
dtype: string
- name: corretude
dtype: int64
- name: permitido
dtype: int64
splits:
- name: train
num_bytes: 1737590
num_examples: 1089
- name: test
num_bytes: 278073
num_examples: 137
- name: validation
num_bytes: 326285
num_examples: 136
download_size: 1108156
dataset_size: 2341948
- config_name: bidCorpus_objects_type
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1024977
num_examples: 1709
- name: test
num_bytes: 114336
num_examples: 214
- name: validation
num_bytes: 135216
num_examples: 214
download_size: 484599
dataset_size: 1274529
- config_name: bidCorpus_objects_type_cased
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1450428.9711141677
num_examples: 2326
- name: test
num_bytes: 362919.0288858322
num_examples: 582
download_size: 770749
dataset_size: 1813348.0
- config_name: bidCorpus_qual_model
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 1567039880
num_examples: 177133
- name: test
num_bytes: 195995975
num_examples: 22142
- name: validation
num_bytes: 195098396
num_examples: 22142
download_size: 767641718
dataset_size: 1958134251
- config_name: bidCorpus_qual_weak_sup
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 1566000515
num_examples: 177133
- name: test
num_bytes: 195502355
num_examples: 22142
- name: validation
num_bytes: 196631381
num_examples: 22142
download_size: 767927678
dataset_size: 1958134251
- config_name: bidCorpus_raw
features:
- name: ID-LICITACAO
dtype: float64
- name: ID-ARQUIVO
dtype: float64
- name: OBJETO
dtype: string
- name: JULGAMENTO
dtype: string
- name: CONDICAO_PARTICIPACAO
dtype: string
- name: HABILITACAO
dtype: string
- name: CREDENCIAMENTO
dtype: string
splits:
- name: train
num_bytes: 4248532882
num_examples: 373650
download_size: 1787451169
dataset_size: 4248532882
- config_name: bidCorpus_sections_type
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 3141390
num_examples: 1224
- name: test
num_bytes: 387562
num_examples: 153
- name: validation
num_bytes: 477489
num_examples: 153
download_size: 2010213
dataset_size: 4006441
- config_name: bidCorpus_sections_type_cleaned
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 4006441
num_examples: 1530
download_size: 1873797
dataset_size: 4006441
- config_name: bidCorpus_synthetic
features:
- name: text
dtype: string
- name: certidao_protesto
dtype: int64
- name: certificado_boas_praticas
dtype: int64
- name: comprovante_localizacao
dtype: int64
- name: idoneidade_financeira
dtype: int64
- name: integralizado
dtype: int64
- name: licenca_ambiental
dtype: int64
- name: n_min_max_limitacao_atestados
dtype: int64
splits:
- name: train
num_bytes: 11104985
num_examples: 1454
- name: test
num_bytes: 1400000
num_examples: 182
- name: validation
num_bytes: 1438114
num_examples: 182
download_size: 5673825
dataset_size: 13943099
configs:
- config_name: bidCorpus_NER_keyphrase
data_files:
- split: train
path: bidCorpus_NER_keyphrase/train-*
- split: test
path: bidCorpus_NER_keyphrase/test-*
- split: validation
path: bidCorpus_NER_keyphrase/validation-*
- config_name: bidCorpus_gold
data_files:
- split: train
path: bidCorpus_gold/train-*
- split: test
path: bidCorpus_gold/test-*
- split: validation
path: bidCorpus_gold/validation-*
- config_name: bidCorpus_object_similarity
data_files:
- split: train
path: bidCorpus_object_similarity/train-*
- split: test
path: bidCorpus_object_similarity/test-*
- split: validation
path: bidCorpus_object_similarity/validation-*
- config_name: bidCorpus_objects_correct_allowed
data_files:
- split: train
path: bidCorpus_objects_correct_allowed/train-*
- split: test
path: bidCorpus_objects_correct_allowed/test-*
- split: validation
path: bidCorpus_objects_correct_allowed/validation-*
- config_name: bidCorpus_objects_type
data_files:
- split: train
path: bidCorpus_objects_type/train-*
- split: test
path: bidCorpus_objects_type/test-*
- split: validation
path: bidCorpus_objects_type/validation-*
- config_name: bidCorpus_objects_type_cased
data_files:
- split: train
path: bidCorpus_objects_type_cased/train-*
- split: test
path: bidCorpus_objects_type_cased/test-*
- config_name: bidCorpus_qual_model
data_files:
- split: train
path: bidCorpus_qual_model/train-*
- split: test
path: bidCorpus_qual_model/test-*
- split: validation
path: bidCorpus_qual_model/validation-*
- config_name: bidCorpus_qual_weak_sup
data_files:
- split: train
path: bidCorpus_qual_weak_sup/train-*
- split: test
path: bidCorpus_qual_weak_sup/test-*
- split: validation
path: bidCorpus_qual_weak_sup/validation-*
- config_name: bidCorpus_raw
data_files:
- split: train
path: bidCorpus_raw/train-*
- config_name: bidCorpus_sections_type
data_files:
- split: train
