Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Portuguese
Tags:
legal
DOI:
Libraries:
Datasets
Dask
License:
File size: 38,671 Bytes
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60fb97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bcfb96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a8829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60fb97
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bcfb96
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
d9a8829
 
 
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
59e8c8f
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e8c8f
 
1af941b
 
 
 
 
 
 
 
59e8c8f
 
 
 
 
44af1c2
59e8c8f
 
c3bd000
65722d1
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ce3c0
1af941b
5e131e9
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ce3c0
 
 
 
 
 
 
 
 
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
5e131e9
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ce3c0
 
 
 
 
 
 
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
5e131e9
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ce3c0
 
 
 
 
 
 
 
 
 
 
1af941b
 
 
 
 
5e131e9
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b665e0
1af941b
 
9b665e0
1af941b
 
 
9b665e0
1af941b
 
9b665e0
1af941b
 
 
9b665e0
1af941b
 
9b665e0
1af941b
 
 
9b665e0
1af941b
 
9b665e0
1af941b
 
 
9b665e0
1af941b
 
9b665e0
1af941b
 
 
9b665e0
 
 
 
1af941b
 
 
9b665e0
 
 
 
1af941b
b4ce3c0
 
9b665e0
b4ce3c0
 
9b665e0
b4ce3c0
1af941b
 
9b665e0
 
 
 
