tejasexpress commited on
Commit
6e90ebb
·
verified ·
1 Parent(s): 8e2f9b6

utility scripts

Browse files
Files changed (2) hide show
  1. dataframe.py +61 -0
  2. json-to-annotation.py +39 -0
dataframe.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ from PIL import Image
4
+ from io import BytesIO
5
+ import io
6
+
7
+
8
+ # Path to the folders containing images and captions
9
+ image_folder = "images"
10
+ ocr_folder = "ocr-text"
11
+
12
+ # List to store data
13
+ data = []
14
+ count = 0
15
+
16
+ # Iterate through images and captions
17
+ for index, image_file in enumerate(os.listdir(image_folder)):
18
+ if index >= 1000:
19
+ break
20
+ count += 1
21
+ print("adding image: " + image_file + " to dataframe" + " count: " + str(count))
22
+ image_path = os.path.join(image_folder, image_file)
23
+
24
+ # Assuming caption file names match image file names
25
+ ocr_path = os.path.join(ocr_folder, image_file.replace(".jpg", "_words.txt"))
26
+
27
+ # Read image and get image dimensions
28
+ image = Image.open(image_path)
29
+ image_width, image_height = image.size
30
+
31
+ # Read caption
32
+ with open(ocr_path, "r", encoding="utf-8") as ocr_file:
33
+ caption = ocr_file.read().strip()
34
+
35
+ # Convert image to byte array
36
+ img = Image.open(image_path)
37
+ img_byte_arr = io.BytesIO()
38
+ img.save(img_byte_arr, format=img.format)
39
+ img_byte_arr = img_byte_arr.getvalue()
40
+
41
+ # Append data to the list
42
+ data.append({
43
+ 'image': img_byte_arr,
44
+ 'ocr_annotation_texts': caption,
45
+ 'image_height': image_height,
46
+ 'image_width': image_width
47
+ })
48
+
49
+ # Create DataFrame
50
+ df = pd.DataFrame(data)
51
+
52
+ current_directory = os.getcwd()
53
+
54
+ parquet_file_name = "my_dataframe.parquet"
55
+
56
+ # Combine the current directory and the filename to create the full path
57
+ parquet_file_path = os.path.join(current_directory, parquet_file_name)
58
+ df.to_parquet(parquet_file_path, index=False)
59
+
60
+ # Display the DataFrame
61
+ print(df)
json-to-annotation.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ input_folder = "words"
5
+ output_folder = "ocr-text"
6
+
7
+ json_files = [file for file in os.listdir(input_folder) if file.endswith('.json')]
8
+
9
+ for json_file in json_files:
10
+ print(f'Processing {json_file}')
11
+ input_file_path = os.path.join(input_folder, json_file)
12
+ output_file_path = os.path.join(output_folder, os.path.splitext(json_file)[0] + '.txt')
13
+
14
+ with open(input_file_path, 'r') as file:
15
+ data = json.load(file)
16
+
17
+ words_list = data.get("words", [])
18
+
19
+ #calculate width and height of the image
20
+ width = data["image_rect"][2]
21
+ height = data["image_rect"][3]
22
+
23
+ result_strings = []
24
+ for word in words_list:
25
+ bbox_values = word["bbox"]
26
+
27
+ #calculate (x,y,w,h)
28
+ x = int((bbox_values[0])*100/width)
29
+ y = int((bbox_values[1])*100/height)
30
+ box_width = int((abs(bbox_values[2]-bbox_values[0]))*100/width)
31
+ box_height = int((abs(bbox_values[3]-bbox_values[1]))*100/height)
32
+ #convert everything to a string with appropriate spacing and text at the end
33
+ result_string = f"{x} {y} {box_width} {box_height} {word['text']}"
34
+ result_strings.append(result_string)
35
+
36
+ result_string = ' '.join(result_strings)
37
+
38
+ with open(output_file_path, 'w', encoding='utf-8') as file:
39
+ file.write(result_string)