File size: 1,655 Bytes
a9acee3
 
 
b2c3a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf1778
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

license: mit
---


# APEBench Scraped

A representative subset of datasets created using the [APEBench benchmark suite](https://github.com/tum-pbs/apebench) using version `0.1.0`

## Download

Download without large files

```bash

GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/thuerey-group/apebench-scraped

```

Afterwards, you can inspect the repository and download the files you need. For
example, for `1d_diff_adv`:

```bash

git lfs install

git lfs pull -I "data/1d_diff_adv*"

```

Alternatively, you can download the entire repository with large files:

```bash

git lfs install

git clone [email protected]:datasets/thuerey-group/apebench-scraped

```

## Reproduction

Obtained via:

```bash

conda create -n apebench python=3.12 -y

conda activate apebench

pip install -U "jax[cuda12]"

pip install apebench==0.1.0

```

Alternatively, you can use the provided `environment.yml` file:

```bash

conda env create -f environment.yml

conda activate apebench

```

And then executed the following script (also found under `reproduce.py`):

```python

import apebench

from tqdm import tqdm

import os



DATA_PATH = "data"



os.makedirs(DATA_PATH, exist_ok=True)



for config in tqdm(apebench.scraper.CURATION_APEBENCH_V1):

    apebench.scraper.scrape_data_and_metadata(DATA_PATH, **config)

```

⚠️  Small️️er variations of the generated data can occur due to different JAX
versions, backends (CPU, GPU, TPU), drivers, etc. This might be especially
pronounced for the chaotic problems (like KS or Kolmogorov flow).

- nvidia driver version: 535.183.01
- cuda version: 12.2
- GPU: RTX 3060