1af941b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
---
language:
- pt
license: apache-2.0
size_categories:
- 10K<n<100K
task_categories:
- text-classification
- token-classification
- sentence-similarity
pretty_name: BidCorpus
dataset_info:
- config_name: bidCorpus_NER_keyphrase
  features:
  - name: tokens
    sequence: string
  - name: id
    dtype: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-LOCAL
          '2': I-LOCAL
          '3': B-OBJETO
          '4': I-OBJETO
  splits:
  - name: train
    num_bytes: 3657983
    num_examples: 1632
  - name: test
    num_bytes: 442382
    num_examples: 204
  - name: validation
    num_bytes: 464585
    num_examples: 204
  download_size: 514441
  dataset_size: 4564950
- config_name: bidCorpus_gold
  features:
  - name: text
    dtype: string
  - name: certidao_protesto
    dtype: int64
  - name: certificado_boas_praticas
    dtype: int64
  - name: comprovante_localizacao
    dtype: int64
  - name: idoneidade_financeira
    dtype: int64
  - name: integralizado
    dtype: int64
  - name: licenca_ambiental
    dtype: int64
  - name: n_min_max_limitacao_atestados
    dtype: int64
  splits:
  - name: train
    num_bytes: 10979027
    num_examples: 1454
  - name: test
    num_bytes: 1499746
    num_examples: 182
  - name: validation
    num_bytes: 1460916
    num_examples: 182
  download_size: 5647239
  dataset_size: 13939689
- config_name: bidCorpus_object_similarity
  features:
  - name: objeto1
    dtype: string
  - name: nerObjeto1
    dtype: string
  - name: objeto2
    dtype: string
  - name: nerObjeto2
    dtype: string
  - name: humanScore
    dtype: float64
  - name: nerObjeto1_words
    dtype: int64
  - name: objeto1_words
    dtype: int64
  - name: percentual_words
    dtype: float64
  - name: nerObjeto2_words
    dtype: int64
  - name: objeto2_words
    dtype: int64
  - name: bertscore_ner
    dtype: int64
  - name: bertscore_objs
    dtype: int64
  splits:
  - name: train
    num_bytes: 2682850
    num_examples: 1403
  - name: test
    num_bytes: 342301
    num_examples: 176
  - name: validation
    num_bytes: 364743
    num_examples: 175
  download_size: 911048
  dataset_size: 3389894
- config_name: bidCorpus_objects_correct_allowed
  features:
  - name: text
    dtype: string
  - name: corretude
    dtype: int64
  - name: permitido
    dtype: int64
  splits:
  - name: train
    num_bytes: 1737590
    num_examples: 1089
  - name: test
    num_bytes: 278073
    num_examples: 137
  - name: validation
    num_bytes: 326285
    num_examples: 136
  download_size: 1108156
  dataset_size: 2341948
- config_name: bidCorpus_objects_type
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 1024977
    num_examples: 1709
  - name: test
    num_bytes: 114336
    num_examples: 214
  - name: validation
    num_bytes: 135216
    num_examples: 214
  download_size: 484599
  dataset_size: 1274529
- config_name: bidCorpus_objects_type_cased
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 1450428.9711141677
    num_examples: 2326
  - name: test
    num_bytes: 362919.0288858322
    num_examples: 582
  download_size: 770749
  dataset_size: 1813348.0
- config_name: bidCorpus_qual_model
  features:
  - name: text
    dtype: string
  - name: certidao_protesto
    dtype: int64
  - name: certificado_boas_praticas
    dtype: int64
  - name: comprovante_localizacao
    dtype: int64
  - name: idoneidade_financeira
    dtype: int64
  - name: integralizado
    dtype: int64
  - name: licenca_ambiental
    dtype: int64
  - name: n_min_max_limitacao_atestados
    dtype: int64
  splits:
  - name: train
    num_bytes: 1567039880
    num_examples: 177133
  - name: test
    num_bytes: 195995975
    num_examples: 22142
  - name: validation
    num_bytes: 195098396
    num_examples: 22142
  download_size: 767641718
  dataset_size: 1958134251
- config_name: bidCorpus_qual_weak_sup
  features:
  - name: text
    dtype: string
  - name: certidao_protesto
    dtype: int64
  - name: certificado_boas_praticas
    dtype: int64
  - name: comprovante_localizacao
    dtype: int64
  - name: idoneidade_financeira
    dtype: int64
  - name: integralizado
    dtype: int64
  - name: licenca_ambiental
    dtype: int64
  - name: n_min_max_limitacao_atestados
    dtype: int64
  splits:
  - name: train
    num_bytes: 1566000515
    num_examples: 177133
  - name: test
    num_bytes: 195502355
    num_examples: 22142
  - name: validation
    num_bytes: 196631381
    num_examples: 22142
  download_size: 767927678
  dataset_size: 1958134251
- config_name: bidCorpus_raw
  features:
  - name: ID-LICITACAO
    dtype: float64
  - name: ID-ARQUIVO
    dtype: float64
  - name: OBJETO
    dtype: string
  - name: JULGAMENTO
    dtype: string
  - name: CONDICAO_PARTICIPACAO
    dtype: string
  - name: HABILITACAO
    dtype: string
  - name: CREDENCIAMENTO
    dtype: string
  splits:
  - name: train
    num_bytes: 4248532882
    num_examples: 373650
  download_size: 1787451169
  dataset_size: 4248532882
- config_name: bidCorpus_sections_type
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 3141390
    num_examples: 1224
  - name: test
    num_bytes: 387562
    num_examples: 153
  - name: validation
    num_bytes: 477489
    num_examples: 153
  download_size: 2010213
  dataset_size: 4006441
- config_name: bidCorpus_sections_type_cleaned
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 4006441
    num_examples: 1530
  download_size: 1873797
  dataset_size: 4006441
- config_name: bidCorpus_synthetic
  features:
  - name: text
    dtype: string
  - name: certidao_protesto
    dtype: int64
  - name: certificado_boas_praticas
    dtype: int64
  - name: comprovante_localizacao
    dtype: int64
  - name: idoneidade_financeira
    dtype: int64
  - name: integralizado
    dtype: int64
  - name: licenca_ambiental
    dtype: int64
  - name: n_min_max_limitacao_atestados
    dtype: int64
  splits:
  - name: train
    num_bytes: 11104985
    num_examples: 1454
  - name: test
    num_bytes: 1400000
    num_examples: 182
  - name: validation
    num_bytes: 1438114
    num_examples: 182
  download_size: 5673825
  dataset_size: 13943099
configs:
- config_name: bidCorpus_NER_keyphrase
  data_files:
  - split: train
    path: bidCorpus_NER_keyphrase/train-*
  - split: test
    path: bidCorpus_NER_keyphrase/test-*
  - split: validation
    path: bidCorpus_NER_keyphrase/validation-*
- config_name: bidCorpus_gold
  data_files:
  - split: train
    path: bidCorpus_gold/train-*
  - split: test
    path: bidCorpus_gold/test-*
  - split: validation
    path: bidCorpus_gold/validation-*
- config_name: bidCorpus_object_similarity
  data_files:
  - split: train
    path: bidCorpus_object_similarity/train-*
  - split: test
    path: bidCorpus_object_similarity/test-*
  - split: validation
    path: bidCorpus_object_similarity/validation-*
- config_name: bidCorpus_objects_correct_allowed
  data_files:
  - split: train
    path: bidCorpus_objects_correct_allowed/train-*
  - split: test
    path: bidCorpus_objects_correct_allowed/test-*
  - split: validation
    path: bidCorpus_objects_correct_allowed/validation-*
- config_name: bidCorpus_objects_type
  data_files:
  - split: train
    path: bidCorpus_objects_type/train-*
  - split: test
    path: bidCorpus_objects_type/test-*
  - split: validation
    path: bidCorpus_objects_type/validation-*
- config_name: bidCorpus_objects_type_cased
  data_files:
  - split: train
    path: bidCorpus_objects_type_cased/train-*
  - split: test
    path: bidCorpus_objects_type_cased/test-*
- config_name: bidCorpus_qual_model
  data_files:
  - split: train
    path: bidCorpus_qual_model/train-*
  - split: test
    path: bidCorpus_qual_model/test-*
  - split: validation
    path: bidCorpus_qual_model/validation-*
- config_name: bidCorpus_qual_weak_sup
  data_files:
  - split: train
    path: bidCorpus_qual_weak_sup/train-*
  - split: test
    path: bidCorpus_qual_weak_sup/test-*
  - split: validation
    path: bidCorpus_qual_weak_sup/validation-*
- config_name: bidCorpus_raw
  data_files:
  - split: train
    path: bidCorpus_raw/train-*
- config_name: bidCorpus_sections_type
  data_files:
  - split: train
    path: bidCorpus_sections_type/train-*
  - split: test
    path: bidCorpus_sections_type/test-*
  - split: validation
    path: bidCorpus_sections_type/validation-*
- config_name: bidCorpus_sections_type_cleaned
  data_files:
  - split: train
    path: bidCorpus_sections_type_cleaned/train-*
- config_name: bidCorpus_synthetic
  data_files:
  - split: train
    path: bidCorpus_synthetic/train-*
  - split: test
    path: bidCorpus_synthetic/test-*
  - split: validation
    path: bidCorpus_synthetic/validation-*
tags:
- legal
---