path: bidCorpus_sections_type/train-*
- split: test
path: bidCorpus_sections_type/test-*
- split: validation
path: bidCorpus_sections_type/validation-*
- config_name: bidCorpus_sections_type_cleaned
data_files:
- split: train
path: bidCorpus_sections_type_cleaned/train-*
- config_name: bidCorpus_synthetic
data_files:
- split: train
path: bidCorpus_synthetic/train-*
- split: test
path: bidCorpus_synthetic/test-*
- split: validation
path: bidCorpus_synthetic/validation-*
tags:
- legal
---
# Dataset Card for "BidCorpus"
## Table of Contents
- [Dataset Description](#dataset-description)
- [How to load the datasets](#how-to-load-the-datasets)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### How to load the datasets
To load one of the datasets, simply provide the tcepi/bidCorpus argument as the first parameter, followed by the name of the desired dataset, such as bid_corpus_raw.
```python
from datasets import load_dataset
dataset = load_dataset("tcepi/bidCorpus", "bidCorpus_raw")
```
The csv format version of the datasets is available in the ```\bidCorpus_csvs``` folder.
### Dataset Summary
The BidCorpus dataset consists of various configurations related to bidding documents. It includes datasets for Named Entity Recognition, Multi-label Classification, Sentence Similarity, and more. Each configuration focuses on different aspects of bidding documents and is designed for specific tasks.
### Supported Tasks and Leaderboards
The supported tasks are the following:
<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td></tr>
<tr><td>bidCorpus_NER_keyphrase</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Named Entity Recognition</td><td>4</td></tr>
<tr><td>bidCorpus_gold</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_object_similarity</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Sentence Similarity</td><td>2</td></tr>
<tr><td>bidCorpus_objects_correct_allowed</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Multi-class Classification</td><td>4</td></tr>
<tr><td>bidCorpus_objects_type</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Multi-class Classification</td><td>4</td></tr>
<tr><td>bidCorpus_qual_model</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_qual_weak_sup</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_synthetic</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_sections_type</td><td><a href="">-</a></td><td>Seções de Editais de Licitação</td><td>Multi-label Classification</td><td>5</td></tr>
<tr><td>bidCorpus_raw</td><td><a href="">-</a></td><td>Seções de Editais de Licitação</td><td>n/a</td><td>n/a</td></tr>
</table>
#### bidCorpus_NER_keyphrase
This dataset is composed of texts from the "object" section of bidding notices. The dataset is labeled with two types of named entities, following the IOB (Inside-Outside-Beginning) format.
1. **Object of the bid**: Refers to the item to be acquired or the service to be contracted. The tags can be "B-OBJECT" (beginning of the entity) and "I-OBJECT" (continuation of the entity).
2. **Municipality of the managing unit**: Indicates the location of the entity responsible for the bid. The tags can be "B-MUNICIPALITY" (beginning of the entity) and "I-MUNICIPALITY" (continuation of the entity).
This dataset is intended for training named entity recognition (NER) models, which are used to automatically identify and classify these entities within the texts. The labeled structure of the dataset facilitates the task of teaching models to distinguish between different types of relevant information in the bidding notices. The dataset follows the IOB format for named entity recognition, with entities labeled as either part of the object of the bid or the municipality of the managing unit.
#### bidCorpus_gold
This dataset consists of texts from the qualification section of bidding notices. Annotated by experts in public procurement, the dataset is multilabel and contains seven labels that indicate possible signs of fraud in public contracts.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
This dataset is used for training machine learning models to detect signs of fraud in public procurement processes. The multilabel structure allows the models to learn to identify multiple suspicious characteristics simultaneously, providing a valuable tool for the analysis and prevention of fraud in public contracts.
#### bidCorpus_object_similarity
This dataset is designed to assess text similarity in the "object" section of bidding notices by comparing pairs of distinct notices. Annotated by experts in public procurement, each entry consists of a pair of "object" sections labeled with:
- **1**: The sections are similar.
