import os import pandas as pd from PIL import Image from io import BytesIO import io # Path to the folders containing images and captions image_folder = "images" ocr_folder = "ocr-text" # List to store data data = [] count = 0 # Iterate through images and captions for index, image_file in enumerate(os.listdir(image_folder)): if index >= 1000: break count += 1 print("adding image: " + image_file + " to dataframe" + " count: " + str(count)) image_path = os.path.join(image_folder, image_file) # Assuming caption file names match image file names ocr_path = os.path.join(ocr_folder, image_file.replace(".jpg", "_words.txt")) # Read image and get image dimensions image = Image.open(image_path) image_width, image_height = image.size # Read caption with open(ocr_path, "r", encoding="utf-8") as ocr_file: caption = ocr_file.read().strip() # Convert image to byte array img = Image.open(image_path) img_byte_arr = io.BytesIO() img.save(img_byte_arr, format=img.format) img_byte_arr = img_byte_arr.getvalue() # Append data to the list data.append({ 'image': img_byte_arr, 'ocr_annotation_texts': caption, 'image_height': image_height, 'image_width': image_width }) # Create DataFrame df = pd.DataFrame(data) current_directory = os.getcwd() parquet_file_name = "my_dataframe.parquet" # Combine the current directory and the filename to create the full path parquet_file_path = os.path.join(current_directory, parquet_file_name) df.to_parquet(parquet_file_path, index=False) # Display the DataFrame print(df)