# Dataset Card for "BidCorpus"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [How to load the datasets](#how-to-load-the-datasets)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)



## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:**

### How to load the datasets

To load one of the datasets, simply provide the tcepi/bidCorpus argument as the first parameter, followed by the name of the desired dataset, such as bid_corpus_raw.
```python
from datasets import load_dataset
dataset = load_dataset("tcepi/bidCorpus", "bidCorpus_raw")
```

The csv format version of the datasets is available in the ```\bidCorpus_csvs``` folder.

### Dataset Summary

The BidCorpus dataset consists of various configurations related to bidding documents. It includes datasets for Named Entity Recognition, Multi-label Classification, Sentence Similarity, and more. Each configuration focuses on different aspects of bidding documents and is designed for specific tasks.

### Supported Tasks and Leaderboards

The supported tasks are the following:

<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td></tr>
<tr><td>bidCorpus_NER_keyphrase</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Named Entity Recognition</td><td>4</td></tr>
<tr><td>bidCorpus_gold</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_object_similarity</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Sentence Similarity</td><td>2</td></tr>
<tr><td>bidCorpus_objects_correct_allowed</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Multi-class Classification</td><td>4</td></tr>
<tr><td>bidCorpus_objects_type</td><td><a href="">-</a></td><td>Seção Objeto de Editais de Licitação</td><td>Multi-class Classification</td><td>4</td></tr>
<tr><td>bidCorpus_qual_model</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_qual_weak_sup</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_synthetic</td><td><a href="">-</a></td><td>Seção de Habilitação de Editais de Licitação</td><td>Multi-label Classification</td><td>7</td></tr>
<tr><td>bidCorpus_sections_type</td><td><a href="">-</a></td><td>Seções de Editais de Licitação</td><td>Multi-label Classification</td><td>5</td></tr>
<tr><td>bidCorpus_raw</td><td><a href="">-</a></td><td>Seções de Editais de Licitação</td><td>n/a</td><td>n/a</td></tr>
</table>