- **0**: The sections are not similar.
The dataset supports tasks such as document comparison, clustering, and retrieval. It provides a valuable resource for training and evaluating models on how effectively they can determine similarities between bidding notices.
The pairs are annotated with expert labels to ensure high-quality data, making this dataset ideal for developing and testing algorithms for text similarity analysis. It helps improve the efficiency and accuracy of managing and analyzing bidding documents.
#### bidCorpus_objects_correct_allowed
This dataset focuses on two classifications related to the "object" section of bidding notices:
1. **Object Classification**: Determines whether a section is the "object" section of a bidding notice.
2. **Permissivity Classification**: Assesses whether the object requires permissivity, meaning whether the contract involves areas such as the purchase of medications, cleaning services, or fuels, which might necessitate a certificate of location and an environmental license from regulatory institutions overseeing these activities.
The dataset provides labels for these classifications to support the analysis of compliance and requirements in bidding documents.
#### bidCorpus_objects_type
This dataset focuses on classifying the type of procurement found in the "object" section of bidding notices. Specifically, it categorizes the type of product or service being bid on into one of the following categories:
- **Consumables**: Items that are used up or consumed during use, such as office supplies or food products.
- **Permanent Assets**: Items with a longer lifespan that are intended for repeated use, such as machinery or equipment.
- **Services**: Non-tangible activities provided to fulfill a need, such as consulting or maintenance services.
- **Engineering Works**: Projects related to construction, infrastructure, or other engineering tasks.
The dataset provides labels for these classifications to assist in the analysis and organization of bidding documents, facilitating a better understanding of procurement types and aiding in the efficient management of bidding processes.
#### bidCorpus_qual_model
This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
Unlike the expert-annotated previous dataset, this dataset has been annotated by a model trained on that data. This automated process ensures consistency and scalability while utilizing insights from the original expert annotations.
The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. The automated annotation enhances research and development in fraud detection, aiming to improve the accuracy and efficiency of identifying suspicious activities in bidding notices. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.
#### bidCorpus_qual_weak_sup
This dataset consists of texts from the qualification section of bidding notices and is annotated using weak supervision techniques, specifically through regular expressions. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
Unlike the previous expert-annotated dataset, this dataset has been annotated using weak supervision techniques, specifically regular expressions. This approach provides a scalable method for labeling data by applying patterns to identify potential fraud indicators, although it may lack the precision of expert annotations.
The dataset is designed for training and evaluating machine learning models to detect fraud in public procurement. The use of weak supervision through regular expressions facilitates the creation of large annotated datasets, supporting research and development in fraud detection. The multilabel structure allows models to classify multiple fraud indicators simultaneously, improving the efficiency of identifying and preventing fraudulent practices in public contracts.
#### bidCorpus_synthetic
This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes. This dataset underwent modifications to its keywords by incorporating synonyms to evaluate the model's accuracy in handling words different from those it was previously accustomed to.
1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.
The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.
#### bidCorpus_sections_type
This dataset classifies different types of sections in bidding notices. The sections are categorized into the following labels:
- **Habilitação**: Qualification section, where eligibility criteria and requirements are outlined.
- **Julgamento**: Evaluation section, detailing the criteria and process for assessing bids.
- **Objeto**: Object section, specifying the item or service being procured.
- **Outros**: Other sections that do not fall into the categories above.
- **Credenciamento**: Accreditation section, where the process for validating and registering vendors is described.
The dataset provides a systematic approach to categorize the various sections found in bidding notices, facilitating better organization and analysis of procurement documents.
#### bidCorpus_raw
This dataset consists of raw, unlabeled texts from sections of bidding notices. The sections included are:
- **Objeto**: Describes the item or service being procured.
- **Julgamento**: Outlines the criteria and process for evaluating bids.
- **Credenciamento**: Details the procedures for vendor registration and validation.
- **Condições de Participação**: Specifies the conditions required for participation in the bidding process.
- **Habilitação**: Provides information on the qualifications and eligibility criteria for bidders.
This dataset offers a collection of unprocessed text from various sections of bidding notices, suitable for tasks such as text analysis, feature extraction, and the development of classification models.
### Languages
We considered only datasets in Portuguese.
## Dataset Structure
### Data Instances
#### bidCorpus_NER_keyphrase
An example of 'train' looks as follows.