#### bidCorpus_NER_keyphrase

This dataset is composed of texts from the "object" section of bidding notices. The dataset is labeled with two types of named entities, following the IOB (Inside-Outside-Beginning) format.
1. **Object of the bid**: Refers to the item to be acquired or the service to be contracted. The tags can be "B-OBJECT" (beginning of the entity) and "I-OBJECT" (continuation of the entity).
2. **Municipality of the managing unit**: Indicates the location of the entity responsible for the bid. The tags can be "B-MUNICIPALITY" (beginning of the entity) and "I-MUNICIPALITY" (continuation of the entity).

This dataset is intended for training named entity recognition (NER) models, which are used to automatically identify and classify these entities within the texts. The labeled structure of the dataset facilitates the task of teaching models to distinguish between different types of relevant information in the bidding notices. The dataset follows the IOB format for named entity recognition, with entities labeled as either part of the object of the bid or the municipality of the managing unit.

#### bidCorpus_gold

This dataset consists of texts from the qualification section of bidding notices. Annotated by experts in public procurement, the dataset is multilabel and contains seven labels that indicate possible signs of fraud in public contracts.

1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.

This dataset is used for training machine learning models to detect signs of fraud in public procurement processes. The multilabel structure allows the models to learn to identify multiple suspicious characteristics simultaneously, providing a valuable tool for the analysis and prevention of fraud in public contracts.

#### bidCorpus_object_similarity

This dataset is designed to assess text similarity in the "object" section of bidding notices by comparing pairs of distinct notices. Annotated by experts in public procurement, each entry consists of a pair of "object" sections labeled with:

- **1**: The sections are similar.
- **0**: The sections are not similar.

The dataset supports tasks such as document comparison, clustering, and retrieval. It provides a valuable resource for training and evaluating models on how effectively they can determine similarities between bidding notices.

The pairs are annotated with expert labels to ensure high-quality data, making this dataset ideal for developing and testing algorithms for text similarity analysis. It helps improve the efficiency and accuracy of managing and analyzing bidding documents.


#### bidCorpus_objects_correct_allowed

This dataset focuses on two classifications related to the "object" section of bidding notices:

1. **Object Classification**: Determines whether a section is the "object" section of a bidding notice.
2. **Permissivity Classification**: Assesses whether the object requires permissivity, meaning whether the contract involves areas such as the purchase of medications, cleaning services, or fuels, which might necessitate a certificate of location and an environmental license from regulatory institutions overseeing these activities.

The dataset provides labels for these classifications to support the analysis of compliance and requirements in bidding documents.

#### bidCorpus_objects_type

This dataset focuses on classifying the type of procurement found in the "object" section of bidding notices. Specifically, it categorizes the type of product or service being bid on into one of the following categories:

- **Consumables**: Items that are used up or consumed during use, such as office supplies or food products.
- **Permanent Assets**: Items with a longer lifespan that are intended for repeated use, such as machinery or equipment.
- **Services**: Non-tangible activities provided to fulfill a need, such as consulting or maintenance services.
- **Engineering Works**: Projects related to construction, infrastructure, or other engineering tasks.

The dataset provides labels for these classifications to assist in the analysis and organization of bidding documents, facilitating a better understanding of procurement types and aiding in the efficient management of bidding processes.

#### bidCorpus_qual_model

This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.

1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.

Unlike the expert-annotated previous dataset, this dataset has been annotated by a model trained on that data. This automated process ensures consistency and scalability while utilizing insights from the original expert annotations.

The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. The automated annotation enhances research and development in fraud detection, aiming to improve the accuracy and efficiency of identifying suspicious activities in bidding notices. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.

#### bidCorpus_qual_weak_sup

This dataset consists of texts from the qualification section of bidding notices and is annotated using weak supervision techniques, specifically through regular expressions. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.

1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.

Unlike the previous expert-annotated dataset, this dataset has been annotated using weak supervision techniques, specifically regular expressions. This approach provides a scalable method for labeling data by applying patterns to identify potential fraud indicators, although it may lack the precision of expert annotations.

The dataset is designed for training and evaluating machine learning models to detect fraud in public procurement. The use of weak supervision through regular expressions facilitates the creation of large annotated datasets, supporting research and development in fraud detection. The multilabel structure allows models to classify multiple fraud indicators simultaneously, improving the efficiency of identifying and preventing fraudulent practices in public contracts.

#### bidCorpus_synthetic

This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes. This dataset underwent modifications to its keywords by incorporating synonyms to evaluate the model's accuracy in handling words different from those it was previously accustomed to. 

1. **Certidão de Protesto**: Verification of any protests in the company's name.
2. **Certificado de Boas Práticas**: Assessment of adherence to recommended practices in the sector.
3. **Comprovante de Localização**: Confirmation of the company's physical address.
4. **Idoneidade Financeira**: Analysis of the company's financial health.
5. **Integralização de Capital**: Verification of the company's capital stock integration.
6. **Licença Ambiental**: Evaluation of compliance with environmental regulations.
7. **Limitação de Atestados**: Verification of the minimum and maximum number of certificates required.

The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.

#### bidCorpus_sections_type

This dataset classifies different types of sections in bidding notices. The sections are categorized into the following labels:

- **Habilitação**: Qualification section, where eligibility criteria and requirements are outlined.
- **Julgamento**: Evaluation section, detailing the criteria and process for assessing bids.
- **Objeto**: Object section, specifying the item or service being procured.
- **Outros**: Other sections that do not fall into the categories above.
- **Credenciamento**: Accreditation section, where the process for validating and registering vendors is described.

The dataset provides a systematic approach to categorize the various sections found in bidding notices, facilitating better organization and analysis of procurement documents.

#### bidCorpus_raw

This dataset consists of raw, unlabeled texts from sections of bidding notices. The sections included are:

- **Objeto**: Describes the item or service being procured.
- **Julgamento**: Outlines the criteria and process for evaluating bids.
- **Credenciamento**: Details the procedures for vendor registration and validation.
- **Condições de Participação**: Specifies the conditions required for participation in the bidding process.
- **Habilitação**: Provides information on the qualifications and eligibility criteria for bidders.

This dataset offers a collection of unprocessed text from various sections of bidding notices, suitable for tasks such as text analysis, feature extraction, and the development of classification models.

### Languages

We considered only datasets in Portuguese.

## Dataset Structure

### Data Instances

#### bidCorpus_NER_keyphrase

An example of 'train' looks as follows. 
```json
{
  "tokens": ["constitui", "objeto", "do", "presente", "edital", "a", "contratacao", "de", "empresa", "de", "engenharia", "para", "execucao", "da", "obra", "e", "/", "ou", "servico", "de", "elaboracao", "de", "plano", "diretor", "de", "arborizacao", "urbana", "de", "teresina", "-", "pi", ".", "a", "forma", "pela", "qual", "deverao", "ser", "executados", "os", "servicos", "licitados", "e", "as", "diversas", "obrigacoes", "dos", "licitantes", "e", "do", "adjudicatario", "do", "objeto", "desta", "licitacao", "estao", "registradas", "neste", "edital", ",", "no", "termo", "de", "referencia", "e", "minuta", "do", "contrato", "e", "demais", "anexos", "que", ",", "igualmente", ",", "integram", "as", "de", "informacoes", "sobre", "a", "licitacao", "."]
  "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
}
```