```json
{
"tokens": ["constitui", "objeto", "do", "presente", "edital", "a", "contratacao", "de", "empresa", "de", "engenharia", "para", "execucao", "da", "obra", "e", "/", "ou", "servico", "de", "elaboracao", "de", "plano", "diretor", "de", "arborizacao", "urbana", "de", "teresina", "-", "pi", ".", "a", "forma", "pela", "qual", "deverao", "ser", "executados", "os", "servicos", "licitados", "e", "as", "diversas", "obrigacoes", "dos", "licitantes", "e", "do", "adjudicatario", "do", "objeto", "desta", "licitacao", "estao", "registradas", "neste", "edital", ",", "no", "termo", "de", "referencia", "e", "minuta", "do", "contrato", "e", "demais", "anexos", "que", ",", "igualmente", ",", "integram", "as", "de", "informacoes", "sobre", "a", "licitacao", "."]
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
```
#### bidCorpus_gold
An example of 'train' looks as follows.
```json
{
"text": ["para se habilitarem ao presente convite, os interessados deverao apresentar os documentos abaixo relacionados, nos termos dos artigos 27 a 31 e 32, paragrafo 1, da lei numero 666/93, atraves de seus representantes, no local, data e horario indicados no preambulo deste edital, em envelope inteiramente fechado, contendo em sua parte externa, alem da razao social e endereco da licitante, os seguintes dizeres: prefeitura municipal de angical ..."]
"labels": "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_object_similarity
An example of 'train' looks as follows.
```json
{
"nerObjeto1": ["execucao dos servicos de reforma e ampliacao da escola reunida francisco"],
"nerObjeto2": ["execucao dos servicos de reforma da escola municipal"],
"humanScore": 1.0,
"bertscore_ner": 1
}
```
#### bidCorpus_objects_correct_allowed
An example of 'train' looks as follows.
```json
{
"text": ["A presente licitação tem por objeto, selecionar empresas do ramo pertinente, Fornecimento de Lanches, marmitas para atender necessidade das Secretarias e Programa do Município com entrega parcelada ..."],
"corretude": 1,
"permitido": 0
}
```
#### bidCorpus_objects_type
An example of 'train' looks as follows.
```json
{
"text": ["destina - se a presente licitacao a prestacao de servicos de pavimentacao em paralelepipedo, conforme especificacoes e quantidades constantes do anexo <numero> sao ..."],
"label": 0
}
```
#### bidCorpus_qual_model
An example of 'train' looks as follows.
```json
{
"text": ["regras gerais. 1 os documentos de habilitacao deverao ser enviados concomitantemente com o envio da proposta, conforme item 9 deste edital 2 havendo a necessidade de envio de documentos de habilitacao complementares ..."],
"certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_qual_weak_sup
An example of 'train' looks as follows.
```json
{
"text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
"certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_synthetic
An example of 'train' looks as follows.
```json
{
"text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
"certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```
#### bidCorpus_sections_type
An example of 'train' looks as follows.
```json
{
"text": ["IMPUGNAÇÃO DO ATO CONVOCATÓRIO 5.1 No prazo de até 03 (três) dias úteis, antes da data fixada para abertura da Sessão Pública, qualquer pessoa poderá solicitar esclarecimentos e providências sobre o ato convocatório deste pregão ..."],
"label": "outros"
}
```
#### bidCorpus_raw
An example of 'train' looks as follows.
```json
{
"ID-LICITACAO": 910809.0,
"ID-ARQUIVO": 745202022.0,
"OBJETO": "Artigo 20 Definição do Objeto\n1 – O objeto da licitação deve ser definido pela unidade ...",
"JULGAMENTO":"Artigo 46 Disposições gerais 1 – As licitações podem adotar os modos de disputa aberto, fechado ou combinado, que deve ...",
"CONDICAO_PARTICIPACAO": "5.1 - A participação no certame se dará por meio da digitação da senha pessoal e intransferível do representante ...",
"HABILITACAO": "6.1 - Os proponentes encaminharão, exclusivamente por meio do sistema eletrônico, os documentos de habilitação exigidos no edital, proposta ...",
"CREDENCIAMENTO": "4.1 - O credenciamento é o nível básico do registro cadastral no SICAF, que permite a participação dos interessados na modalidade licitatória ..."
}
```
### Data Fields
#### bidCorpus_NER_keyphrase
- `tokens`: a list of `string` features (list of tokens in a text).
- `ner_tags`: a list of classification labels (a list of named entity recognition tags).