#### bidCorpus_gold

An example of 'train' looks as follows. 
```json
{
  "text": ["para se habilitarem ao presente convite, os interessados deverao apresentar os documentos abaixo relacionados, nos termos dos artigos 27 a 31 e 32, paragrafo 1, da lei numero 666/93, atraves de seus representantes, no local, data e horario indicados no preambulo deste edital, em envelope inteiramente fechado, contendo em sua parte externa, alem da razao social e endereco da licitante, os seguintes dizeres: prefeitura municipal de angical ..."]
  "labels": "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```

#### bidCorpus_object_similarity

An example of 'train' looks as follows. 
```json
{
  "nerObjeto1": ["execucao dos servicos de reforma e ampliacao da escola reunida francisco"],
  "nerObjeto2": ["execucao dos servicos de reforma da escola municipal"],
  "humanScore": 1.0,
  "bertscore_ner": 1
}
```

#### bidCorpus_objects_correct_allowed

An example of 'train' looks as follows. 
```json
{
  "text": ["A presente licitação tem por objeto, selecionar empresas do ramo pertinente, Fornecimento de Lanches, marmitas para atender necessidade das Secretarias e Programa do Município com entrega parcelada ..."],
  "corretude": 1,
  "permitido": 0
}
```

#### bidCorpus_objects_type

An example of 'train' looks as follows. 
```json
{
  "text": ["destina - se a presente licitacao a prestacao de servicos de pavimentacao em paralelepipedo, conforme especificacoes e quantidades constantes do anexo <numero> sao ..."],
  "label": 0
}
```

#### bidCorpus_qual_model

An example of 'train' looks as follows. 
```json
{
  "text": ["regras gerais. 1 os documentos de habilitacao deverao ser enviados concomitantemente com o envio da proposta, conforme item 9 deste edital 2 havendo a necessidade de envio de documentos de habilitacao complementares ..."],
  "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```

#### bidCorpus_qual_weak_sup

An example of 'train' looks as follows. 
```json
{
  "text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
  "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```

#### bidCorpus_synthetic

An example of 'train' looks as follows. 
```json
{
  "text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
  "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}
```

#### bidCorpus_sections_type

An example of 'train' looks as follows. 
```json
{
  "text": ["IMPUGNAÇÃO DO ATO CONVOCATÓRIO 5.1 No prazo de até 03 (três) dias úteis, antes da data fixada para abertura da Sessão Pública, qualquer pessoa poderá solicitar esclarecimentos e providências sobre o ato convocatório deste pregão ..."],
  "label": "outros"
}
```

#### bidCorpus_raw

An example of 'train' looks as follows. 
```json
{
  "ID-LICITACAO": 910809.0,
  "ID-ARQUIVO": 745202022.0,
  "OBJETO": "Artigo 20 Definição do Objeto\n1 – O objeto da licitação deve ser definido pela unidade ...",
  "JULGAMENTO":"Artigo 46 Disposições gerais 1 – As licitações podem adotar os modos de disputa aberto, fechado ou combinado, que deve ...",
  "CONDICAO_PARTICIPACAO": "5.1 - A participação no certame se dará por meio da digitação da senha pessoal e intransferível do representante ...",
  "HABILITACAO": "6.1 - Os proponentes encaminharão, exclusivamente por meio do sistema eletrônico, os documentos de habilitação exigidos no edital, proposta ...",
  "CREDENCIAMENTO": "4.1 - O credenciamento é o nível básico do registro cadastral no SICAF, que permite a participação dos interessados na modalidade licitatória ..."
}
```

### Data Fields

#### bidCorpus_NER_keyphrase

- `tokens`: a list of `string` features (list of tokens in a text).
- `ner_tags`: a list of classification labels (a list of named entity recognition tags).
  <details>
    <summary>List of NER tags</summary>
    `O`, `B-LOCAL`, `I-LOCAL`, `B-OBJETO`, `I-OBJETO`
  </details>

#### bidCorpus_gold

- `text`: a `string` feature (string of factual paragraphs from the case description).
- `certidao_protesto`: a 'int64` feature (indicates the presence or absence of a protest certificate).
- `certificado_boas_praticas`: a 'int64` feature (indicates the presence or absence of a good practices certificate).
- `comprovante_localizacao`: a 'int64` feature (indicates the presence or absence of a location proof).
- `idoneidade_financeira`: a 'int64` feature (indicates the presence or absence of financial soundness).
- `integralizado`: a 'int64` feature (indicates the presence or absence of full completion).
- `licenca_ambiental`: a 'int64` feature (indicates the presence or absence of an environmental license).
- `n_min_max_limitacao_atestados`: a 'int64` feature (indicates the presence or absence of limitation of certificates).

#### bidCorpus_object_similarity

- `objeto1`: a `string` feature (first object for comparison).
- `nerObjeto1`: a `string` feature (NER tags for the first object).
- `objeto2`: a `string` feature (second object for comparison).
- `nerObjeto2`: a `string` feature (NER tags for the second object).
- `humanScore`: a `float64` feature (human-provided similarity score).
- `nerObjeto1_words`: a `int64` feature (number of words in the first object with NER tags).
- `objeto1_words`: a `int64` feature (number of words in the first object).
- `percentual_words`: a `float64` feature (percentage of similar words).
- `nerObjeto2_words`: a 'int64` feature (number of words in the second object with NER tags).
- `objeto2_words`: a `int64` feature (number of words in the second object).
- `bertscore_ner`: a 'int64` feature (BERT score for NER).
- `bertscore_objs`: a 'int64` feature (BERT score for objects).

#### bidCorpus_objects_correct_allowed

- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `corretude`: a list of `int64` features (correctness score).
- `permitido`: a list of `int64` features (allowed score).

#### bidCorpus_objects_type

- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `label`: a list of `int64` features (classification labels for object types).

#### bidCorpus_qual_model

- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).

#### bidCorpus_qual_weak_sup

- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).

#### bidCorpus_synthetic

- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `certidao_protesto`: a list of `int64` features (presence or absence of protest certificate).
- `certificado_boas_praticas`: a list of `int64` features (presence or absence of good practices certificate).
- `comprovante_localizacao`: a list of `int64` features (presence or absence of location proof).
- `idoneidade_financeira`: a list of `int64` features (presence or absence of financial soundness).
- `integralizado`: a list of `int64` features (presence or absence of full completion).
- `licenca_ambiental`: a list of `int64` features (presence or absence of environmental license).
- `n_min_max_limitacao_atestados`: a list of `int64` features (presence or absence of limitation of certificates).

#### bidCorpus_sections_type

- `text`: a list of `string` features (list of factual paragraphs from the case description).
- `label`: a list of `string` features (classification labels for sections types).

#### bidCorpus_raw

- `ID-LICITACAO`: a list of `float64` features (auction ID).
- `ID-ARQUIVO`: a list of `float64` features (file ID).
- `OBJETO`: a list of `string` features (object of the auction).
- `JULGAMENTO`: a list of `string` features (judgment details).
- `CONDICAO_PARTICIPACAO`: a list of `string` features (participation conditions).
- `HABILITACAO`: a list of `string` features (qualification details).
- `CREDENCIAMENTO`: a list of `string` features (accreditation details).

### Data Splits

<table>
  <tr>
    <td>Dataset</td>
    <td>Training</td>
    <td>Development</td>
    <td>Test</td>
    <td>Total</td>
  </tr>
  <tr>
    <td>bidCorpus_NER_keyphrase</td>
    <td>1.632</td>
    <td>204</td>
    <td>204</td>
    <td>2.040</td>
  </tr>
  <tr>
    <td>bidCorpus_gold</td>
    <td>1.454</td>
    <td>182</td>
    <td>182</td>
    <td>1.818</td>
  </tr>
  <tr>
    <td>bidCorpus_object_similarity</td>
    <td>1.403</td>
    <td>175</td>
    <td>176</td>
    <td>1.754</td>
  </tr>
  <tr>
    <td>bidCorpus_objects_correct_allowed</td>
    <td>1.089</td>
    <td>136</td>
    <td>137</td>
    <td>1.362</td>
  </tr>
  <tr>
    <td>bidCorpus_objects_type</td>
    <td>1.709</td>
    <td>214</td>
    <td>214</td>
    <td>2.137</td>
  </tr>
  <tr>
    <td>bidCorpus_qual_model</td>
    <td>177.133</td>
    <td>22.142</td>
    <td>22.142</td>
    <td>221.417</td>
  </tr>
  <tr>
    <td>bidCorpus_qual_weak_sup</td>
    <td>177.133</td>
    <td>22.142</td>
    <td>22.142</td>
    <td>221.417</td>
  </tr>
  <tr>
    <td>bidCorpus_synthetic</td>
    <td>1.454</td>
    <td>182</td>
    <td>182</td>
    <td>1.818</td>
  </tr>
  <tr>
    <td>bidCorpus_sections_type</td>
    <td>1.224</td>
    <td>153</td>
    <td>153</td>
    <td>1.530</td>
  </tr>
</table>


## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data 

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


## Additional Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Dataset Curators

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information


### Contributions