<details>
<summary>List of NER tags</summary>
`O`, `B-LOCAL`, `I-LOCAL`, `B-OBJETO`, `I-OBJETO`
</details>
#### bidCorpus_gold
- `text`: a `string` feature (string of factual paragraphs from the case description).
- `certidao_protesto`: a 'int64` feature (indicates the presence or absence of a protest certificate).
- `certificado_boas_praticas`: a 'int64` feature (indicates the presence or absence of a good practices certificate).
- `comprovante_localizacao`: a 'int64` feature (indicates the presence or absence of a location proof).
- `idoneidade_financeira`: a 'int64` feature (indicates the presence or absence of financial soundness).
- `integralizado`: a 'int64` feature (indicates the presence or absence of full completion).
- `licenca_ambiental`: a 'int64` feature (indicates the presence or absence of an environmental license).
- `n_min_max_limitacao_atestados`: a 'int64` feature (indicates the presence or absence of limitation of certificates).
#### bidCorpus_object_similarity
- `objeto1`: a `string` feature (first object for comparison).
- `nerObjeto1`: a `string` feature (NER tags for the first object).
- `objeto2`: a `string` feature (second object for comparison).
- `nerObjeto2`: a `string` feature (NER tags for the second object).
- `humanScore`: a `float64` feature (human-provided similarity score).
- `nerObjeto1_words`: a `int64` feature (number of words in the first object with NER tags).
- `objeto1_words`: a `int64` feature (number of words in the first object).
- `percentual_words`: a `float64` feature (percentage of similar words).
- `nerObjeto2_words`: a 'int64` feature (number of words in the second object with NER tags).
- `objeto2_words`: a `int64` feature (number of words in the second object).
- `bertscore_ner`: a 'int64` feature (BERT score for NER).
- `bertscore_objs`: a 'int64` feature (BERT score for objects).
#### bidCorpus_objects_correct_allowed
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `corretude`: a list of `int64` features (correctness score).
- `permitido`: a list of `int64` features (allowed score).
#### bidCorpus_objects_type
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `label`: a list of `int64` features (classification labels for object types).
#### bidCorpus_qual_model
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).
#### bidCorpus_qual_weak_sup
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).
#### bidCorpus_synthetic
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).
#### bidCorpus_sections_type
- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `label`: a list of `string` features (classification labels for sections types).
#### bidCorpus_raw
- `ID-LICITACAO`: a list of `float64` features (auction ID).
- `ID-ARQUIVO`: a list of `float64` features (file ID).
- `OBJETO`: a list of `string` features (object of the auction).
- `JULGAMENTO`: a list of `string` features (judgment details).
- `CONDICAO_PARTICIPACAO`: a list of `string` features (participation conditions).
- `HABILITACAO`: a list of `string` features (qualification details).
- `CREDENCIAMENTO`: a list of `string` features (accreditation details).
### Data Splits
<table>
<tr>
<td>Dataset</td>
<td>Training</td>
<td>Development</td>
<td>Test</td>
<td>Total</td>
</tr>
<tr>
<td>bidCorpus_NER_keyphrase</td>
<td>1.632</td>
<td>204</td>
<td>204</td>
<td>2.040</td>
</tr>
<tr>
<td>bidCorpus_gold</td>
<td>1.454</td>
<td>182</td>
<td>182</td>
<td>1.818</td>
</tr>
<tr>
<td>bidCorpus_object_similarity</td>
<td>1.403</td>
<td>175</td>
<td>176</td>
<td>1.754</td>
</tr>
<tr>
<td>bidCorpus_objects_correct_allowed</td>
<td>1.089</td>
<td>136</td>
<td>137</td>
<td>1.362</td>
</tr>
<tr>
<td>bidCorpus_objects_type</td>
<td>1.709</td>
<td>214</td>
<td>214</td>
<td>2.137</td>
</tr>
<tr>
<td>bidCorpus_qual_model</td>
<td>177.133</td>
<td>22.142</td>
<td>22.142</td>
<td>221.417</td>
</tr>
<tr>
<td>bidCorpus_qual_weak_sup</td>
<td>177.133</td>
<td>22.142</td>
<td>22.142</td>
<td>221.417</td>
</tr>
<tr>
<td>bidCorpus_synthetic</td>
<td>1.454</td>
<td>182</td>
<td>182</td>
<td>1.818</td>
</tr>
<tr>
<td>bidCorpus_sections_type</td>
<td>1.224</td>
<td>153</td>
<td>153</td>
<td>1.530</td>
</tr>
</table>
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Curators
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
### Contributions
|